


OUTLINE

Overview of divergence time estimation

® Relaxed clock models — accounting for variation in
substitution rates among lineages

® Dirichlet process prior for lineage-specific rates

break
® Tree priors and fossil calibration

lunch

BEAST Tutorial:

® Walk through: set up BEAST input file in BEAUti and
execute BEAST MCMC analysis

® On your own: complete analysis by summarizing output



A TIME-ScaLE For EvoLuTioN

® Reconstruct ancestral
ranges

® Environmental or
geological correlates to
diversification

® Morphological character
change over time

e

® Detect shifts in rates of
diversification

FHFEH

® Lineage-specific
substitution rate

(Antonelli & Sanmartin. Syst. Biol. 2011)
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A TiME-ScaALE For EvoLuTioN

® Reconstruct ancestral
ranges

® Environmental or
geological correlates to
diversification

® Morphological character
change over time

® Detect shifts in rates of
diversification

® Lineage-specific
substitution rate

(Lartillot & Delsuc. Evolution 2012)
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(Mahler, Revell, Glor, & Losos. Evolution 2010)
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Divergence TIME EsTIMATION

Goal: Estimate the ages of interior nodes to understand the
timing and rates of evolutionary processes

Model how rates are
distributed across the tree

Describe the distribution of
speciation events over time

External calibration
information for estimates of
absolute node times
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UNDERSTANDING HisToRrICAL BlIOGEOGRAPHY

“"From East Gondwana to Central America: historical
biogeography of the Alstroemeriaceae”
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(Chacén et al., J. Biolgeograpy 2012)



DiverGeNcE TIME EsTIMATION

Historical biogeography
requires external calibration

Model how rates are
distributed across the tree

Describe the distribution of
speciation events over time

External calibration
information for estimates of
absolute node times

(Chacén et al., J. Biolgeograpy 2012)



DiverGeNcE TIME EsTIMATION

What about when the fossil record (or other types of
calibration information) is poor or absent?

Example: Despite the rich
diversity of Anolis there are
few fossils

There are some amber
fossils, but these fossils fall
within a narrow time range

Amber Anolis fossil (http://www.anoleannals.org/2012/03/06/the-hi-tech-world-of-anole-paleontology/)



DiverGeNcE TIME EsTIMATION

What about when the fossil
record is poor or absent?

Model how rates are
distributed across the tree

Describe the distribution of
speciation events over time

Estimation of relative
divergence times

Anolis hendersoni (Image courtesy of L. Mahler)



ReLATIVE TIMES AND DIVERSIFICATION

"Ecological opportunity and the rate of morphological
evolution in the diversification of Greater Antillean Anoles”
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(Mahler, Revell, Glor, & Losos. Evolution 2010)



DiverGeNcE TIME EsTIMATION

The expected # of substitutions/site occurring along a
branch is the product of the substitution rate and time

= 5
£ =

length = rate x time length = rate length = time

Methods for dating species divergences estimate the
substitution rate and time separately



SuBsTITUTION RATE

in a population

Substitution rate: the rate
at which mutations are fixed
—

Depends on: mutation rate,
selection, population size,
drift length = subst. rate

Mutation rate measures the rate at which mutations occur
over time and is affected by metabolic rate, generation time,
DNA repair efficiency



DiverGeNcE TIME EsTIMATION

The expected # of substitutions/site occurring along a
branch is the product of the substitution rate and time

= 5
£ =

length = rate x time length = rate length = time

Methods for dating species divergences estimate the
substitution rate and time separately



RATEs AND TIMES

I
The sequence data
provide information o
about branch length branch length = 0.5
g 3r
o
for any possible rate, S
there's a time that fits & 2f time =08 _
the branch length
perfectly 1t
0 L L L L —
0 1 2 3 4 5
Branch Time

(based on Thorne & Kishino, 2005)



BAYEsIAN DivergeNnce TIME EsTiMATION

{:[r—:':

—
=

length = rate length = time
R = (7‘1:70217‘3!"'1702]\772)
A = (a1; Az, Ag, ..., CLN—1)

N = number of tips



BAYEsIAN DivergeNnce TIME EsTiMATION
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length = time
R = (ri,rars...,TaN—2)
A = (a1, 05,05..., aN—1)

N = number of tips



BAYEsIAN DivergeNnce TIME EsTiMATION

Posterior probability

f(R,A 6%, 64,0 D,T)

R Vector of rates on branches

A Vector of internal node ages
Or,0.4,0s Model parameters

D Sequence data

T Tree topology (assumed known for the moment)



BAYEsIAN DivergeNnce TIME EsTiMATION

F(R, A, 0z,04,6|D) _f(DIR, A Br, 04 65)f (R, A 6z, 64, 0)

f(D)

f(D|R, A br, 04, 6) Likelihood
f(R, A 0z, 6.4,06) Joint prior density
f(D) Marginal probability of the data



BAYEsIAN DivergeNnce TIME EsTiMATION

The likelihood depends on the node times and the rates of
evolution, but not on the processes generating the rates and
node times

f(DIR, A bR, 04,65)=f(D|R,A,b)



BAYEsIAN DivergeNnce TIME EsTiMATION

Assume that the process governing the ages of nodes
operates independently of processes governing mutation, and
that the process governing the total rates of substitutions is
independent from the mutational parameters that determine
relative rates of different substitutions:

f(R, A, 0r,04,05) = f(R | Or) f(A | 0.4) f(Br) f(8.4) £ ()



