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Goals
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Explain jargon
Increase comfort level
Provide background
In other words...give a hand up

f(r) =
r↵�1e�r/�

�↵�(↵)
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The Plan 

• Probability review
• Likelihood
• Substitution

models

• Markov model basics
• Transition probabilities
• Survey of models
• Rate heterogeneity
• Codon models

• The AND and OR rules
• Independence of events

• What does it mean?
• Likelihood of a single sequence
• Maximum likelihood distances
• Likelihoods of trees
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Combining probabilities
• Multiply probabilities if the component events 

must happen simultaneously (i.e. where you 
would naturally use the word AND when 
describing the problem)

(1/6) × (1/6) = 1/36

Using 2 dice, what is the probability of

AND ?

p0

p1

p2

p3 p4
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AND rule in phylogenetics

One use of the AND rule in phylogenetics 
is to combine probabilities associated with 
individual branches to produce the overall 
probability of the data for one site.

A

A C

A

A

probability 
of A at root

probability of C at end of branch given A 
at beginning

Pr(AAC, AA) = p0 p1 p2 p3 p4

pretend (for now) we also know 
these ancestral states

we have observed these states
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Combining probabilities

• Add probabilities if the component events are 
mutually exclusive (i.e. where you would 
naturally use the word OR in describing the 
problem)

(1/6) + (1/6) = 1/3

Using one die, what is the probability of

OR ?



Combining AND and OR
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(1/36) + (1/36) + (1/36) + (1/36) + (1/36) + (1/36) = 1/6

1 and 6

2 and 5

3 and 4

4 and 3

5 and 2

6 and 1

What is the probability that the sum of two dice is 7?
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Using both AND and OR in phylogenetics

AND rule used to compute probability of the observed data for each combination 
of ancestral states.

OR rule used to combine different combinations of ancestral states.

A

A C

A

A

A

C

A

G

A

T

T

T

...

...
(16 combinations of ancestral states)

p0

p1

p2

p3 p4
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Independence

Pr(A and B)   =  Pr(A) Pr(B|A)
joint probability conditional

probability

Pr(A and B) = Pr(A) Pr(B)

...then events A and B are independent and we can 
express the joint probability as the product of Pr(A) 
and Pr(B)

If we can say this...
Pr(B|A) = Pr(B)

This is always true...
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Likelihood
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The Likelihood Criterion
The probability of the observations computed using a model tells

us how surprised we should be.
The preferred model is the one that surprises us least.

Suppose I threw 20 dice 
down on the table and this 
was the result...

Pr(obs.|fair dice model) =
�

1
6

⇥20

=
1

3, 656, 158, 440, 062, 976
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The Fair Dice model

You should have been very 
surprised at this result 
because the probability of 
this event is very small: 
only 1 in 3.6 quadrillion!



Pr(obs.|trick dice model) = 120 = 1
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The Trick Dice model
(assumes dice each have 5 on every side)

You should not be surprised 
at all at this result because the 
observed outcome is certain 
under this model
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Results

Model Likelihood Surprise 
level

Fair Dice 1
3,656,158,440,062,976

Very, very, 
very surprised

Trick Dice 1.0 Not surprised 
at all

winning model maximizes likelihood
(and thus minimizes surprise)

Likelihood and model 
comparison

• Analyses using likelihoods ultimately 
involve model comparison

• The models compared can be discrete (as in 
the fair vs. trick dice example)

• More often the models compared differ 
continuously:
– Model 1: branch length is 0.05
– Model 2: branch length is 0.06
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Rather than having 
an infinity of models, 
we instead think of 

the branch length as a 
parameter within 

one model
0.0 0.5 1.0 1.5 2.0

-4
-3

-2
-1

0

x

lo
g
(x
)
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Probabilities (x) lie between 0 and 1, 
which means log(x) will always be 
negative.

Note that log(x) will always be highest 
where x is highest, so finding the 
maximum likelihood is equivalent to 
finding the maximum log-likelihood).  

