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Divergence time estimation using BEAST v1.7.4

Central among the questions explored in biology are those that seek to understand the timing and rates of
evolutionary processes. Accurate estimates of species divergence times are vital to understanding historical
biogeography, estimating diversification rates, and identifying the causes of variation in rates of molecular
evolution.

This tutorial will provide a general overview of divergence time estimation and fossil calibration in a
Bayesian framework. The exercise will guide you through the steps necessary for estimating phylogenetic
relationships and dating species divergences using the program BEAST v1.7.4.

Background: Divergence time estimation

Estimating branch lengths in proportion to time is confounded by the fact that the rate of evolution and
time are intrinsically linked when inferring genetic differences between species. A model of lineage-specific
substitution rate variation must be applied to tease apart rate and time. When applied in methods for
divergence time estimation, the resulting trees have branch lengths that are proportional to time. External
node age estimates from the fossil record or other sources are necessary for inferring the real-time (or
absolute) ages of lineage divergences (Figure 1).
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Figure 1: Estimating branch lengths in units of time requires a model of lineage-specific rate variation and external
information to calibrate the tree.

Modeling lineage-specific substitution rates

Many factors can influence the rate of substitution in a population such as mutation rate, population
size, generation time, and selection. As a result, many models have been proposed that describe how
substitution rate may vary across the Tree of Life.

The simplest model, the molecular clock, assumes that the rate of substitution remains constant over time
(Zuckerkandl and Pauling, 1962). However, many studies have shown that molecular data (in general)
violate the assumption of a molecular clock and that there exists considerable variation in the rates of
substitution among lineages.
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Several models have been developed and implemented for inferring divergence times without assuming a
strict molecular clock and are commonly applied to empirical data sets. Many of these models have been
applied as priors using Bayesian inference methods. The implementation of dating methods in a Bayesian
framework provides a flexible way to model rate variation and obtain reliable estimates of speciation
times, provided the assumptions of the models are adequate. When coupled with numerical methods
such as Markov chain Monte Carlo (MCMC), for approximating the posterior probability distribution of
parameters, Bayesian inference methods can be extremely powerful for estimating the parameters of a
statistical model and are widely used in phylogenetics.

Some models of lineage-specific rate variation:

• Global molecular clock: a constant rate of substitution over time (Zuckerkandl and Pauling, 1962)

• Local molecular clocks (Kishino, Miyata and Hasegawa, 1990; Rambaut and Bromham, 1998; Yang
and Yoder, 2003; Drummond and Suchard, 2010)

– Closely related lineages share the same rate and rates are clustered by sub-clades

• Compound Poisson process (Huelsenbeck, Larget and Swofford, 2000)

– Rate changes occur along lineages according to a point process and at rate-change events, the
new rate is a product of the old rate and a Γ-distributed multiplier.

• Autocorrelated rates: substitution rates evolve gradually over the tree

– Log-normally distributed rates: the rate at a node is drawn from a log-normal distribution
with a mean equal to the parent rate (Thorne, Kishino and Painter, 1998; Kishino, Thorne and
Bruno, 2001; Thorne and Kishino, 2002)

– Cox-Ingersoll-Ross Process: the rate of the daughter branch is determined a non-central χ2

distribution. This process includes a parameter that determines the intensity of the force that
drives the process to its stationary distribution (Lepage et al., 2006).

• Uncorrelated rates

– The rate associated with each branch is drawn from a single underlying parametric distribution
such as an exponential or log-normal (Drummond et al., 2006; Lepage et al., 2007; Heath, Holder
and Huelsenbeck, 2012).

The variety of models for relaxing the molecular clock assumption presents a challenge for investigators
interested in estimating divergence times. Some models assume that rates are heritable and autocorrelated
over the tree, others model rate change as a step-wise process, and others assume that the rates on
each branch are independently drawn from a single distribution. Furthermore, studies comparing the
accuracy (using simulation) or precision of different models have produced conflicting results, some favoring
uncorrelated models (Drummond et al., 2006) and others preferring autocorrelated models (Lepage et al.,
2007). Because of this, it is important for researchers performing these analyses to consider and test
different relaxed clock models (Lepage et al., 2007; Ronquist et al., 2012; Li and Drummond, 2012; Baele
et al., 2013). It is also critical to take into account the scale of the question when estimating divergence
times. For example, it might not be reasonable to assume that rates are autocorrelated if the data set
includes very distantly related taxa and low taxon sampling. In such cases, it is unlikely that any signal
of autocorrelation is detectible.

Fossil calibration

Without external information to calibrate the tree, divergence time estimation methods can only reliably,
provide estimates of relative divergence times (which are useful for some analyses: quantitative trait
evolution, estimating relative diversification rates) and not absolute node ages. Calibration information
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can come from a variety of sources including “known” substitution rates (often secondary calibrations
estimated from a previous study), dated tip sequences from serially sampled data (typically time-stamped
virus data), or geological date estimates (fossils or biogeographical data).

Age estimates from fossil organisms are the most common form of divergence time calibration information.
These data are used as age constraints on their putative ancestral nodes. There are numerous difficulties
with incorporating node age estimates from fossil data including disparity in fossilization and sampling,
uncertainty in dating, and correct phylogenetic placement of the fossil. Thus, it is critical that careful
attention is paid to the paleontological data included in phylogenetic divergence time analyses.

With an accurately dated and identified fossil in hand, further consideration is required to determine how
to apply the node-age constraint. If the fossil is truly a descendant of the node it calibrates, then it
provides a reliable minimum age bound on the ancestral node time. However, maximum bounds are far
more difficult to come by. Bayesian methods provide a way to account for uncertainty in fossil calibrations.
Prior distributions reflecting our knowledge (or lack thereof) of the amount of elapsed time from the
ancestral node to is calibrating fossil are easily incorporated into these methods.

A nice review paper by Ho and Phillips (2009) outlines a number of different parametric distributions
appropriate for use as priors on calibrated nodes. In this exercise we will use the uniform, normal, log-
normal, and exponential distributions (Figure 2).

Time

Uniform (min, max)

Exponential (λ)

Gamma (α, β)

Minimum age

Log Normal (µ, σ)

Normal (µ, σ)

(fossil)

Figure 2: Five different parametric distributions that can be applied as priors on the age of a calibrated node.

Uniform distribution – Typically, you must have both maximum and minimum age bounds when applying
a uniform calibration prior (though some methods are available for applying uniform constraints with soft
bounds). The minimum bound is provided by the fossil member of the clade. The maximum bound may
come from a bracketing method or other external source. This distribution places equal probability across
all ages spanning the interval between the lower and upper bounds.

Normal distribution – The normal distribution is not always appropriate for calibrating a node using fossil
information (though some methods allow for assigning a truncated normal prior density). When applying
a biogeographical date (e.g. the Isthmus of Panama) or a secondary calibration (a node age estimate from
a previous study), the normal distribution can be a useful calibration prior. This distribution is always
symmetrical and places the greatest prior weight on the mean (µ). Its scale is determined by the standard

3



deviation parameter (σ).