BAYEsIAN DivergeNnce TIME EsTiMATION

After enforcing these assumptions, the posterior distribution
of the parameters and hyperparameters can be expressed as:

f(R, A 07,048 |D) =

fDIR A f(R|0r)f(A]04)f(Or)f(64)f(65)

f(D)



BAYEsIAN DivergeNnce TIME EsTiMATION

Estimating divergence times relies on 2 main elements:

® Branch-specific rates: f(R | z)

®* Node ages: f(A|84,C)



MobpeLing RATE VARIATION

Some models describing lineage-specific substitution rate
variation:

® Global molecular clock (Zuckerkandl & Pauling, 1962)

® Local molecular clocks (Hasegawa, Kishino % Yano 1989;
Kishino & Hasegawa 1990; Yoder & Yang 2000; Yang & Yoder
2003, Drummond and Suchard 2010)

¢ Compound Poisson process model (Huelsenbeck, Larget and
Swofford 2000)

® Log-normally distributed autocorrelated rates (Thorne,
Kishino & Painter 1998; Kishino, Thorne & Bruno 2001; Thorne &
Kishino 2002)

® Uncorrelated/independent rates models (Drummond et al.
2006; Rannala & Yang 2007; Lepage et al. 2007; Heath, Holder,
Huelsenbeck 2012)

Models of Lineage-specific Rate Variation



GLoBaL MoLecuLar CLock

The substitution rate is _:

constant over time

All lineages share the same
ate —L

branch length = substitution rate
low I high

Models of Lineage-specific Rate Variation (Zuckerkand! & Pauling, 1962)



GLoBaL MoLecuLar CLock

Assume the clock rate is
gamma-distributed

——
R=(rr..., r) _|:|:
—

r ~ Gamma(e, A)

f(R[8r)=f(r|«2)

rate prior distribution

N

A rate

nsity

de

Models of Lineage-specific Rate Variation (Zuckerkand! & Pauling, 1962)



GLoBaL MoLecuLar CLock

The sampled rate is applied 4'::

to every branch in the tree
—

rate prior distribution

density

A rate

(Zuckerkand! & Pauling, 1962)

Models of Lineage-specific Rate Variation



RejecTing THE GLoBaL MoLecuLAar CLock

Rates of evolution vary across lineages and over time
(and how!)

Mutation rate:

Variation in _|:|:

® metabolic rate

® generation time _|::

® DNA repair e

branch length = substitution rate
low EE—high

Rejecting the Strict Clock



RejecTing THE GLoBaL MoLecuLAar CLock

Rates of evolution vary across lineages and over time
(and how!)

Fixation rate:

Variability in _I::

® strength and targets of

selection _E:

® population sizes _ —

branch length = substitution rate
low EE—high

Rejecting the Strict Clock



LocaL MoLecuLar CLocks

Rate shifts occur _:

infrequently over the tree

Closely related lineages
have equivalent rates
(clustered by sub-clades)

branch length = substitution rate
low I high

Models of Lineage-specific Rate Variation (Yang & Yoder 2003, Drummond and Suchard 2010)



LocaL MoLecuLar CLocks

Most methods for
estimating local clocks
required specifying the

number and locations of —:

rate changes o priori

Drummond and Suchard
(2010) introduced a
Bayesian method that

samples over a broad range —E

Of pOSSible I’C(rldom lOCC(l branch length = substitution rate
low I high
clocks

Models of Lineage-specific Rate Variation (Yang & Yoder 2003, Drummond and Suchard 2010)



AUTOCORRELATED RATES

Substitution rates evolve
gradually over time —

closely related lineages have
similar rates

The rate at a node is [
drawn from a lognormal e
distribution with a mean _:

equal to the parent rate

branch length = substitution rate
low I high

Models of Lineage-specific Rate Variation (Thorne, Kishino & Painter 1998; Kishino, Thorne & Bruno 2001)



AUTOCORRELATED RATES

R =(ry,r2 .-, TaN-1)
0% = wx At
u=1inlrp) =%

r; ~ Lognormal(y, o%)

f(R | 672) :f (R | ¥, A, Troot)

w is the variance parameter

At is the difference in time
between the 2 nodes

Models of Lineage-specific Rate Variation

Tp, + T
Tpy
E<T$) _Tpaﬂ
E(w)=%

(Thorne, Kishino & Painter 1998; Kishino, Thorne & Bruno 2001)



AUTOCORRELATED RATES

The rate at a node is drawn _|:|:I:

from a lognormal distribution with

a mean equal to the parent rate : @:
r

The rate for the branch is equal
to the mean of the two B B
subtending nodes (re) =,

Models of Lineage-specific Rate Variation (Thorne, Kishino & Painter 1998; Kishino, Thorne & Bruno 2001)



Compounp Poisson Process

Rate changes occur along

lineages according to a _:

point process

At rate-change events, the

new rate is a product of —|

the parent’s rate and a

I-distributed multiplier _r

branch length = substitution rate
low I high

Models of Lineage-specific Rate Variation (Huelsenbeck, Larget and Swofford 2000)



INDEPENDENT/UNCORRELATED RATES

Lineage-specific rates are

uncorrelated when the rate

assigned to each branch is I

independently drawn from
an underlying distribution

—

branch length = substitution rate
low I high

Models of Lineage-specific Rate Variation (Drummond et al. 2006)



INDEPENDENT/UNCORRELATED RATES

r ~ Lognormal(u, o)

.
In BEAST, the rates for / _|
the branches are drawn z
from a discretized 8 r
lognormal distribution |—|
//

Rate

(Drummond et al. 2006)

Models of Lineage-specific Rate Variation



INDEPENDENT/UNCORRELATED RATES

Branch rates under the uncorrelated, discritized LN model

(r1,...,768) ~ LN(u,0)
2
M = eM—I—%
_ 1
773 —_— =07
P
‘B
C
[}
(@) \
0 0.5 1.0 15 2.0
Branch rate (r)

(Drummond et al. 2006)

Models of Lineage-specific Rate Variation



INDEPENDENT/UNCORRELATED RATES

Branch rates under the uncorrelated, discritized LN model

Density

\ )

Models of Lineage-specific Rate Variation

(7‘1,...