In this talk (and in 
phylogenetics in general), 

ln(x) = log(x)

Likelihoods vs. log-likelihoods

Tree jargon
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A B C D E

interior node
(or vertex, degree 3+)

terminal or tip node
(or leaf, degree 1)

branch (edge)

root node of tree (degree 2)

bipartition (split)
also written AB|CDE
or portrayed **---

log L = 12 log(�A) + 7 log(�C) + 7 log(�G) + 6 log(�T )
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Likelihood of a single tip node

GAAGTCCTTGAGAAATAAACTGCACACACTGG

First 32 nucleotides of the ψη-globin gene of gorilla:

We can already see by eye-balling this that a model allowing 
unequal base frequencies will fit better than a model that assumes 
equal base frequencies because there are about twice as many As 

as there are Cs, Gs and Ts.

Note that we are assuming independence among sites here



Model ranking using AIC
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The Akaike Information Criterion (AIC) can be used to evaluate 
whether an unconstrained model ("free") fits the data significantly 
better than a constrained version ("equal") of the same model. 

log Lfree = 12 log(⇡A) + 7 log(⇡C) + 7 log(⇡G) + 6 log(⇡T )

= 12 log(0.375) + 7 log(0.219) + 7 log(0.219) + 6 log(0.188)

= �43.1

Find maximum logL under the unconstrained model:

This model has 3 parameters

log Lequal = 12 log(⇡A) + 7 log(⇡C) + 7 log(⇡G) + 6 log(⇡T )

= 12 log(0.25) + 7 log(0.25) + 7 log(0.25) + 6 log(0.25)

= �44.4

Find maximum logL under the constrained model:

This model has 0 parameters

AIC = 2k � 2 log(L
max

)

AIC
free

= 2(3)� 2(�43.1) = 92.2

AIC
equal

= 2(0)� 2(�44.4) = 88.8

20

Model ranking using AIC

The constrained model ("equal") is 
a better choice than the 

unconstrained model ("free") 
according to AIC

Calculate AIC for each model: true

free

equal

88.8 = twice 
expected (relative) 

K-L divergence 
from equal model 

to true model

92.2 = twice 
expected (relative) 

K-L divergence 
from free model to 

true model

(K-L stands for 
Kullback-Leibler)

Pr(G) Pr(G|G, αt) Pr(A) Pr(G|A, αt)
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root (arbitrary)

Note that we are NOT assuming independence here

Likelihood of the simplest tree
sequence 1 sequence 2

To keep things simple, assume that the sequences are only 2 
nucleotides long:

GA GG

site 1 site 2site 1 site 2
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Maximum likelihood estimation

gorilla   GAAGTCCTTGAGAAATAAACTGCACACACTGG
orangutan GGACTCCTTGAGAAATAAACTGCACACACTGG

First 32 nucleotides of the ψη-globin gene of gorilla and orangutan:

Maximum likelihood estimate
(MLE) of αt is 0.021753

Plot of log-likelihood as a function
of the quantity αt

v = 3�t
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number of substitutions = rate × time

A C G T
α α α

Overall substitution rate is 3α, so the expected 
number of substitutions (v) is

This is the rate at which an 
existing A changes to a T �

1 substitution
million years

⇥
100 million years

�
100 substitutions

million years

⇥
1 million years
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Rate and time are confounded

X Y
100 substitutions

?

Later this week you will be introduced to models in which 
constraints on times can be used to infer rates (and vice versa), 
but without some extra information or constraints, sequence 
data allow only estimation of the number of substitutions.

evolutionary distance



v = 3�t
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A convenient convention

Because rate and time are confounded, it is convenient to 
arbitrarily standardize things by setting the rate to a value 
such that one substitution is expected to occur in one 
unit of time for each site.

This results in “time” (the length of a branch) being 
measured in units of evolutionary distance (expected 
number of substitutions per site) rather than years (or 
some other calendar unit).

v = 3
�

1
3

⇥
t

Setting α=1/3 results 
in v equalling t 

evolutionary distance

Model Expected no. substitutions: v = {r}t

JC69

F81
K80

HKY85

v = {3�} t

v = {2µ(⇥R⇥Y + ⇥A⇥G + ⇥C⇥T )} t

v = {�(⇥ + 2)} t

v = {2µ [⇤R⇤Y + �(⇤A⇤G + ⇤C⇤T )]} t
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Evolutionary distances for several common 
models

In the formulas above, the overall rate r (in curly brackets) is a function of all 
parameters in the substitution model.

Note that one of the parameters of the substitution model can always be 
determined from the branch length (using our convention that v = t).