Probability distributions restricted to the interval [0,∞), such as the log-normal, exponential, and gamma
are appropriate for use as zero-offset calibration priors. When applying these priors on node age, the fossil
age is the origin of the prior distribution. Thus, it is useful to consider the fact that the prior is modeling
the amount of time that has elapsed since the divergence event (ancestral node) until the time of the
descendant fossil (Figure 3).
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Figure 3: Two common prior densities for calibrating node ages. a) The exponential distribution with three different
values for the rate parameter, λ. As the value of the λ rate parameter is decreased, the prior becomes less informative
(the blue line is the least informative prior, λ = 60−1). The inset shows an example of the three different priors
and their expected values placed on the same node with a minimum age bound of 60. b) The lognormal distribution
with 3 different values for the shape parameter, σ. For this distribution, even though µ is equal to 2.0 for all three,
expected value (mean) is dependent on the value of σ. The inset shows an example of the three different priors and
their expected values placed on the same node with a minimum age bound of 30.

Gamma distribution – The gamma distribution is commonly used as a prior on scalar variables in Bayesian
inference. It relies on 2 parameters: the scale parameter (α) and a rate parameter (λ). More specifically, the
gamma distribution is the sum of α independently and identical exponentially distributed random variables
with rate λ. As α becomes very large (α > 10), this distribution approaches the normal distribution.

Exponential distribution – The exponential distribution is a special case of the gamma distribution and is
characterized by a single rate parameter (λ) and is useful for calibration if the fossil age is very close to the
age of its ancestral node. The expected (mean) age difference under this distribution is equal to λ−1 and
the median is equal to λ−1

∗ ln(2). Under the exponential distribution, the greatest prior weight is placed
on node ages very close to the age of the fossil with diminishing probability to ∞. As λ is increased, this
prior density becomes strongly informative, whereas very low values of λ result in a fairly non-informative
prior (Figure 3a).

Log-normal distribution – An offset, log-normal prior on the calibrated node age places the highest proba-
bility on ages somewhat older than the fossil, with non-zero probability to ∞. If a variable is log-normally
distributed with parameters µ and σ, then the natural log of that variable is normally distributed with a
mean of µ and standard deviation of σ. The median of the lognormal distribution is equal to eµ and the

mean is equal to eµ+
σ
2

2 (Figure 3b).
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Priors on node times

There are many component parts that make up a Bayesian analysis of divergence time. One that is often
overlooked is the prior on node times, often called a tree prior.

In BEAST, the available tree priors for divergence time estimation using inter-species sequences are the
Yule prior and the Birth-Death prior (Kendall, 1948; Nee, May and Harvey, 1994; Gernhard, 2008;
Stadler, 2010). These priors are based on the birth-death process which assumes that lineages speciate and
go extinct according to a stochastic process with a single rate for speciation (birth = λ) and a single rate for
extinction (death = µ). The Yule model is a special case of the birth-death process where µ = 0. Extensions
of these models are also available in BEAST, including the Calibrated Yule , Birth Death Incomplete-
Sampling , and Birth-Death Serially Sampled . Other programs also offer these speciation priors as
well as some alternative priors such as a uniform prior (PhyloBayes, MrBayes v3.2, DPPDiv), a Dirichlet
prior (multidivtime), and a birth-death prior with species sampling (MCMCTree). BEAST also offers
tree priors based on the coalescent which are intended for population-level analyses or time-stamped virus
data. The effect of different node-time priors on estimates of divergence times is not well understood and
appears to be dataset-dependent (Lepage et al., 2007). Accordingly, it is important to account for the
characteristics of your data when choosing a tree prior.

Programs used in this exercise

BEAST – Bayesian Evolutionary Analysis Sampling Trees

BEAST is a free software package for Bayesian evolutionary analysis of molecular sequences using MCMC
and strictly oriented toward inference using rooted, time-measured phylogenetic trees. The development
and maintenance of BEAST is a large, collaborative effort and the program includes a wide array of different
types of analyses:

• Phylogenetic tree inference under different models for substitution rate variation

– Constant rate molecular clock (Zuckerkandl and Pauling, 1962)
– Uncorrelated relaxed clocks (Drummond et al., 2006)
– Random local molecular clocks (Drummond and Suchard, 2010)

• Estimates of species divergence dates and fossil calibration

• Analysis of non-contemporaneous sequences

• Heterogenous substitution models across data partitions

• Population genetic analyses

– Estimation of demographic parameters (population sizes, growth/decline, bottlenecks, migra-
tion)

– Bayesian skyline plots
– Phylogeography (Lemey et al., 2009)

• Gene-tree/species-tree inference (∗BEAST; Heled and Drummond, 2010)

• and more...

BEAST is written in java and its appearance and functionality are consistent across platforms. Inference
using MCMC is done using the BEAST program, however, there are several utility applications that assist
in the preparation of input files and summarize output (BEAUti, LogCombiner, and TreeAnnotator are
all part of the BEAST software bundle; http://beast.bio.ed.ac.uk).
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BEAUti – Bayesian Evolutionary Analysis Utility

BEAUti is a utility program with a graphical user interface for creating BEAST and *BEAST input files
which must be written in the eXtensible Markup Language (XML). This application provides a clear way
to specify priors, partition data, calibrate internal nodes, etc.

LogCombiner – When multiple (identical) analyses are run using BEAST (or MrBayes), LogCombiner
can be used to combine the parameter log files or tree files into a single file that can then be summarized
using Tracer (log files) or TreeAnnotator (tree files). However, it is important to ensure that all analyses
reached convergence and sampled the same stationary distribution before combining the parameter files.

TreeAnnotator – TreeAnnotator is used to summarize the posterior sample of trees to produce a maxi-
mum clade credibility tree and summarize the posterior estimates of other parameters that can be easily
visualized on the tree (e.g. node height). This program is also useful for comparing a specific tree topology
and branching times to the set of trees sampled in the MCMC analysis.

Tracer – Tracer is used for assessing and summarizing the posterior estimates of the various parameters
sampled by the Markov Chain. This program can be used for visual inspection and assessment of conver-
gence and it also calculates 95% highest posterior density (95% HPD) intervals and effective sample sizes
(ESS) of parameters (http://tree.bio.ed.ac.uk/software/tracer).

FigTree – FigTree is an excellent program for viewing trees and producing publication-quality fig-
ures. It can interpret the node-annotations created on the summary trees by TreeAnnotator, allow-
ing the user to display node-based statistics (e.g. posterior probabilities) in a visually appealing way
(http://tree.bio.ed.ac.uk/software/figtree).