7r68) ~ LN(#’? U)
M — i t%

Wmu
Branch rate (r)

—_— M = 0.5
-_— M =0.7
—_—M=1.0

2.0

(Drummond et al. 2006)



INDEPENDENT/UNCORRELATED RATES

[t is necessary to sample the parameters of the base
distribution when assuming a discretized model

We can do this using a Graphical Model
hierarchical model Dadsz
Branch rates under the uncorrelated, discritized LN model
oxp
(?"1,...,7‘68) NLN(M,U’) @ dist
M = e’”’é | 1= log(M) — %
1 — M =0.5 /1\
T8 —weo N s
2 - M =10
2] ceceeleccccccsbecces
5 .. : :
a : :
“ H“ | | | _
|| § i€ branches§
A‘AII"“""“"““‘ ’l.l'llln.!!"&; bbb
0 0.5 1.5 20

Branch rate (r) E(M) et
- "M

Models of Lineage-specific Rate Variation



A HierarcHIcAL BAYEsiIAN MobpEL

From the bottom up: Hyperparameter
) - =0.5
The parameter y is S
assumed to be drawn §
from an exponential
distribution
Prior
X ~ Exponential(@)
Parameter (X)

Digression: A Generic Hierarchical Bayesian Model



A HierarcHIcAL BAYEsiIAN MobpEL

In Bayesian inference, Hyperparameter
a parameter describing > =05
a prior distribution is I%
called a a
hyperparameter
Prior
X~ Exponential(@)
Parameter (X)

Digression: A Generic Hierarchical Bayesian Model



A HierarcHIcAL BAYEsiIAN MobpEL

Hyperparameter

The exponential prior

on x has a
hyperparameter: A

Density

X~ Exponential(@)

Parameter (X)

Digression: A Generic Hierarchical Bayesian Model



A HierarcHIcAL BAYEsiIAN MobpEL

A represents the rate

of the exponential Hyperparameter
distribution - =05
."5

In a non-hierarchical S

. o
model, the user is
required to specify the

Prior
value of A X~Exp0nential(®)
Parameter (X)

Digression: A Generic Hierarchical Bayesian Model



A HierarcHIcAL BAYEsiIAN MobpEL

Hyperprior:
second order prior
placed on a
hyperparameter

Hyperprior

~ Gamma(a, 3)

Hyperparameter () )

A becomes a random
variable under the

hierarchical model Prior

X~ Exponential(@)

Parameter (X)

Digression: A Generic Hierarchical Bayesian Model



A HierarcHIcAL BAYEsiIAN MobpEL

Hyperprior
Hyperprior: ~Gamma(a, )
allows for inference

under a richer class of

models

Hyperparameter () )

Prior
X~ Exponential(@)

Parameter (X)

Digression: A Generic Hierarchical Bayesian Model



A HierarcHIcAL BAYEsiIAN MobpEL

Hyperprior

~ Gamma(a, 3)

Hyperprior:

frees the user from
the difficulty of
specifying the value
of A

Hyperparameter () )

Prior
X~ Exponential(@)

Parameter (X)

Digression: A Generic Hierarchical Bayesian Model



A HierARcHICAL BAYEsiaN MobEL

Hyperprior:

values of y are
sampled by MCMC
from a mixture of
exponential
distributions

Hyperprior

~ Gamma(a, 3)

Hyperparameter () )

Prior
X ~ Exponential(@)

Parameter (X)

Digression: A Generic Hierarchical Bayesian Model



A HierARcHICAL BAYEsiaN MobEL

Hyperprior:
provides estimates of
the hyperparameter

Hyperprior

~ Gamma(a, 3)

accounts for and
quantifies uncertainty
in the hyperparameter

Hyperparameter () )

Prior
X ~ Exponential(@)

Parameter (X)

Digression: A Generic Hierarchical Bayesian Model



INDEPENDENT/UNCORRELATED RATES

[t is necessary to sample the parameters of the base
distribution when assuming a discretized model

We can do this using a Graphical Model
hierarchical model Dadsz
Branch rates under the uncorrelated, discritized LN model
oxp
(?"1,...,7‘68) NLN(M,U’) @ dist
M = e’”’é | 1= log(M) — %
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Models of Lineage-specific Rate Variation



MobpeLing RATE VARIATION

sets?

Are our models appropriate across all data

T

oo

Oiigocene Wiocene Plio_[Ple || Hol
53 T8 oo

D
0 0

Epochs  [Eocend]
Ma E

Krause et al., 2008. Mitochondrial genomes reveal an
explosive radiation of extinct and extant bears near the
Miocene-Pliocene boundary. BMC Evol. Biol. 8. Santini et al., 2009. Did genome duplication drive the origin
of teleosts? A comparative study of diversification in
ray-finned fishes. BMC Evol. Biol. 9.