Typically, all other model parameters are estimated for the entire tree (for 
example, each branch uses the same value of κ)
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A

A

A T

C

C

Likelihood of an unrooted tree
(data shown for only one site)

Ancestral states like this are 
not really known - we will 
address this in a minute.

Arbitrarily 
chosen to serve 
as the root node

States at the tips are 
observed.
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A

A

A T

C

C

ν2

ν1
ν3

ν4

ν5

Likelihood for site k

πA

PAA(ν1) PAA(ν2) PAC(ν3) PCT(ν4) PCC(ν5)

ν5 is the expected number of 
substitutions for just this
one branch

Note use of the AND probability rule
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Brute force approach would be to calculate Lk for all 16 
combinations of ancestral states and sum them

Note use of the OR probability rule
30

Pruning algorithm 
(same result, less time)

Felsenstein, J. 1981. Evolutionary trees from DNA sequences:  
a maximum likelihood approach. Journal of Molecular Evolution 17:368-376

Many calculations can be done just 
once and then reused several times
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Substitution Models
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Jukes-Cantor (JC69) model

• The four bases (A, C, G, T) are expected to be equally 
frequent in sequences (πA= πC= πG= πT=0.25)

• Assumes same rate for all types of substitution 
(rA→C = rA→G = rA→T = rC→G = rC→T = rG→T = α)

• Usually described as a 1-parameter model (the parameter 
being the branch length)
– Remember, however, that each branch in a tree can have its own length, so 

there are really as many parameters in the model as there are edges in the 
tree!

• Assumes substitution is a Markov process...

Jukes, T. H., and C. R. Cantor. 1969. Evolution of protein molecules. Pages 21-132 in H. N. 
Munro (ed.), Mammalian Protein Metabolism. Academic Press, New York.
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What is a Markov model?

T

Lineage starts
with base T at
some site

C

A substitution occurs, 
changing T to C ?

To predict which base will 
be present after some time t we

need know only which base was 
present at time 0 (C in this case).

If it is irrelevant that there was a T 
present at this site before time 0, 

then this is a Markov model.

t

0
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Transition Probabilities

C

T

Lineage starts
with base T at
some site

A substitution occurs, 
changing T to C C

The transition probability 
PCC(t) gives the probability that

there is a C present at a site
after time t given that there was a C

present at time 0 

t

0

Note: the term transition here comes from the terminology of stochastic
processes and refers to any change of state (and even non-changes!).
If this kind of transition represents a change from one nucleotide state to a 
different nucleotide state, it could thus be either a transition-type
or a transversion-type substitution.

Here is the probability that a site starting in state T will end 
up in state G after time t when the individual substitution 
rates are all α:

PTG(t) = 1
4

�
1� e�4�t

⇥

Jukes-Cantor transition 
probabilities
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The JC69 model has only one unknown quantity: αt

(The symbol e represents the base of the natural 
logarithms: its value is 2.718281828459045...)

Where does a transition probability formula such as 
this come from?
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"ACHNyons" vs. substitutions

T ?

A

C G

T

When an achnyon occurs, any
base can appear in a sequence.

If the base that
appears is different 
from the base that
was already there, then a
substitution event has occurred.

ACHN =
"Anything

Can Happen
Now"

Note: achnyon is my term for this
make-believe event. You will 

not see this term in the literature.

The rate (α) at which any
particular substitution
occurs will be 1/4 the 
achnyon rate (µ).
That is, α = µ/4 

(or µ = 4α)



e�µt
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Deriving a transition probability

Pr(zero achnyons) = 

1� e�µtPr(at least 1 achnyon) =
1
4Pr(last achnyon results in base G) =

1
4

�
1� e�µt

⇥
Pr(end in G | start in T) = 

PGT (t) = 1
4

�
1� e�4�t

⇥

Remember that the rate (α) of any particular substitution is 
one fourth the achnyon rate (µ):

Calculate the probability that a site currently T will change to G 
over time t when the rate of this particular substitution is α:

(Poisson probability of zero events)

T

⇤ =
3
4
µt = 3�t

38

Expected number of substitutions

T ?

A

C G
If the base that
appears is different 
from the base that
was already there, then a
substitution event has occurred.