The eXtensible Markup Language

The eXtensible Markup Language (XML) is a general-purpose markup language, which allows for the
combination of text and additional information. In BEAST, the use of the XMLmakes analysis specification
very flexible and readable by both the program and people. The XML file specifies sequences, node
calibrations, models, priors, output file names, etc. BEAUti is a useful tool for creating an XML file
for many BEAST analyses. However, typically, dataset-specific issues can arise and some understanding
of the BEAST-specific XML format is essential for troubleshooting. Additionally, there are a number of
interesting models and analyses available in BEAST that cannot be specified using the BEAUti utility.
Refer to the BEAST web page (http://beast.bio.ed.ac.uk/XML format) for detailed information about the
BEAST XML format. Box 1 shows an example of BEAST XML syntax for specifying a birth-death prior
on node times.

<!-- A prior on the distribution node heights defined given -->

<!-- a Birth-Death speciation process (Gernhard 2008). -->

<birthDeathModel id="birthDeath" units="substitutions">

<birthMinusDeathRate>

<parameter id="birthDeath.meanGrowthRate" value="1.0" lower="0.0" upper="Infinity"/>

</birthMinusDeathRate>

<relativeDeathRate>

<parameter id="birthDeath.relativeDeathRate" value="0.5" lower="0.0" upper="Infinity"/>

</relativeDeathRate>

</birthDeathModel>

Box 1: BEAST XML specification of the speciation model.
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Practical: Divergence time estimation

For this exercise, we will estimate phylogenetic relationships and date the species divergences of the ten
simulated sequences in the file called ckwme.nex. This simple alignment contains two genes, each 500
nucleotides in length.

• Download all of the compressed directories from:
http://evomics.org/workshops/workshop-on-molecular-evolution/2013-evolution-cesky-krumlov/

and place them in a directory you’ve created named: ckwme beast. After uncompressing, you should
have the files listed in Box 2.

• ckwme beast/data/
– ckwme.nex
– ckwme start tree.tre
– xml files

∗ ckwme.prior.xml
∗ ckwme.xml

• ckwme beast/output1/
– ckwme.log
– ckwme.prior.log
– ckwme.trees
– ckwme.prior.trees
– ckwme.ops
– ckwme.prior.ops

• ckwme beast/output2/
– ckwme 100m.1.log
– ckwme 100m.2.log
– ckwme 100m.prior.log

• ckwme beast/output3/
– ckwme 100m.1.trees
– ckwme 100m.2.trees
– ckwme.comb.trees

Box 2: The data files required for this exercise.

• Open the NEXUS file containing the sequences in your text editor. The ASSUMPTIONS block contains
the commands for partitioning the alignment into two separate genes (Box 3). Tests for model
selection indicated that gene1 and gene2 evolved under separate GTR+Γ models.

#NEXUS

BEGIN DATA;

DIMENSIONS NTAX=10 NCHAR=1000;

FORMAT DATATYPE = DNA GAP = - MISSING = ?;

MATRIX

T1 CTACGGGAGGGCAACGGGGCTAGATGGTAAACGCGCCATCGATCGCAAG...

T2 CTACGGGAGGGCGACGGGGCTAGATGGTAAACGCGCCCTCGATCGCAAG...

T3 CAGCGTGAGGGCCACGGGGCTGGCAGGTACTCCGGCCCACGAGTGGAAG...

T4 CAGCGTGGGGGCCACGGGGCTAGAAGTTACTCCGGCCCACGAGTGGAAG...

T5 CAGCGTGGGGGCCACGGGGCTAGAAGTTACTCCGGCCCACGAGTGGAAG...

T6 CAGCGAGAAGCCGACGGGGATGGAAGGGACTCAGACGCACGAGTCCATG...

T7 CATCGCGAGGGGGACGGGGCTCGTAGATTATCGTTCATGCAAGCTGAAG...

T8 CATCGCGAGGGGGACGGGGCTCGTAGTTTATCGTTCAGGCAAGCTGAAG...

T9 CAGCGTGACCACGACGGGGCTGGGGGTGATTCCCGCTGACAAGATGAAG...

T10 CTGCGTGACAACGACGGGGCTGGGAGTTGTTCCCGCTCACAAGAGGAAG...

;

END;

BEGIN ASSUMPTIONS;

charset gene1 = 1-500;

charset gene2 = 501-1000;

END;

Box 3: A fragment of the NEXUS file containing the sequences for this exercise. The data partitions are
defined in the ASSUMPTIONS block..

7

http://evomics.org/workshops/workshop-on-molecular-evolution/2013-evolution-cesky-krumlov/


These 10 sequences consist of 6 ingroup taxa: T1, T2, T3, T4, T5, T6 and 4 outgroup taxa: T7, T8,

T9, T10. After performing an unconstrained analysis using maximum likelihood, we get the topology in
Figure 4. The branch lengths estimated under maximum likelihood are indicative of variation in substitu-
tion rates. Divergence time estimation and fossil calibration require that you have some prior knowledge
of the tree topology so that calibration dates can be properly assigned.

Figure 4: A maximum likelihood estimate of the phylogenetic relationships of ckwme.nex. (Constructed using
PAUP* v4.0a125; Swofford, 1998)

Fossil node calibrations are often difficult to obtain for every node and for many groups they are simply
unavailable. In such cases, constraints can be applied to outgroup nodes. There are four external calibration
points for this data set. These are illustrated in Figure 5. The oldest fossil belonging to the ingroup can
calibrate the age of that clade. This fossil was identified as a member of the clade, falling within the crown
group. Two fossils calibrate nodes within the outgroup clade and a well supported estimate of the root
age from a previous study allows us to place a prior distribution on that node (Figure 5).
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Figure 5: Four nodes with fossil calibration for the ckwme.nex data set. There are calibrations on the root and 3
other internal nodes. Each calibration point is assumed to have a different prior density.
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Getting started with BEAUti

Creating a properly-formatted BEAST XML file from scratch is not a simple task. However, BEAUti
provides a simple way to navigate the various elements specific to the BEAST XML format.

• Begin by executing the BEAUti program. For Mac OSX and Windows, you can do this by double
clicking on the application. For Unix systems (including Mac OSX), it is convenient to add the entire
BEASTv1.7.2/bin directory to your path.

• Import the sequences from ckwme.nex using the pull-down menu: File→Import Data .

This example data set contains 2 different partitions labeled gene1 and gene2. When the NEXUS file is
imported into BEAUti, the Partitions tab lists each partition and their currently assumed substitution
model, clock model, and tree.

• Double click on the file name (ckwme.nex) next to one of the data partitions. This will bring up a
window allowing you to visually inspect your alignment.

We would like to analyze each gene under separate substitution models, while assuming the clock and tree
are linked.

• Select both gene1 and gene2. While both partitions are highlighted click theUnlink Subst. Models
button. You will notice that the site model listed for gene2 has changed. [Figure 6]

Figure 6: Unlink the substitution models for the two data partitions.