THE DiricHLET Process Prior (DPP)

A stochastic process that models data as a mixture of
distributions and can identify latent classes present in the

data

Branches are assumed to be
clustered into distinct _EE
substitution rate classes

(7"], e, T‘QN_Q) ~ DPP((X, Go)

branch length = substitution rate

substitution rate classes

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



THE DiricHLET Process Prior (DPP)

The concentration parameter: X
controls partitioning of branches into specific rate categories

Random variables under the
DPP:

o /{ = the number of _EE
—

rate classes

® the assignment of
branches to classes

branch length = substitution rate

substitution rate classes

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



THE DiricHLET Process Prior (DPP)

Gg represents the
parametric distribution from

which substitution rates are
drawn for each category

class-rate prior distribution _EE
Go _—
rC

i
AA A
substitution rate

substitution rate classes

branch length = substitution rate

density

TI'c; = the rate value for
each class

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



THE DiricHLET Process Prior (DPP)

branch length = substitution rate

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



THE DiricHLET Process Prior (DPP)

branch length = substitution rate

Y —

class-rate prior distribution

G,

density

rate classes

rate

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



THE DiricHLET Process Prior (DPP)

branch length = substitution rate

g

—

—1
—

class-rate prior distribution

1 =
%
kel rCi
rate classes A

rate

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



THE DiricHLET Process Prior (DPP)

branch length = substitution rate

a

X

—

class-rate prior distribution

1

rate classes

density

rate

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



THE DiricHLET Process Prior (DPP)

branch length = substitution rate

a

X

—

class-rate prior distribution

1

<~
1+

rate classes

density

rate

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



THE DiricHLET Process Prior (DPP)

branch length = substitution rate
— a

e

class-rate prior distribution

1

<~
1+

rate classes rate

density

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



THE DiricHLET Process Prior (DPP)

branch length = substitution rate

Vo

—1
—

class-rate prior distribution

G,

2

rate classes

density

e

rate

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



THE DiricHLET Process Prior (DPP)

branch length = substitution rate

ot
—1 H

—
—1

'( class-rate prior distribution

El ”

rate classes

density

rate

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



THE DiricHLET Process Prior (DPP)

branch length = substitution rate

o
— H
| a7
B 2+

—
—1

'( class-rate prior distribution

G,

2

<~ _—__
2+

rate classes

density

rate

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



THE DiricHLET Process Prior (DPP)

branch length = substitution rate
class-rate prior distribution

A
GO

2 1
El B
A rate

rate classes
Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.

density

DPP Model of Lineage-specific Rate Variation



THE DiricHLET Process Prior (DPP)

branch length = substitution rate

a

\
—L

—

2 1
= I

rate classes

class-rate prior distribution

density

rate

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



THE DiricHLET Process Prior (DPP)

branch length = substitution rate

class-rate prior distribution

1 G,

2 1
o e
rate

rate classes
Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.

density

DPP Model of Lineage-specific Rate Variation



THE DiricHLET Process Prior (DPP)

branch length = substitution rate

g

class-rate prior distribution

G,

1

density

_[E
—__
||

6 3 4
El EIET <

rate classes A AL DA ate

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



THE DiricHLET Process Prior (DPP)

branch length = substitution rate

—L

class-rate prior distribution

G,

density

B
—__
6 4 1 3 4

- J=]-]-Jo R

rate classes A AL A ot

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



THE DiricHLET Process Prior (DPP)

branch length = substitution rate

—

class-rate prior distribution

G,

8 6 4
BB

rate classes

rate

DPP Model of Lineage-specific Rate Variation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



THE DiricHLET Process Prior (DPP)

branch length = substitution rate

—L

Local molecular
clock

class-rate prior distribution

8 5 5 .
£ G,
o
re
rate classes A A je
Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.

DPP Model of Lineage-specific Rate Variation



THE DiricHLET Process Prior (DPP)

branch length = substitution rate

Global molecular
clock

class-rate prior distribution
GO

A rate

rate classes
Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.

density

DPP Model of Lineage-specific Rate Variation



THE DiricHLET Process Prior (DPP)

branch length = substitution rate

g —

—

| —
class-rate prior distribution
GO

1 1 1
H E o000 m rci -

rate classes
Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.

Independent
rates

density

DPP Model of Lineage-specific Rate Variation



BAavesiaN INFERENcE UNDErR THE DPP

Current implementation: DPPD1v

« —I@OmMMmMOO W >

A

Availability:

http://phylo.bio.ku.edu/content/tracy-heath-dppdiv

*with optimized and paralleized versions by Diego Darriba, Toma3 Flouri, & Alexis Stamatakis

DPP Relaxed Clock—Implementation Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



SiMuLATIONS: DATA (GENERATION

Simulate substitution rate Simulate data
variation under 6 different GTR+T

models (2000 bases)
Simulate tree topologies Global Molecular —LE
and branching times Clock (GMC)
under a birth-death
process

Local Molecular _l E
Clocks (LMC)

Compound Poisson 'E
process (CPP)

Log-Norm dist
Autocorrelated

Rates (AR-LN)

N
10 taxa Gamma-dist
Independent
Rates (IR-G) | —

i

Dirichlet process ‘lE
100 Replicates prior rates (DPP)

DPP Relaxed Clock—Simulations




SIMULATIONS: ANALYSIS

Global Molecular
Clock (GMC)

Local Molecular
Clocks (LMC)

Compound Poisson
process (CPP)

Log-Norm dist
Autocorrelated
Rates (AR-LN)

Gamma-dist
Independent
Rates (IR-G)

Dirichlet process
prior rates (DPP)

GLOAEAIRIET
EEEEEE

100 Replicates

DPP Relaxed Clock—Simulations

Models of rate variation:
® Dirichlet process prior

® Gamma-dist
hyperprior on «,
expected value:
El«] = 1.93

® Global molecular clock

® Independent rates
(Gamma-distributed)