The overall substitution
rate will be 3/4 the 

achnyon rate

1/4 of the possible achnyon
events don't count as substitutions

PTA(t) =
1
4
(1� e�4�t)

PTC(t) =
1
4
(1� e�4�t)

PTG(t) =
1
4
(1� e�4�t)

PTT (t) =
1
4
(1� e�4�t)
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Transition Probabilities: Remarks

These should add to
1.0 because T must

change to 
something!

1� e�4�t

Doh! Something must be 
wrong here...

PTA(t) =
1
4
(1� e�4�t)

PTC(t) =
1
4
(1� e�4�t)

PTG(t) =
1
4
(1� e�4�t)

PTT (t) =
1
4
(1� e�4�t) + e�4�t
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Transition Probabilities: Remarks

Forgot to account for the possibility of no 
acnyons over time t

Equilibrium frequencies

• The JC69 model assumes that the 
frequencies of the four bases (A, C, G, T) 
are equal

• The equilibrium relative frequency of each 
base is thus 0.25

• Why are they called equilibrium 
frequencies?

41

Equilibrium Frequencies

42

Imagine a bottle of perfume 
has been spilled in room A.

The doors to the other rooms 
are closed, so the perfume 
has, thus far, not been able to 
spread.

What would happen if we 
opened all the doors?



Equilibrium Frequencies
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If the doors are suddenly opened, the 
perfume would begin diffusing from 
the area of highest concentration to 
lowest.

Molecules of perfume go both ways 
through open doors, but more pass one 
way than another, leading to a net flow 
from room A to rooms B and C.

In the instant that the doors are opened, A is losing perfume 
molecules at twice the rate each of the other rooms is gaining 
molecules. As diffusion progresses, however, the rate of loss 
from A drops, approaching an equilibrium.
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Eventually, all four rooms have 
essentially the same concentration of 
perfume.

Molecules still move through doors, 
but now the rates are the same in all 
directions.

Equilibrium Frequencies

Back to sequence evolution: assume a sequence began with 
only A nucleotides (a poly-A sequence). Over time, 
substitution would begin converting some of these As to Cs, 
Gs, and Ts, just as the perfume diffused into adjacent rooms. 
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Pr(A|A) and Pr(A|T) 
as a function of time

Lower curve assumes we started with some 
state other than A (T is used here). Over 
time, the probability of seeing an A at this 
site grows because the rate at which the 
current base will change into an A is α.

Upper curve assumes we started with A at time 0.
Over time, the probability of still seeing an A at 
this site drops because rate of changing to one of 
the other three bases is 3α (so rate of staying the 
same is -3α).

The equilibrium relative 
frequency of A is 0.25

�3� � � �
� �3� � �
� � �3� �
� � � �3�
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JC69 rate matrix

From

To

Jukes, T. H., and C. R. Cantor. 1969. Evolution of protein molecules. Pages 21-132 in H. N. Munro 
(ed.), Mammalian Protein Metabolism. Academic Press, New York.

1 parameter:
α

A C G T
A
C
G
T

Fr
om

To
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K80 (or K2P) rate matrix

Kimura, M. 1980. A simple method for estimating evolutionary rate of 
base substitutions through comparative studies of nucleotide sequences. 
Journal of Molecular Evolution 16:111-120.

transition rate transversion rate

2 parameters:
α
β

A C G T

A

C

G

T

��� 2⇥ ⇥ � ⇥

⇥ ��� 2⇥ ⇥ �

� ⇥ ��� 2⇥ ⇥

⇥ � ⇥ ��� 2⇥

��(⇥ + 2) � ⇥� �

� ��(⇥ + 2) � ⇥�

⇥� � ��(⇥ + 2) �

� ⇥� � ��(⇥ + 2)

⇤ =
�

⇥
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K80 rate matrix 
(looks different, but actually the same)

All I’ve done is re-parameterize the rate matrix,
letting κ equal the transition/transversion rate ratio

2 parameters:
κ
β

A C G T

A

C

G

T

Note: the K80 model is identical to the JC69 model if κ = 1 (α = β)
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F81 rate matrix

Felsenstein, J. 1981. Evolutionary trees from DNA sequences:  a maximum 
likelihood approach. Journal of Molecular Evolution 17:368-376.