• For the sake of clarity, let’s rename the Clock Model and Partition Tree . While both partitions
are highlighted, click the Link Clock Models button. This will bring up a window allowing you to
rename the clock model. Check the box next to Rename clock model partition to: and provide
a new name. The example below calls it ckwmeClock. [Figure 7]

Figure 7: Rename the clock model.

• Similarly, rename thePartition Tree by clicking the Link Trees button. Perhaps call it ckwmeTree.

Now your Partitions tab should show that the two genes are assumed to have separate substitution
models, a single clock model called ckwmeClock, and a single tree called ckwmeTree. [Figure 8]

Now that you have set up your data partitions, you can move on to specifying ancestral nodes in the tree
for calibration.
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Figure 8: The data partitions with unlinked substitution models and linked clock model and tree.

• Go to the Taxa tab.

The options in the Taxa window allow the user to identify internal nodes of interest. Simply creating a
taxon set does not necessarily force the clade to be monophyletic nor does it require you to specify a time
calibration for that node. Once a taxon set is created, statistics associated with the most recent common
ancestor (MRCA) of those taxa (e.g. node height) will be reported in the BEAST parameter log file.

For this data set, we will apply external time calibrations to 4 internal nodes (Figure 5), including the
root. Because the root node is implicit, we only have to specify 3 internal nodes in the Taxa window.

• Create a new taxon set for calibration node 1 by clicking the + button in the lower, left corner of
the window. Double click on the default name (untitled1) for the taxon set and rename it mrca1.
These taxa form our “ingroup” clade, so check the box under the Monophyletic? column. There is
also a check-box in the column labeled IncludeStem? this allows the user to specify a calibration
for the stem of a clade. Leave this unchecked since we are assuming that the fossil calibration for
mrca1 is within the crown group. [Figure 9]

• In the center panel of the Taxa window, select the taxa descended from calibration node 1 (T1,
T2, T3, T4, T5, T6). When you have highlighted each of these taxon names, move them from the
Excluded Taxa column to the Included Taxa column by clicking the button with the green arrow.
[Figure 9]

Figure 9: Defining the taxon set for the most recent common ancestor of T1, T2, T3, T4, T5, and T6.

• Create a new taxon set for calibration node 2 (T7, T8, T9, T10; Figure 5) and rename it mrca2.
These taxa make up the “outgroup” and should also be monophyletic (though this is already done
by constraining ingroup monophyly).

• Make a new taxon set for calibration node 3 called mrca3 (T9, T10; Figure 5) and do not constrain
the clade to be monophyletic.

The Tips menu contains the options necessary for analyses of data sets containing non-contemporaneous
tips. This is primarily for serial sampled virus data and not applicable to this exercise.

The Traits tab is for gene-tree/species-tree analysis in *BEAST, which is not covered in this tutorial.

• Go to the Sites menu to specify a substitution model for each of our data partitions. Change the
substitution model for gene1 to GTR, with Estimated base frequencies, and set the among-site
heterogeneity model to Gamma . [Figure 10]
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Figure 10: Defining a GTR+Γ model for gene1.

• Specify a GTR+Γ model for gene2 as well. [Figure 10]

You will notice other options in the Sites menu which are specifically for protein-coding data, allowing
you to partition your data set by codon position. The button labeled Use SRD06 Model will set the
model parameters to those used in a paper by Shapiro, Rambaut and Drummond (2006) which partitions
the the data so that 3rd codon positions are analyzed separately from 1st and 2nd positions and assumes a
HKY+Γ model. The sequences in this analysis are not protein-coding, so these options are not applicable
to this exercise.

• Move on to the Clocks menu to set up the relaxed clock analysis.

Here, we can specify the model of lineage-specific substitution rate variation. The default model in BEAUti
is the Strict Clock with a fixed substitution rate equal to 1. Three models for relaxing the assumption
of a constant substitution rate can be specified in BEAUti as well. The Lognormal relaxed clock
(Uncorrelated) option assumes that the substitution rates associated with each branch are independently
drawn from a single, discretized lognormal distribution (Drummond et al., 2006). Under the Exponential
relaxed clock (Uncorrelated) model, the rates associated with each branch are exponentially distributed
(Drummond et al., 2006). The Random local clock uses Bayesian stochastic search variable selection to
average over random local molecular clocks (Drummond and Suchard, 2010).

• Set the Clock Model for ckwmeClock to Lognormal relaxed clock (Uncorrelated) and check
the box in the Estimate column. [Figure 11]

Figure 11: Options for modeling among-lineage substitution rate variation in the Clock Model menu.

Below the settings for the Clock Model there is a box labeled Clock Model Group. The clock group
table is used to specify shared molecular clocks, and to set apart clocks applied to microsatellite data.

• Move on to the Trees window.
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In theTrees menu, you can specify a starting tree and theTree Prior which is the prior on the distribution
of node times.

• Go to the Tree Prior pull-down menu and choose Speciation: Birth-Death Process. [Figure
12]

Figure 12: Setting the birth-death prior distribution on branching times.

This model and the Yule model (Speciation: Yule Process) are appropriate for analyses of inter-species
relationships. Both of these models are stochastic branching processes with a constant rate of speciation (λ)
and a constant rate of extinction (µ). In the case of the Yule model, the extinction rate is equal to 0. Both
models are implemented in BEAST following Gernhard (2008) with prior distributions on the parameters
of the model. Thus, for the birth-death model used in this analysis, our runs will sample the average net
diversification rate (meanGrowthRate = λ − µ) and the relative rate of extinction (relativeDeathRate
= µ

λ
).

You will notice several other options for the Tree prior available in BEAUti. These priors are differen-
tiated by the labels Coalescent , Speciation , or Epidemiology . Coalescent tree priors are appropriate
for population-level analyses. Conversely, when you are estimating relationships and divergence times of
interspecies data, it is best to employ a speciation prior. Choosing a coalescent prior for estimating deep
divergences, or a speciation prior for intra-species data, can often lead to problematic results due to inter-
actions between the prior on the node ages and the prior on the branch rates. Thus, it is critical that these
priors are chosen judiciously. Furthermore, it is important to note that our understanding of the statistical
properties of speciation prior densities combined with calibration densities is somewhat incomplete, par-
ticularly when the tree topology is considered a random variable (Heled and Drummond, 2012; Warnock,
Yang and Donoghue, 2012). The option Speciation: Calibrated Yule is a more statistically sound tree
prior when applying a single calibration density. Refer to Heled and Drummond (2012) for more details
about this issue.

BEAST also has a few options for initialization of the tree topology and branch lengths. Starting trees
can be generated either randomly (under a coalescent model) or with UPGMA. Alternatively, the user can
specify the tree by including a trees block in the NEXUS data file, importing it directly into BEAUti, or
by pasting the Newick string and XML elements in the XML file.