Relative node ages



95%

2
®
=y
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a
T
Node Age
95% ClI
2
®
C
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Node Age
2
‘@
f
J9)
o

Node Age

DPP Relaxed Clock—Simulations

CrepiBLE INTERvVAL (Cl)

A measure of uncertainty

Approximation of the interval
containing 95% of the highest

posterior density (HPD)



BAYEsiAN ANALYSIS oF SIMULATED DATA

=
a NodeAgI]e
Coverage Probability:
95% CI

z ¢ True Age The proportion of the time the

3 95% credible interval (Cl)
contains the true value is a

Node Age measure of accuracy
=

Node Age

Simulations: Methods



BAYEsiAN ANALYSIS oF SIMULATED DATA

2
®
=y
]
a
T T
Node Age
95% Cl
2 ¢ True Age
2
5]
a
T
Node Age
=
‘@
f
J9)
[a]

Simulations: Methods

Node Age

Power:

An estimator can have high
coverage probability, but reduced
power when 95% Cls are very

large



BrancH RATE: Accuracy

The DPP and Independent Rates models had higher
coverage for estimates of branch rates, depending on the
simulation model

Coverage probability *

Rate DPP  Independent  Global
Simulation Rates Clock
GMC — global molecular clock 0.988 0.963 0.920

LMC — local molecular clocks 0.908 0.908 0.398

CPP — compound Poisson 0.807 0.861 0.318
AR-LN — autocorrelated rates  0.801 0.844 0.257
IR-G — independent rates 0.874 0.939 0.126
DPP — Dirichlet process 0.912 0.908 0.292

*Accuracy: proportion of time the 95% credible interval covers the true branch

rate

DPP Relaxed Clock—Performance



BrancH RATE: PERCENT ERROR
The percent error in mean branch rate estimates

r—r
% Error = Iri —ril x 100%
ri
300

—— DPP

=== Global Clock

I Independent Rates
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DPP Relaxed Clock—Performance



BrancH RATE:

95% Cl size compared to TRUE branch rate

Power
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True branch rate

Analyses: DPP, Global clock, and Independent rates



Nobe AcGe: ACCURACY

Node age estimates under DPP are more accurate compared
to an independent rate model and the global molecular clock

Coverage probability *

Rate DPP  Independent  Global
Simulation Rates Clock
GMC — global molecular clock 0.989 0.951 0.965
LMC — local molecular clocks  0.881 0.840 0.485
CPP — compound Poisson 0.801 0.770 0.504
AR-LN — autocorrelated rates  0.743 0.699 0.436
IR-G — independent rates 0.871 0.954 0.303
DPP — Dirichlet process 0.934 0.834 0.479

*Accuracy: proportion of time the 95% credible interval covers the true node age

DPP Relaxed Clock—Performance Heath, Holder, Huelsenbeck. 2012 MBE 29:939-955.



Nope Ace: CoveraGe PRroBABILITY
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DPP Relaxed Clock—Performance Analyses: DPP, Global clock, and Independent rates



Nope Ace: Power
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DPP Relaxed Clock—Performance Analyses: DPP, Global clock, and Independent rates



Summarizine MCMC unpber THE DPP

ﬁﬁer

DPP—Identifying the Mean Partition

MEAN PARTITION:

Identified from MCMC
samples under the DPP



Summarizine MCMC unpber THE DPP

MEAN PARTITION:
ldentified from MCMC

LWLLLLLLLLLLLLLLL sl wncer e PP

DPP—Identifying the Mean Partition



Summarizine MCMC unpber THE DPP

ﬁﬁer

DPP—Identifying the Mean Partition

MEAN PARTITION:

Identified from MCMC
samples under the DPP



Summarizine MCMC unpber THE DPP

H_‘ H“ | |_ MCMC samples different
branch-partition assignments

DPP—Identifying the Mean Partition



Summarizine MCMC unpber THE DPP

ﬁﬁer
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DPP—Identifying the Mean Partition

MEAN PARTITION:

Identified from MCMC
samples of different

branch-partition assignments
under the DPP



Summarizine MCMC unpber THE DPP

PARTITION DISTANCE:

The minimum number of elements that must be removed to
make 2 identical partitions

A 4
LI ] [ (e ] T [ (]
HEEEENEN TN TN

DPP—Identifying the Mean Partition



Summarizine MCMC unpber THE DPP

PARTITION DISTANCE:

The minimum number of elements that must be removed to
make 2 identical partitions
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HEEEENENEEEEN N H.
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DPP—Identifying the Mean Partition



Summarizine MCMC unpber THE DPP
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DPP—Identifying the Mean Partition

MEAN PARTITION:

The set of branch-partition
assignments that minimizes
the sum of squared
distances to all of the
partition sets sampled by
MCMC



Summarizine MCMC unpber THE DPP

ﬁﬁer

DPP—Identifying the Mean Partition

MEAN PARTITION:

Useful for identifying
lineages that may share
similar properties



Summarizine MCMC unpber THE DPP

True Local Clock Tree Branch lengths generated
A under a local molecular
B clock (LMC)
c
|ED 3 rate categories
E (substitutions/site*time~"):
F * 0.2
* 0.7
I e 1.2

0.1
substitutions/site

DPP—Mean Partition



Summarizine MCMC unpber THE DPP

True Local Clock Tree

0.1
substitutions/site

DPP—Mean Partition

DPP Estimated Branch Rate
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SUMMARIZING

True partition
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MCMC unper THE DPP