4 parameters:
µ
πA

πC

πG

A C G T

A

C

G

T

Note: the F81 model is identical to the JC69 model if all base 
frequencies are equal

�µ(1� ⇥A) ⇥Cµ ⇥Gµ ⇥T µ

⇥Aµ �µ(1� ⇥C) ⇥Gµ ⇥T µ

⇥Aµ ⇥Cµ �µ(1� ⇥G) ⇥T µ

⇥Aµ ⇥Cµ ⇥Gµ �µ(1� ⇥T )
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HKY85 rate matrix

Hasegawa, M., H. Kishino, and T. Yano. 1985. Dating of the human-ape splitting by a 
molecular clock of mitochondrial DNA. Journal of Molecular Evolution 21:160-174.

5 parameters:
κ 
β
πA

πC

πGA C G T

A

C

G

T

� ⇤C� ⇤G�⇥ ⇤T �

⇤A� � ⇤G� ⇤T �⇥

⇤A�⇥ ⇤C� � ⇤T �

⇤A� ⇤C�⇥ ⇤G� �

Note: the HKY85 model is identical to the F81 model if κ = 1. If, in 
addition, all base frequencies are equal, it is identical to JC69.

A dash means 
equal to negative 
sum of other 
elements on the 
same row
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F84 vs. HKY85

F84 first used in Felsenstein’s PHYLIP package in 1984, first published by: Kishino, H., and M. Hasegawa. 1989. 
Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the 
branching order in hominoidea. Journal of Molecular Evolution 29: 170-179.

F84 model:
 µ rate of process generating all types of substitutions
 kµ rate of process generating only transitions
 Becomes F81 model if k = 0

HKY85 model:
 β rate of process generating only transversions
 κβ rate of process generating only transitions
 Becomes F81 model if κ = 1
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GTR rate matrix

Lanave, C., G. Preparata, C. Saccone, and G. Serio. 1984. A new method for calculating 
evolutionary substitution rates. Journal of Molecular Evolution 20:86-93.

9 parameters:
πA
πC
πG
a
b
c
d
e
µ

Identical to the F81 model if a = b = c = d = e = f = 1. If, in addition, all the 
base frequencies are equal, GTR is identical to JC69. If a = c = d = f = β and 
b = e = κβ, GTR becomes the HKY85 model.

A C G

A

C

G

T

� ⇥Caµ ⇥Gbµ ⇥T cµ

⇥Aaµ � ⇥Gdµ ⇥T eµ

⇥Abµ ⇥Cdµ � ⇥T fµ

⇥Acµ ⇥Ceµ ⇥Gfµ �

T
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Rate Heterogeneity
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Green Plant rbcL
M--S--P--Q--T--E--T--K--A--S--V--G--F--K--A--G--V--K--D--Y--K--L--T--Y--Y--T--P--E--Y--E--T--K--D--T--D--I--L--A--A--F--R--V--T--P--
Chara           (green alga; land plant lineage)   AAAGATTACAGATTAACTTACTATACTCCTGAGTATAAAACTAAAGATACTGACATTTTAGCTGCATTTCGTGTAACTCCA
Chlorella       (green alga)                       .....C...C.T....................T..CC..C.A.....C.....T...C.T..A..G..C...A.G.....T
Volvox          (green alga)                       ........TC.T.....A.....C..A.....C...GT.GTA.....C........C.....A.........A.G......
Conocephalum    (liverwort)                        ........TC..........T........G..T...G.............G..T........A......A.AA.G.....T
Bazzania        (moss)                             ........T........C..T.....G.....A...G.G..C.....G..A..T.....G..A.........A.G.....C
Anthoceros      (hornwort)                         ........T........CC.T.....C.....T..CG.G..C..G........T.....G..A..G.C.T.AA.G.....T
Osmunda         (fern)                             ........TC....G...C..........C..T...G.G..C..G........T.....G..A.....C..AA.G.....C
Lycopodium      (club "moss")                      .GG...............C.T..C........T.....G..C.....A..C..T...C.G..A........AA.G.....T
Ginkgo          (gymnosperm; Ginkgo biloba)        ..............G.....T...........A...C....C...........T..C..G..A.....C..A........T
Picea           (gymnosperm; spruce)               ....................T...........A...C.G..C........G..T.....G..A.....C..A........T
Iris            (flowering plant)                  ..............G.....T...........T..CG....C...........T..C..G..A.....C..A........T
Asplenium       (fern; spleenwort)                 ........TC..C.G.....T..C..C..C..A..C..G..C........C..T..C..G..A..T..C..GA.G..C...
Nicotiana       (flowering plant; tobacco)         .....G....A...G.....T..............CC....C..G........T..A..G..A.....C..A........T