We would like to use our own starting tree. The starting tree topology can come from any type of
analysis. For this data set, we performed an initial analysis using maximum likelihood resulting in the
tree in Figure 4. Using the maximum likelihood tree topology, branch lengths were generated by drawing
them from a uniform distribution conditional on the node age constraints from the fossil record. There
is a link to a little Unix program that was written to generate such a tree: starttree. This program
can be found at: http://bodegaphylo.wikispot.org/starttree program. For this exercise, the file called
ckwme start tree.tre is a NEXUS formatted file containing the starting tree. [Figure 13]

• Load the starting tree using the pull-down menu: File→Import Data . Import the NEXUS file
containing your starting tree: ckwme start tree.tre (you may have to change the File Format to

12

http://bodegaphylo.wikispot.org/starttree_program


R

1

2

3

Figure 13: Starting tree. The topology was inferred using maximum likelihood and the node heights were drawn
from a uniform distribution with constraints on the root and 3 internal nodes.

All Files). This will jump you back to the Partitions window.

• Return to the Trees window and select User-specified starting tree in the Tree Model section.
Next to the option Select-user specified tree: choose ml tre. [Figure 14]

Figure 14: Specifying a starting tree.

The States panel allows one to specify analyses for ancestral state reconstruction and provides sequence
error model options for any data partition. Leave these options unmodified.

• Navigate to the Priors menu.

In the Priors window, all of the model parameters and statistics specified in earlier menus are listed.
Here you can set prior distributions on substitution model parameters, calibration nodes, and parameters
associated with the clock model and tree model. [Figure 15]

The prior on the ucld.mean parameter is indicated in red because it is not set by default in this version
of BEAUti. When you click on the box for this prior you will see a window allowing you to specify a prior
distribution on the mean rate of substitution. In Bayesian terminology this parameter is a hyperparameter

because it is a parameter describing a prior distribution and not a direct parameter of the data model
(like base frequencies or branch lengths). In Bayesian inference a prior distribution can be placed on a
hyperparameter, and this is called a hyperprior. By allowing the value of this hyperparameter to vary, we
are freed from the responsibility of fixing the mean of the log-normal prior distribution on branch-specific
substitution rates. Additionally, the Markov chain will sample this hyperparameter along with the other
parameters directly associated with the models on our data, providing us with an estimate of the posterior
distribution.
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Figure 15: The statistics, parameters, and hyperparameters specific to this analysis and default priors.

• Click on the prior for ucld.mean and specify an Exponential distribution on this hyperparameter
with a mean equal to 10.0. [Figure 16]

Figure 16: Exponential prior distribution on the ucld.mean hyperparameter.

Review the hyperparameters of the birth-death model. For this model the average net diversification rate
is meanGrowthRate = λ − µ and the relative rate of extinction is relativeDeathRate = µ

λ
. Under the

birth-death model implemented in BEAST, the net diversification rate (meanGrowthRate) must be greater
than zero (µ < λ). Therefore, the relative death rate can only take on values between 0 and 1. The default
priors for these parameters are both uniform distributions.

Next, we can specify prior distributions on calibrated node ages. Each of the 4 calibrated nodes (Figure
5) requires a different type of prior distribution on their respective ages. Notice that the current prior for
each of our calibrated nodes is set to: Using Tree Prior . If we did not have constraints on the ages of the
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clades defined in the Taxa menu, the times for these divergences will be sampled, just like all the others,
with the prior being the birth-death model. By creating these tmrca parameters in the Taxa window, we
have created a statistic that will be logged to our output file.

• Set a normal distribution on the age of the root. Click on the prior box for the treeModel.rootHeight
parameter and choose Normal . Parameterize the normal distribution so that the Mean and Initial
Value are equal to 140 and the Stdev (standard deviation) is equal to 10. For this prior, the value
is truncated so that the age of the root cannot be less than 0. Leave the box indicating a truncated
normal distribution checked. The normal distribution is not always appropriate for representing fossil
age constraints, but is useful for imposing a prior requiring soft minimum and maximum bounds.
Typically, this type of prior on the calibrated node age is based on biogeographical data or when a
secondary calibration date is used. [Figure 17]

Figure 17: A normal prior distribution on the age of the root.

A fossil age constraint is available for the most recent common ancestor of our ingroup, mrca1 (T1, T2,

T3, T4, T5, T6). This minimum age estimate will serve as a hard lower bound on the age that node.
Thus, the prior distribution on this node will be offset by the age of the fossil (60). When applying off-
set priors on nodes, it is perhaps easiest to consider the fact that the distribution is modeling the time
difference between the age of the calibrated node and the age of the fossil (see Figure 3). We are applying
an exponential prior on the age of mrca1. The exponential distribution is characterized by a single rate
parameter (λ). The expected (mean) age difference under this distribution is equal to λ−1 and the median
is equal to λ−1

∗ ln(2). Specifying the exponential prior on a node age in BEAST requires that you set the
expected age difference between the node and fossil (Mean) and the hard lower bound (Offset).

• Click on the prior box next to tmrca(mrca1) and set the prior distribution on the age of mrca1 to
an Exponential with a Mean equal to 30 and Offset equal to 60. The quantiles for this prior
are provided below the settings. And you can see that with an offset of 60 My, 97.5% of the prior
probability will be below 170.67 My. [Figure 18]

The fossil calibration for the MRCA of the outgroup (T7, T8, T9, T10) provides a minimum age bound
for the age of mrca2. The log-normal distribution is often used to describe the age of an ancestral node
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Figure 18: An offset exponential prior on the calibration node mrca1.

in relation to a fossil descendant. If a random variable, χ, is log-normally distributed with parameters µ

and σ: χ ∼ LN(µ, σ), then the natural log of that variable is normally distributed with a mean of µ and
standard deviation of σ: log(χ) ∼ Norm(µ, σ). The median of the lognormal distribution is equal to eµ

and the mean (or expectation) is:

E(χ) = eµ+
σ
2

2 .

When applying the lognormal offset prior distribution on node age in BEAST, first consider the expected
age difference between the MRCA and the fossil. Generally, it is difficult to know with any certainty the
time lag between the speciation event and the appearance of the fossil and, typically, it is preferable to
specify prior densities that are not overly informative (Heath, 2012).

For the prior density on mrca2, we will specify a lognormal prior density with an expected value equal to
20. Thus, if we want the expectation of the lognormal distribution to equal 20, we must determine the
value for µ using the equation above solve for µ:

µ = ln(20) −
0.752

2
= 2.714482,

where 0.75 is the standard deviation parameter of the lognormal distribution for this particular fossil
calibration.