DPP—Mean Partition

Relative time

DPP Time Tree
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LINEAGE-SPECIFIC SusTITUTION RATES

DPP provides robust estimates of branch-rate and node-age
without significant loss in power

The flexibility of the DPP
allows it to encompass
different branch-wise models

of substitution rate variation D
—

Including cases in which
dISta’nt branChes have branch length = substitution rate

equivalent (or nearly
equivalent) rates H ﬂ ﬂ E

substitution rate classes

DPP Branch Rates Availability: DPPDiv @ http://phylo.bio.ku.edu/content/tracy-heath-dppdiv



LINEAGE-SPECIFIC SusTITUTION RATES

DPP provides robust estimates of branch-rate and node-age
without significant loss in power

The mean branch partition
found under the DPP

allows for the identification
of latent classes _EE
EfﬁCient MCMC branch length = substitution rate

implementations H ﬂ ﬂ E

substitution rate classes

DPP Branch Rates Availability: DPPDiv @ http://phylo.bio.ku.edu/content/tracy-heath-dppdiv



let's take a break...



BAYEsIAN DivergeNnce TIME EsTiMATION

Estimating divergence times relies on 2 main elements:

® Branch-specific rates: f(R | z)

®* Node ages: f(A|84,C)



Priors oNn Nobe TIMES

Relaxed clock Bayesian analyses require a prior distribution
on node times

Uniform prior

Uniform prior: the time at
a given node has equal
probability across the
interval between the time
of the parent node and the
time of the oldest daughter
node

Birth-death prior

—



Priors oNn Nobe TIMES

Relaxed clock Bayesian analyses require a prior distribution
on node times

Birth-death prior: node
times are sampled from a
stochastic process with
parameters for speciation, S,
and extinction, &, (and in
some cases taxon sampling)

Uniform prior

fA[S8.€)

Birth-death prior

—




FossiL CALIBRATION

Fossil and geological data
can be used to estimate the
absolute ages of ancient
divergences

Calibrating Divergence Times

a

A

Time (My)



FossiL CALIBRATION

The ages of extant taxa
are known

Calibrating Divergence Times

;ﬁ

A

Time (My)



FossiL CALIBRATION

Fossil taxa are assigned to
monophyletic clades

Calibrating Divergence Times

f ﬁ

A

Minimum age Time (My)



FossiL CALIBRATION

Fossil taxa are assigned to
monophyletic clades and
constrain the age of the
MRCA

Calibrating Divergence Times

I

A

inimum age Time (My)



MobpeLING BrANCHING PrRocessEs

Assume constant
rates of
speciation (S)
and extinction

(€)

(20 extant taxa)

Birth-death model

)

il

r
175

T
150



MobpeLING BrANCHING PrRocessEs

Assume constant
rates of
speciation (S)
and extinction

(€)

(20 extant taxa)

Birth-death model

T =

r
175

150 125 100 75 50 25 0
Time



MobpeLING T ApHoNOMIC PRoOCESSES

0000 o-CO
Fossilization
ossilizatio L ne® 7 o
events were 0—co—0— © o8 HOO
o0
generated
according to a o
Poisson process
o
. 0-0—-0—0—0 O
this example has ° QD%
162 fossilization Slsles) S To O
events 0-®-0-00-®—0
(@]
1‘75 1.%0 12‘5 180 7‘5 5‘0 2‘5
Time

Modeling the Process of Fossilization



MobpeLING T ApHoNOMIC PRoOCESSES

The fossil
sampling rate
was evolved
under an
autocorrelated
Brownian motion
model

Modeling the Process of Preservation/Recovery

Sampling Rate

0.2

1.05

Q000 o-e®
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MobpeLING T ApHoNOMIC PRoOCESSES

Sampling Rate

The fossil
sampling rate
was evolved
under an
autocorrelated
Brownian motion
model
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Modeling the Process of Preservation/Recovery
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MobpeLING T ApHoNOMIC PRoOCESSES

Sampling Rate o R . &Oo
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Modeling the Process of Preservation/Recovery
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Recoverep FossiLs

Assume we
know the true
phylogenetic
placement of the
recovered fossils

Lr

r
175

Modeling the Process of Preservation/Recovery



CaLiBRATION FossiLs

Only the oldest
fossil assigned to
a given node
can be used for
calibration

Fossil Calibration

r
175



CaLiBRATION FossiLs

Only the oldest
fossil assigned to
a given node
can be used for
calibration

r
175

Fossil Calibration
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CaLiBRATION FossiLs

Only the oldest —@
fossil assigned to
a given node
can be used for —
calibration

€

=T

175 150 125 100 75
Time

Fossil Calibration

T
50

od



CaLiBRATION FossiLs

Taphonomic bias

%
e disparity in -
fossilization —©
and |—£
preservation
* geographical ¢ _|—T_E
distribution
® recovery |
bias —
° identiﬁcation 175 150 125 100 75 50 25

Time

Fossil Calibration

od



AssicNnING FossiLs To CLADES

Misplaced fossils can affect node age estimates throughout
the tree — if the fossil is older than its presumed MRCA

Rock Crown
record clade
Present day
4 Oldest fossil A
3 Oldest fossils AB
Stem
AB
2 Oldest fossils ABC

B Age-indicative fossil
1-4 Suitable fossiliferous horizons [ Otherfossil
@ Branching point of clade

Calibrating the Tree (figure from Benton & Donoghue Mol. Biol. Evol. 2007)



AssigNING FossiLs

Crown clade: all
living species and
their most-recent
common ancestor

(MRCA)

Calibrating the Tree

To CLADES

Rock Crown

record clade
Present day

Oldest fossil A

4
3 Oldest fossils AB
Stem
B
2 Oldest fossils ABC

W Age-indicative fossil
1-4 Suitable fossiliferous horizons O Otherfossil
@ Branching point of clade

(figure from Benton & Donoghue Mol. Biol. Evol.