Q--L--G--V--P--P--E--E--A--G--A--A--V--A--A--E--S--S--T--G--T--W--T--T--V--W--T--D--G--L--T--S--L--D--R--Y--K--G--R--C--Y--H--I--E--
CAACCTGGCGTTCCACCTGAAGAAGCAGGGGCTGCAGTAGCTGCAGAATCTTCTACTGGTACATGGACTACTGTTTGGACTGACGGATTAACTAGTTTGGACCGATACAAAGGAAGATGCTACGATATTGAA
.....A..T........A........G..T..G........A........A..A........T.....G.....A........T..T...........A.....T........TC.T..T..T..C..C..G
.....A..T...............TGT..T.....T..T.....T.....A..A..A.....T.....A.....A........T..T.....A...C.T.....T........TC.T..T..T..C..C..G
..G.....G..A...G.A...........A..A.....T.....T..........................A...........T..TC.T....ACC.T..T..T..T.....TC.......T.G......C
.....G..A..A.................A..G...........T........A..C.....G.....C..G........C..T..GC.T..A...C.C..T..T........TC.......T..C..C...
T....A..G..G.................A..C...........T........A..........................C..T...C.T..C..CC.T.....T........TC..........C......
.....C..A..A..GG....G.....T..A..............G...........A.....G.....C.....A.....G..T...C.T..C...C.T..T..T..T..G..TC.................
....T...A..A.....C..G.....G..A..C...........T........C..........................C..T...C.T..C...C.C..T..C........TC.G.....T..A......
........A..G........G.....G..A..............C........C..............C...........C..T...C.T..C...C.T..T..T.....G...........T..C..C..G
.....A..G..G..G..C..G.....G..A..A...........T........C..C...........C...........C..T...C.T......C.T..T..T.....G..GC.......T..C..C..G
.....C..A.....TG..........G.....C..G........C.......................A..A..G........T...C.T..C...C.T..T..T.........C........C.C..C..G
.....C..A..A...G..........C..A.................G..C.....A...........C.....G.....A.....G..G..C..CC.T.....T.....G..CC.............C..G
........A.......................C..G........C.......................A.....A.....C..T...C.T..C..CC.T..T..T........GC........CGC..C..G

First 88 amino acids (translation is for Zea mays)

All four bases are observed 
at some sites...

...while at other sites, only one base 
is observed
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Site-specific rates

Subset 1 Subset 2

Each defined subset (e.g. gene, codon position) has 
its own relative rate

r1 applies to subset 1
(e.g. sites 1 - 1000)

r2 applies to subset 2
(e.g. sites 1001-2000)
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Site-specific rates

Gene 1 Gene 2

r1 = 1.2 r2 = 0.8
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Site-specific rates
JC69 transition probabilities that would be used for 
every site if rate homogeneity were assumed:

Pii(t) =
1
4

+
3
4
e�4r2�t

Pij(t) =
1
4
� 1

4
e�4r2�t

Pii(t) =
1
4

+
3
4
e�4r1�t

Pij(t) =
1
4
� 1

4
e�4r1�t
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Site specific rates

JC69 transition probabilities that would be used for sites in gene 2:

JC69 transition probabilities that would be used for sites in gene 1:
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Ok, I am going to 
divide you into 2 groups based on 

the color of your head, and everyone in 
each group will get a coat of the average size 

for their group. Very sorry if this does not 
work well for some people who are 
unusually large or small compared 

to their group.

Site-specific Approach
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Site-specific Approach

Pro: costs less: need to buy just one coat for every person
Con: every person in a group has to wear the same size coat, so the fit will be poor for some 
people if they are much bigger or smaller than the average size for the group in which they 
have been placed
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Mixture Models
All relative rates applied to every site

site i

Invariable sites (I) model
Discrete Gamma (G) modelCommon examples
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Ok, I am going to give 
each of you 2 coats: use the one 

that fits you best and throw away the 
other one. This costs twice as much for me, 
but on average leads to better fit for you. I 

have determined the two sizes of coats 
based on the distribution of your 

sizes.