• Select the prior box next to tmrca(mrca2) and specify a Lognormal prior distribution for mrca2
and set Log(Mean) to µ = 2.714482. The age of the fossil is 40 time units; use this date to set the
Offset for the lognormal prior distribution. Finally, set the Log(Stdev) to 0.75, so that 97.5% of
the prior probability is below 105.7. [Figure 19A]

Notice that the window for the Lognormal prior distribution allows you to specify Mean in Real Space .
If you choose this option, then the mean value you enter is the expected value of the lognormal distribution.
You will specify the exact same distribution as above if you set theMean to 20 while this option is selected.
[Figure 19B]

It is important that you are very careful when specifying these parameters. If, for example, Mean in
Real Space was checked and you provided a value of 2.714482 for the Mean , then your calibration prior
density would be very informative. In the case of the prior on tmrca(mrca2), this would place 95.7% of
the prior density below 47.03566.
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Figure 19: A log-normal prior distribution to calibrate mrca2. A) Specifying the Log(Mean). B) Selecting Mean
in Real Space. A bug in BEAUti v1.7.0 causes the plot of the prior density to disappear when you specify an
Offset value.

The node leading to taxa T9 and T10 will be calibrated using a simple uniform distribution. For this
calibration we will be placing a hard minimum and a hard maximum bound on the age of mrca3. Fossil
data typically provide us with reliable minimum constraints on the age of a clade. And although absolute
maximum bounds are very difficult to obtain, uniform priors with hard lower and upper age constraints are
often used for divergence time estimation. Some methods using phylogenetic bracketing and stratigraphic
bounding have been developed for determining possible maximum bounds (Benton and Donoghue, 2007),
though it is best to apply soft age maxima when using these methods.

• Select the prior box next to tmrca(mrca3) and set the Uniform prior distribution on the time of
mrca3 with a Lower limit of 8 and an Upper limit of 32. [Figure 20]

Figure 20: A uniform prior distribution on the age of mrca3 with hard lower and upper bounds.

The remaining unmodified priors in the Priors window can be left at their default values for this exercise.

The Operators menu contains a list of the parameters and hyperparameters that will be sampled over the
course of the MCMC run. In this window, it is possible to turn off any of the elements listed to fix a given
parameter to its starting value. For example, if you would like to estimate divergence times on a fixed tree
topology (using a starting tree that you provided), then disable proposals operating on the Tree. For this
exercise, leave this window unmodified.
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Now that you have specified all of your data elements, models, priors, and operators, go to the MCMC
tab to set the length of the Markov chain, sample frequency, and file names. By default, BEAST sets the
number of generations to 10,000,000.

• Since we have a limited amount of time for this exercise, change the Length of chain to 1,000,000.
(Runtimes may vary depending on your computer, if you have reason to believe that this may take
a very long time, then change the run length to something smaller.)

The frequency parameters are sampled and logged to file can be altered in the box labeled Log parameters
every . In general, this value should be set relative to the length of the chain. If a low value is specified, the
output files containing the parameter values and trees will be very large, possibly without gaining much
additional information. Conversely, if you specify an exceedingly large sample interval, then you will not
get enough information about the posterior distributions of your parameters.

• Change Log parameters every to 100.

• The frequency states are echoed to the screen is simply for observing the progress of your run, so set
this to a satisfactory value (such as 1000), keeping in mind that writing to the screen too frequently
can cause the program to run slower. Specify the output file name prefix ckwme in File name stem .

Now you are ready to generate your BEAST XML file!

• Click on the button in the lower right corner: � Generate BEAST File...

You will see a window that will allow you to see the priors that you have not reviewed. This window also
warns you about improper priors.

• It is safe to proceed, so click Continue and save your XML file with the name ckwme.xml.

For the last step in BEAUti, generate an XML file that will run the analysis on an “empty” dataset and
sample only from the prior. This allows us to evaluate the priors we have applied to the various parameters
and hyperparameters in our analysis. This will produce output files that we can use to visualize the priors
and compare them to our posterior estimates.

• Check the box next to Sample from prior only - create empty alignment . Be sure to change
the File name stem to ckwme.prior and the XML file name to ckwme.prior.xml after you

click � Generate BEAST File... , so that you do not over-write your analysis files. Then close
BEAUti.

Making changes in the XML file

BEAUti is a great tool for generating a properly-formatted XML file for many types of BEAST analyses.
However, you may encounter errors that require modifying elements in your input file and if you wish to
make small to moderate changes to your analysis, altering the input file is far less tedious than generating
a new one using BEAUti. Furthermore, BEAST is a rich program and all of the types of analyses, models,
and parameters available in the core cannot be specified using BEAUti. Thus, some understanding of the
BEAST XML format is essential.

If you attempted to execute ckwme.xml in BEAST right now, the analysis would terminate due to an error
resulting from issues with the specification of the truncated normal prior on the root height in BEAUti.
For other datasets, you may run into problems if you use a randomly-generated starting tree that is not
compatible with calibrations on nodes.
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• Open the ckwme.xml file generated by BEAUti in your text editor and glance over the contents.
BEAUti provides many comments describing each of the elements in the file.

As you look over the contents of this file, you will notice that the components are specified in an order
similar to the steps you took in BEAUti. The XML syntax is very verbose. This feature makes it fairly
easy to understand the different elements of the BEAST input file. If you wished to alter your analysis or
realized that you misspecified a prior parameter, changing the XML file is far simpler than going through
all of the steps in BEAUti again. For example, if you wanted to change bounds of the uniform prior on
mrca3 from (8, 32) to (12, 30), this can be done easily by altering these values in the XML file (Box 4),
though leave these at 8 and 32 for this exercise.

<uniformPrior lower="8.0" upper="32.0">

<statistic idref="tmrca(mrca3)">

</uniformPrior>

Box 4: The XML syntax for specifying a uniform prior distribution on tmrca(mrca3). Changing the
parameters (highlighted) of this prior is simply done by altering the XML file.

For our analysis, there is one setting causes an error when this XML file is executed in BEAST (Box 5).
This is a problem with the truncated prior on the age of the root node.

Error parsing ‘<uniformPrior>’ element with id, ‘null’:

Uniform prior uniformPrior cannot take a bound at infinity, because it returns 1/(high-low) = 1/inf

Box 5: BEAST error from truncated normal prior.

• We can easily correct this problem if we edit the XML file. Find the priors specified for the parameter
called treeModel.rootHeight in your XML file. These priors are specified in the section delineated
by the comment: Define MCMC (Box 6).

<uniformPrior lower="0.0" upper="Infinity">

<parameter idref="treeModel.rootHeight">

</uniformPrior>

<normalPrior mean="140.0" stdev="10.0">

<parameter idref="treeModel.rootHeight">

</normalPrior>

Box 6: The truncated normal prior distribution on the treeModel.rootHeight. The error results from
the upper bound on the uniformPrior.