2007)



AssigNING FossiLs

Stem lineages:
purely fossil forms
that are closer to
their descendant
crown clade than
any other crown
clade

Calibrating the Tree

To CLADES

Rock Crown

record clade
Present day

Oldest fossil A

4
3 Oldest fossils AB
Stem
B
2 Oldest fossils ABC

W Age-indicative fossil
1-4 Suitable fossiliferous horizons O Otherfossil
@ Branching point of clade

(figure from Benton & Donoghue Mol. Biol. Evol.

2007)



AssigNING FossiLs

Fossiliferous
horizons: the
sources in the
rock record for
relevant fossils

Calibrating the Tree

To CLADES

Rock Crown

record clade
Present day

Oldest fossil A

4
3 Oldest fossils AB
Stem
B
2 Oldest fossils ABC

W Age-indicative fossil
1-4 Suitable fossiliferous horizons O Otherfossil
@ Branching point of clade

(figure from Benton & Donoghue Mol. Biol. Evol.

2007)



FossiL CALIBRATION

Age estimates from fossils
can provide minimum time
constraints for internal
nodes

Reliable maximum bounds
are typically unavailable

Calibrating Divergence Times

A

[XXXTXYREY)

Minimum age

Time (My)



Prior DensiTIEs oN CALIBRATED NODES

Parametric distributions are
typically off-set by the age
of the oldest fossil assigned
to a clade

These prior densities do not
(necessarily) require
specification of maximum
bounds

Calibrating Divergence Times

Uniform (min, max)

Log Normal (4, 6?)

Gamma (a, B)

Exponential (A)

A

Minimum age

Time (My)



Prior DensiTIEs oN CALIBRATED NODES

i =
<

Describe the waiting time | Uniform (min, max)
between the divergence

event and the age of the L\ LogNomal (109
oldest fossil
_/\ Gamma (a, B)

_/ Exponential (A)

Minimum age Time (My)

A

Calibrating Divergence Times



Prior DensiTIEs oN CALIBRATED NODES

—
T——
L—————=¢
Describe the waiting time _
between the divergence ”
event and the age of the
oldest fossil
< Wi age Time (My)

Calibrating Divergence Times



Prior DensiTIEs oN CALIBRATED NODES

Overly informative priors
can bias node age
estimates to be too young

Calibrating Divergence Times

e —-
T
|—|:Ej

N,
>

Exponential (A)

Minimum age Time (My)



Prior DensiTIEs oN CALIBRATED NODES

Uncertainty in the age of
the MRCA of the clade
relative to the age of the
fossil may be better
captured by vague prior
densities

e E—
—>

‘ Exponential (A)

Minimum age Time (My)

Calibrating Divergence Times



Prior DensiTIEs oN CALIBRATED NODES

Lognormal prior density

Exponential prior density

Min age Min age
n=20=025 *0tfossi) T ©0(fossil)
mean = 7.6 N o g
35 § §
g 100 §
o0 8 3
& 120 §
> 8 =) 8
Z s A 140"
=4 c
53 [
a a
1=2,0=05 _ -1
mean = 8.4 A=060
p=20=1
mean = 12.2
25 30 20 40 60 80 100
Node age - Fossil age

Calibrating Divergence Times

10 15 20
Node age - Fossil age



Priors oN MuLTiPLE CALIBRATIONS

It is unlikely that
multiple fossil
calibrations can be
characterized by a
single prior density

Calibrating Divergence Times

T L M),

|



Priors oN MuLTiPLE CALIBRATIONS

An appropriate prior
for some nodes can
also be an overly
informative prior for
other nodes

Calibrating Divergence Times

A

T L M),

|



Priors oN MuLTiPLE CALIBRATIONS

Our knowledge of the |

fossil and rock records

indicate that there is ‘
variation in the

precision of geological
data as minimum age

constraints

Calibrating Divergence Times



Priors oN MuLTiPLE CALIBRATIONS

Uncertainty in the

time difference can be ‘

better captured by
vague prior densities

Calibrating Divergence Times



Priors oN MuLTiPLE CALIBRATIONS

Specifying appropriate
prior densities for a
range of minimum
age constraints is a
challenge for most
molecular biologists

Calibrating Divergence Times

B

—

%mm Ml



Priors oN MuLTiPLE CALIBRATIONS

Hyperprior
~ Gamma(a, 3)

Density

Density

Hyperparameter ()

A

Prior
X ~ Exponential(®)

Parameter (X)

Calibrating Divergence Times



HyperpriOR ON CALIBRATED NODES

Dirichlet process prior on rate-parameters of exponential prior
densities on multiple calibrated nodes

Sample the time from
the MRCA to the

fossil from a mixture _4

of different
exponential
distributions

Account for
uncertainty in values

of A

parameter classes

%mm Ml

DPP Hyperprior on Calibration-Node Prior Densities (Heath, Syst. Biol. 2012)



CompPLEX MobpELs oF MACROEVOLUTION

Modeling
branching
patterns AND
fossilization,
preservation, and
recovery for use
as priors for
divergence time
estimation

Models of Stratigraphy, Fossilization,

Sampling Rate
0.2 1.05
o0 00 o e
o® @0 o e @0
1O—Q0—0— le) 8 6)@00
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o
o)
o0 0 ©@ e
° 8
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and Preservation for Bayesian Inference