Mixture Model Approach
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Mixture Model Approach

Pro: every person experiences better fit because they can choose the size coat that fits best
Con: costs more because two coats much be provided for each person
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Invariable Sites Model

site i

A fraction pinvar of sites are assumed to be invariable (i.e. rate = 0.0)

Allows for the possibility that any given site 
could be variable or invariable

Reeves, J. H. 1992. Heterogeneity in the substitution process of amino 
acid sites of proteins coded for by mitochondrial DNA. Journal of 
Molecular Evolution 35:17-31.

Li = Pr(Di|0.0)pinvar + Pr(Di|r2)(1� pinvar)

Invariable sites model
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If site i is a constant site, both terms 
will contribute to the site likelihood:

A

A

A

A

Li = (((((((
Pr(Di|0.0)pinvar + Pr(Di|r2)(1� pinvar)

If site i is a variable site, there is no 
way to explain the data with a zero 
rate, so the first term is zero:

A

G

A

A
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Discrete Gamma Model

site i

No relative rates are exactly 0.0, and all are equally probable

Relative rates are constrained to a discrete gamma distribution
Number of rate categories can vary (4 used here)

Yang, Z. 1993. Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ
over sites. Molecular Biology and Evolution 10:1396-1401.

Yang, Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites:
approximate methods. Journal of Molecular Evolution 39:306-314.
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Relative rates in 4-category case
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Boundary between 1st and 2nd categories 

Boundary between 2nd and 3rd categories 

Boundary between 3rd and 4th categories 

Boundaries are placed so that 
each category represents 1/4 
of the distribution (i.e. 1/4 of 
the area under the curve)

r1 = 0.137 r2 = 0.477 r3 = 1.000 r4 = 2.386
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Gamma distributions

The mean equals
1.0 for all three of
these distributions

relative rate

re
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y 
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 si
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s

larger α means
less heterogeneity

α = 10

α = 1

α = 0.1 Note: the symbol α here is 
not the same as the α used 

in JC transition 
probability formulas! 
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Codon models
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The Genetic Code

http://www.langara.bc.ca/biology/mario/Assets/Geneticode.jpg

5'-ATG|TCA|CCA|CAA-3'
3'-TAC|AGT|GGT|GTT-5'

5'-AUG|UCA|CCA|CAA-3'

 N-Met|Ser|Pro|Gln-C

First 12 nucleotides at the 5' end of the rbcL gene in corn:

coding strand

template strand

mRNA

translation

DNA double helix

polypeptide

transcription

Codon models treat codons as the independent
units, not individual nucleotide sites.
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First codon models
• Muse and Gaut model (MG94) is simplest

   α = synonymous substitution rate
β = nonsynonymous substitution rate
πA, πC, πG, πT = base frequencies

• Goldman and Yang model (GY94) similar
– accounts for synon./nonsynon. and trs/trv bias and 

amino acid properties (later simplified, see Yang et 

Goldman, N., and Z. Yang. 1994. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Molecular Biology and Evolution 
11:725-736.

Muse, S. V., and B. S. Gaut. 1994. A likelihood approach for comparing synonymous and nonsynonymous substitution rates, with application to the chloroplast 
genome. Molecular Biology and Evolution 11:715-724.

Yang, Z., Nielsen, R., and Hasegawa, M. 1998. Models of amino acid substitution and applications to mitochondrial 
protein evolution. Molecular Biology and Evolution 15:1600-1611.
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Table 1 from: Lewis, P. O. 2001. Phylogenetic systematics turns over a new leaf. 
Trends in Ecology and Evolution 16:30-37.

Instantaneous rate is 0.0 if two or 
more nucleotides must change 

during the codon transition

Note that it is still easy for the
change CTT → TTA to occur,
it just requires more than one
instant of time
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Interpreting codon model results
ω = β/α is the nonsynonymous/synonymous rate ratio

ω < 1 stabilizing selection
(nucleotide substitutions rarely change the amino 

acid)

functional protein 
coding genes

ω = 1 neutral evolution
(synonymous and nonsynonymous substitutions

occur at the same rate)
pseudogenes

ω > 1 positive selection
(nucleotide substitutions often change the amino acid)

envelope proteins in 
viruses under active 

positive selection

omega mode of selection example(s)