• Because the improper uniform prior doesn’t integrate to 1.0, BEAST returns an error. This can
be fixed by either giving the uniformPrior an upper bound equal to some arbitrarily chosen, high
value (change Infinity to 100000.0) or by deleting the syntax describing the uniformPrior on
treeModel.rootHeight altogether (delete everything highlighted in yellow in Box 6). Since the
height of the root node is always bounded by the ages of its descendant nodes, the age is already
truncated (Box 6).

• Make these changes for both of the XML files created in BEAUti (ckwme.xml and ckwme.prior.xml).
Look over the elements specified in each of the XML files and verify that everything is satisfactory.
Save and close the input files.
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Although running multiple, independent analyses is an important part of any Bayesian analysis, BEAST
does not do this by default. However, setting up multiple runs is trivial once you have a complete XML file
in hand and only requires that you make a copy of the input file and alter the names of the output files in
the XML (it’s also best to change the initial states for all of your parameters, including the starting tree).

Running BEAST

Now you are ready to start your BEAST analysis. BEAST allows you to use the BEAGLE library if you
already have it installed. BEAGLE is an application programming interface and library that effectively
takes advantage of your computer hardware (CPUs and GPUs) for doing the heavy lifting (likelihood
calculation) needed for statistical phylogenetic inference (Ayers et al., 2012). Particularly, when using
BEAGLE’s GPU (NVIDIA) implementation, runtimes are significantly shorter.

• Execute ckwme.prior.xml and ckwme.xml in BEAST. You should see the screen output every 1,000
generations, reporting the likelihood and several other statistics.

• Once you have verified that your XML file was properly configured and you see the likelihood update,
feel free to kill the run. I have provided the output files for this analysis and you can find them in
ckwme beast/output*.

Summarizing the output

Once the run reaches the end of the chain, you will find three new files in your analysis directory. The
MCMC samples of various scalar parameters and statistics are written to the file called ckwme.log. The
tree-state at every sampled iteration is saved to ckwme.trees. The tree strings in this file are all annotated
in extended Newick format with the substitution rate from the uncorrelated lognormal model at each node.
The files called ckwme.ops and mcmc.operators (these files may be identical) summarize the performance
of each of the proposal mechanisms (operators) used in your analysis. Reviewing this file can help identify
operators that might need adjustment if their acceptance probabilities are too high.

The main output files are the .log file and .trees file. It is not feasible to review the data contained in
these files by simply opening them in a spreadsheet program or a tree viewing program. Fortunately, the
developers of BEAST have also written general utility programs for summarizing and visualizing posterior
samples from Bayesian analyses. Tracer is a cross-platform, java program for summarizing posterior samples
of scaler parameters. This program is necessary for assessing convergence, mixing, and determining an
adequate burn-in. Tree topologies, branch rates, and node heights are summarized using the program
TreeAnnotator and visualized in FigTree.

Tracer

This section will briefly cover using Tracer and visual inspection of the analysis output for MCMC conver-
gence diagnostics.

• Open Tracer and import the ckwme.log file in the File→Import New Trace File .

You will notice, in the Estimates tab, that many items in the ESS column are red. The MCMC runs
you have performed today are all far too short to produce adequate posterior estimates of divergence times
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and substitution model parameters and this is reflected in the ESS values. The ESS is the effective sample

size of a parameter. The value indicates the number of effectively independent draws from the posterior
in the sample. This statistic can help to identify autocorrelation in your samples that might result from
poor mixing. It is important that you run your chains long enough and sufficiently sample the stationary
distribution so that the ESS values of your parameters are all high (over 200 or so).

• Click on a parameter with a low ESS and explore the various windows in Tracer. It is clear that we
must run the MCMC chain longer to get good estimates.

Provided with the files for this exercise are the output files from analyses run for 100,000,000 iterations.
These files can be found in the ckwme beast/output2/ directory and are all labeled with the file stem:
ckwme 100m*.

• Close ckwme.log in Tracer using the - button and open ckwme 100m.1.log, ckwme 100m.2.log and
ckwme 100m.prior.log.

These log files are from much longer runs and since we ran two independent, identical analyses, we can
compare the log files in Tracer and determine if they have converged on the same stationary distribution.
Additionally, analyzing an empty alignment allows you to compare your posterior estimates to the prior
distributions used for each parameter.

• Select and highlight all three files ( ckwme 100m.1.log, ckwme 100m.2.log and ckwme 100m.prior.log)
in the Trace Files pane (do not include Combined). This allows you to compare all three runs
simultaneously. Click on the various parameters and view how they differ in their estimates and 95%
HPDs for those parameters.

• Find the parameter ucld.stdev and compare the estimates of the standard deviation of the uncor-
related log-normal distribution.

The ucld.stdev indicates the amount of variation in the substitution rates across branches. Our prior on
this parameter is an exponential distribution with λ = 3.0 (mean = 0.33333). Thus, there is a considerable
amount of prior weight on ucld.stdev = 0. A standard deviation of 0 indicates support for no variation
in substitution rates and the presence of a molecular clock.

• With ucld.stdev highlighted for all three runs, go to the Marginal Density window, which allows
you to compare the marginal posterior densities for each parameter.

• Color (or “colour”) the densities by Trace File next to Colour by at the bottom of the window (if
you do not see this option, increase the size of your Tracer window). You can also add a Legend to
reveal which density belongs to which run file. [Figure 21]

The first thing you will notice from this plot is that the marginal densities from each of our analysis runs
(ckwme 100m.1.log and ckwme 100m.2.log) are nearly identical. If you click through the other sampled
parameters, these densities are the same for each one. This indicates that both of our runs have converged
on the same stationary distribution. Since some of the other parameters might not have mixed well, we
may want to run them longer, but we can have good confidence that our runs have sampled the same
distribution.

Second, notice how the marginal densities for the ucld.stdev parameter from each of the analysis runs
are quite different from the marginal density of that parameter sampled from the prior. The signal in the
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Figure 21: Comparing the marginal densities of the ucld.stdev parameter from 2 independent runs (red and gray)
and the prior (blue) in Tracer.

data is not overwhelmed by the prior on this parameter. Moreover, our analysis runs do not have any
significant density at zero, indicating no support for a constant rate of substitution (e.g. strict molecular
clock). This is also evident if you view the 95% credible intervals (95% HPD) for each of the runs. When
the analyses are run with data, a ucld.stdev of 0 does not fall within the credible interval.

When calibrating divergence time estimates using off-set parametric prior densities, it is very important
to evaluate (and report) the marginal densities of both the prior and posterior samples of calibrated node
heights.

• Highlight only the trace file containing MCMC samples under the prior (ckwme 100m.prior.log).
Then inspect the Marginal Density for each one. The prior densities are quite close to the cali-
bration priors we specified in BEAUti and described in Figure 5.

• Specifically, look at the marginal prior density of tmrca(mrca1). The calibration prior assigned to
this node was an exponential density with a rate (or λ) equal to 1

30
. We expect the marginal density of

the age of that node sampled under the prior to match the expected prior density. In Figure 22, you
can see that the marginal prior density of the age of mrca1 (purple line) closely fits an exponential
distribution with a rate equal to 1

30
(black line).