CompPLEX MobpELs oF MACROEVOLUTION

Sampling Rate
> _,—co—c%
0.2 1.05
'O_Li_ o o 00
| —or—
Incorporate more . e o
. . —O—]
information from 8 o o e
the fossil and
rock records and °
construct better
0]
and more N IS e
realistic tree
. %(@50 o0
priors
o @ [
(@]
1‘75 1.%0 12‘5 180 7‘5 5‘0 2‘5 (‘)
Time

Models of Stratigraphy, Fossilization, and Preservation for Bayesian Inference



CriTicism oF ReLaxep CLock METHODS

® Dependent on and sensitive to fossil calibrations — fossil
age estimates and node assignment are not without
error

® Models are not biologically realistic

¢ Different methods/models can produce very different
estimates of the same divergence times

® Priors are too informative

® Studies comparing methods have produced conflicting
and unclear results



MCMC UnNDper THE PRrior

It is critical for any
Bayesian analysis to sample
under the prior

Allows you to assess your
prior specification and
examine prior sensitivity

Frequency

1013.8143
effective sample size (E55) 887746385

tmrca(mrcat)




MCMC UnNDper THE PRrior

0.035

0.025

0.015

0.005

Marginal posterior density
(observed)

Marginal prior density
(observed)

Exponential(1/30) density
(expected)

140 160

120
Node Age (mrcal)

true age

180



SENSITIVITY TO THE PRIOR

a) Graphical Model b) Exponential hyperprior densities on expected rate (M)
exponential 1200 A= 3 1-:3§ i - 10
I =0 -
e 1000 =0.006" = 80
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200 20
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SENSITIVITY TOo THE PRIOR

Density

Marginal posterior densities of mean branch rate

45 — o
20 L < 10 rior
® 8
35 b
® 6
30 H =
8 4 Posterior
25 § 2
0
0 2 4 6 8 10
EM)
o PRI | J
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Mean Branch Rate (M)



CaLiBRATED Nope Ace EsTIMATES
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Fossil Simulations: Results
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SENSITIVITY To THE CALIBRATION PRIOR

Density

Density

Root Node (R)
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FossiL Tip DATING

Ideally, we would like to
include all of the available
data

Account for uncertainty in
the placement of fossil
lineages

Keep all fossil data, not just
the oldest descendant for a
given node

"1

Time



FossiL Tip DATING

Fredrik Ronquist and his
colleagues implemented tip
dating in MrBayes

Early radiation of
Hymenoptera
® 66 extant taxa
® 45 fossil taxa
® 7 genes, ~ 5kB
(extant taxa only)

® 343 morphological
characters (12%
complete for fossils)

(Ronquist, Klopfstein, et al. Syst. Biol. 2012. doi: 10.1093/sysbio/sys058)



FossiL Tip DATING

® Hymenoptera fossils are
mostly poorly-preserved
impression fossils,
difficult to place
phylogenetically

* With node dating, their
set of 45 fossils are
reduced to 9 calibration
points

Xyeitne Xyoldzo

® They developed a,
presumably, vague
uniform prior on node
times

(Ronquist, Klopfstein, et al. Syst. Biol. 2012. doi: 10.1093/sysbio/sys058)



FossiL Tip DATING

Thorough analysis is
necessary for this kind of
dataset

Ronquist et al. used Bayes
factors to choose a relaxed
clock model (this is rarely

done, but really important)

Compared node dating and
tip dating

(Ronquist,

Data acquisition

molecular matrix i i ical matrix
t tant t ssil to

combined matrix
68 extant taxa

non-clock analysis 1

-
~

113 extant &
fossil taxa

Prior setting

non-clock analysis substitution
fixed topology branch lengths
Strict-clock analysis
fixed topology

estimate of
among-branch
77 rate variation

time
branch lengths

best topology’

minimum and maximum age tree height in
of tree from fossil record\ subst&uhons
informative prior on informative hyper-priors
calibrated clock rate on rate variation in
Calibrated Analyses relaxed clock models

7 calibration points -~
based on the 45 fossils
node dating analysis total-evidence analysis

phylogeny and
divergence-time
estimates

Klopfstein, et al. Syst. Biol. 2012. doi: 10.1093/sysbio/sys058)



FossiL Tip DATING

® Resulted in a fairly
unresolved phylogeny,
but fossils significantly
contribute to estimates
of node ages

® Posteriors on node
times are less sensitive
to priors compared with
node dating

® Higher precision for
divergence time
estimates

(Ronquist, Klopfstein, et al. Syst. Biol. 2012. doi: 10.1093/sysbio/sys058)
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The Hymenoptera crown
group dates back to the
Carboniferous, approximately
309 Ma (95% interval:
291-347 Ma)

And diversified into major
extant lineages much earlier
than previously thought,
well before the Triassic

(Ronquist, Klopfstein, et al. Syst. Biol. 2012. doi: 10.1093/sysbio/sys058)
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In groups with rich fossil
records, tip dating is an
ideal approach 3

ST

Allows for dating trees with

more of the available fossils 1111

Investigate questions (i.e. ©
historical biogeography,
character evolution) with

extinct lineages LU

Notogoneus osculus — early growth series

illustrating the ontogeny of the scale covering

(Grande & Grande J. Paleont. 2008)
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Preliminary work with: Matt Davis (Field Museum) and Charles Linkem (KU/UW)
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Fossil tip-dating methods are available in MrBayes and
BEAST, though our understanding of how well these
methods work is still incomplete