Because the two analysis runs (ckwme 100m.1.log and ckwme 100m.2.log) sampled from the same poste-
rior distribution, particularly for the parameters we are interested in, they can be combined. Tracer does
this when you import files and you will see a file called Combined in the Trace Files window. To use
this option, however, you must first remove the prior trace file.

• Highlight only the prior file (ckwme 100m.prior.log) in the Trace Files pane. Click the - button
below the window to remove the file.

• Now highlight the Combined trace file. Navigate through the sampled parameters and notice how
the ESSs have improved.

Continue examining the options in Tracer. This program is very useful for exploring many aspects of your
analysis.
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Figure 22: Comparing the marginal density of tmrca(mrca1) (purple line) to the exponential prior density specified
for that calibration node (black line). (This figure was generated using gnuplot and can also be made in R.)

Summarizing the trees

After reviewing the trace files from the two independent runs in Tracer and verifying that both runs
converged on the posterior distributions and reached stationarity, we can combine the sampled trees into
a single tree file and summarize the results.

• Open the program LogCombiner and set the File type to Tree Files. Next, import the two trees

files in the ckwme beast/output3/ directory (ckwme 100m.1.trees and ckwme 100m.2.trees) using
the + button. [Figure 23]

Figure 23: Use LogCombiner to combine the trees from two independent, identical runs.

These analyses were each run for 100,000,000 iterations with a sample frequency of 10,000. Therefore, each
of the trees files contains 100,000 trees.

• Set a burn-in value of 2,500, thus discarding the first 25% of the samples in each tree file. Then
click on the Choose file ... button to create an output file (call it ckwme.comb.trees) and run the
program. [Figure 23]

• Alternatively, use LogCombiner in unix with the command:

> logcombiner -trees -burnin 5000 ckwme 100m.1.trees ckwme 100m.2.trees ckwme.comb.trees

Once LogCombiner has terminated, you will have a file containing 10,000 trees called ckwme.comb.trees

which can be summarized using TreeAnnotator. TreeAnnotator takes a collection of trees and summarizes
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them by identifying the topology with the best support, calculating clade posterior probabilities, and
calculating 95% HPD intervals for node-specific parameters. All of the node statistics are annotated on
the tree topology for each node in the Newick string.

• Open the program TreeAnnotator. Since we already discarded a set of burn-in trees when combining
the tree files, we can leave Burnin set to 0. [Figure 24]

Figure 24: Set up tree summary in TreeAnnotator.

• For the Target tree type , choose Maximum clade credibility tree .

The Maximum clade credibility tree is the topology with the highest product of clade posterior prob-
abilities across all nodes. Alternatively, you can select the Maximum sum of clade credibilities which
sums all of the clade posteriors. Or you can provide a target tree from file.

ThePosterior probability limit option applies to summaries on a target tree topology and only calculates
posteriors for nodes that are above the specified limit.

• Choose Median heights or Mean heights for Node heights which will set the node heights of
the output tree to equal the median or mean height for each node in the sample of trees.

• Choose ckwme.comb.trees as your Input Tree File . Then name theOutput File: ckwme.fig.tre

and click Run . [Figure 24]

Once the program has finished running, you will find the file ckwme.fig.tre in your directory.

• Open ckwme.fig.tre in your text editor. The tree is written in NEXUS format. Look at the
tree string and notice the annotation. Each node in the tree is labeled with comments using the
[&parameter name=<value>] format.

An alternative program to LogCombiner and TreeAnnotator is SumTrees, a program in the DendroPy

package (Sukumaran and Holder, 2010). SumTrees is very flexible and allows more options than TreeAn-
notator and it provides a way to summarize sets of trees from a number of different programs and analyses.

The tree summaries produced by TreeAnnotator or SumTrees can be opened with FigTree. FigTree reads
the comments for each each node and can display them in a variety of ways.

• Open FigTree and open the file ckwme.fig.tre.

FigTree is a great tree-viewing program and it also allows you to produce publication-quality tree figures.
This summary tree is shown in Figure 25. The posterior probabilities are labeled on each branch (they are
all equal to 1). The branches of the tree are colored by the average substitution rate estimated for each
lineage. On each node, bars are displayed representing the node age 95% HPD interval.
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• Explore the various options for creating a tree figure and recreate the tree in Figure 25. The figure
you create can be exported as a PDF or EPS file.

Figure 25: The final tree with node bars representing the age 95% HPD intervals and posterior probabilities of each
clade labeled on the branches. Each branch is colored according to the average substitution rate sampled by the
MCMC chain.

Divergence time estimation for this simulated data set is very straight-forward. To generate the sequences
for this exercise I first simulated a tree topology and divergence times under a constant-rate birth-death
process with 10 extant taxa (T1, T2, T3, T4, T5, T6, T7, T8, T9, T10). The simulated time-tree is
shown in Figure 26A.

Time substitutions/site

A B

Figure 26: A) The true tree and branching times. The age of the root is equal to 147.28. B) The true tree and
branch lengths in units of rate ∗ time. The branches are colored according to their substitution rate.

With a tree topology and branch lengths in units of time, I simulated lineage-specific substitution rate
variation under an uncorrelated model such that the rate associated with each branch was drawn from a
log-normal distribution (Figure 26B). The tree with branch lengths in units of rate∗ time was then used to
simulate two separate genes each under a different GTR+Γ model. For the most part, the models assumed
in this analysis matched the models used to generate the data, therefore our estimates of divergence time
and tree topology are quite accurate. We inferred the correct tree topology and the true divergence times
all fall within the node age 95% credible intervals.
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Useful Links

• BEAST website and documentation: http://beast.bio.ed.ac.uk

• BEAST open source project: http://code.google.com/p/beast-mcmc

• Join the BEAST user discussion: http://groups.google.com/group/beast-users

• BEAST2 (under development, a complete rewrite of BEAST1): http://beast2.cs.auckland.ac.nz

• MrBayes: http://mrbayes.sourceforge.net/

• DPPDiv: http://phylo.bio.ku.edu/content/tracy-heath-dppdiv

• PhyloBayes: www.phylobayes.org/

• multidivtime: http://statgen.ncsu.edu/thorne/multidivtime.html

• MCMCtree (PAML): http://abacus.gene.ucl.ac.uk/software/paml.html

• BEAGLE: http://code.google.com/p/beagle-lib/

• A list of programs: http://evolution.genetics.washington.edu/phylip/software.html#Stratigraphy

• The Paleobiology Database: http://www.paleodb.org

• The Fossil Record & Date A Clade: http://www.fossilrecord.net

Questions about this tutorial can be directed to Tracy Heath (email: tracyh@berkeley.edu).
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