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Overview

2 of 33 – c�2012 Peter Beerli

1. Sample size

2. Model parameters

3. How to reduce parameters

4. Bayes Factors (practical)

5. Replication and parallel runtime
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Population size mantra Coalescence
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Required samples is small Single population
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samplesize=10 Felsenstein (2005)

Pluzhnikov and Donnelly
(1996)

The time to the most recent common ancestor is robust to different sample
sizes.

Simulated sequence data from a single population have shown that after 8
individuals you should better add another locus than more individuals.
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Required samples is small Multiple populations
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Medium variability DNA dataset: Mutation-scaled population size ⇥ and mutation-
scaled migration rate M versus sample size for 2, 5, and 10 loci. The true ⇥T =

0.01 is marked with the dotted gray line; M = 100
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Population models
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Migration model specification
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4-parameters

3-parameters 2-parameters 1-parameter
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Migration model specification
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Full sized 1 2 3 4
1 - + + +
2 + - + +
3 + + - +
4 + + + -

Mid sized 1 2 3 4
1 - + 0 +
2 + - 0 0
3 + 0 - 0
4 + + + -

Economy 1 2 3 4
1 - 0 0 0
2 0 - 0 0
3 + 0 - 0
4 0 + + -

8Wednesday, February 6, 13



Migration model specification
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Migration model specification
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Model comparison
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With a criterium such as likelihood we can compare nested models. Commonly
we use a likelihood ratio test (LRT) or Akaike’s information criterion (AIC) to
establish whether phylogenetic trees are statistically different or mutation models
have an effect on the outcome, etc.
Kass and Raftery (1995) popularized the Bayes Factor as a Bayesian alternative
to the LRT.

p(M1|D) =
p(M1)p(D|M1)

p(D)

p(M1|D)

p(M2|D)
=

p(M1)

p(M2)
⇥ p(D|M1)

p(D|M2)

BF =
p(D|M1)

p(D|M2)
LBF = 2 lnBF = 2 ln

✓
p(D|M1)

p(D|M2)

◆

The magnitude of BF gives us evidence against hypothesis M2

LBF = 2 lnBF = z

8
>>>><

>>>>:

0 < |z| < 2 No real difference
2 < |z| < 6 Positive
6 < |z| < 10 Strong
|z| > 10 Very strong
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Model comparison
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Posterior Density Prior Likelihood

With a criterium such as likelihood we can compare nested models. Commonly
we use a likelihood ratio test (LRT) or Akaike’s information criterion (AIC) to
establish whether phylogenetic trees are statistically different or mutation models
have an effect on the outcome, etc.
Kass and Raftery (1995) popularized the Bayes Factor as a Bayesian alternative
to the LRT.

p(M1|D) =
p(M1)p(D|M1)

p(D)

p(M1|D)

p(M2|D)
=

p(M1)

p(M2)
⇥ p(D|M1)

p(D|M2)

BF =
p(D|M1)

p(D|M2)
LBF = 2 lnBF = 2 ln

✓
p(D|M1)

p(D|M2)

◆

The magnitude of BF gives us evidence against hypothesis M2

LBF = 2 lnBF = z

8
>>>><

>>>>:

0 < |z| < 2 No real difference
2 < |z| < 6 Positive
6 < |z| < 10 Strong
|z| > 10 Very strong

12Wednesday, February 6, 13



Structured populations Migration

Reanalysis of data from Rosenberg et al. Science 2001 13 of 33 – c�2012 Peter Beerli

A total of 70 individuals from 7 populations analyzed for 377 microsatellite loci:
Mutation model is Brownian motion approximation to the single-step mutation

model
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Structured populations Migration

Reanalysis of data from Rosenberg et al. Science 2001 14 of 33 – c�2012 Peter Beerli
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Structured populations Migration

Reanalysis of data from Rosenberg et al. Science 2001 15 of 33 – c�2012 Peter Beerli
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Structured populations Migration

Reanalysis of data from Rosenberg et al. Science 2001 16 of 33 – c�2012 Peter Beerli

4

Somewhat less
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Structured populations Migration

Reanalysis of data from Rosenberg et al. Science 2001 17 of 33 – c�2012 Peter Beerli
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Structured populations Migration

Reanalysis of data from Rosenberg et al. Science 2001 18 of 33 – c�2012 Peter Beerli
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Structured populations Migration

Reanalysis of data from Rosenberg et al. Science 2001 19 of 33 – c�2012 Peter Beerli
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Structured populations Migration

Reanalysis of data from Rosenberg et al. Science 2001 20 of 33 – c�2012 Peter Beerli
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Structured populations Model selection

Reanalysis of data from Rosenberg et al. Science 2001 21 of 33 – c�2012 Peter Beerli

1.

2.

3.

4.

5.

6.

7.
4

Somewhat less

Model order and probability using Bayes factors

all other models: 0.0
Minimal model 1.0

21Wednesday, February 6, 13 22Wednesday, February 6, 13

Run time concerns MCMC
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MCMC works perfectly fine when run infinitely
long. It is rather difficult to know when the
(finite) run has converged and is sampling from
the distribution of interest and is reaching all
important parts. Several methods are used to
improve convergence and sampling:

Improve the proposal procedure

Use Metropolis-coupled MCMC to improve
finding peaks in the distribution.

Program optimization can improve runtime
considerably.

Run several analyses in parallel
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Embarrasingly parallel computation MIGRATE

P. Beerli (2004) 24 of 33 – c�2012 Peter Beerli

Each locus is completely independent, therefore can run on a different computer.
Embarrasingly simple parallel computing can be done by splitting up data set and
gathering “results” from individual nodes by “hand”. This gets really tedious with
100+ loci.

MIGRATE uses a more sophisticated strategy (MPI) and can use a cluster of
(loosely) connected computer nodes. With more loci than nodes a load balancing
scheme is used.

Genetic data
Auxillary files

Output filesDirector

Locus 1 Locus 2 Locus n
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Speed up

Beerli (2004) Effect of unsampled populations on the estimation of population sizes and migration rates .... Molecular Ecology25 of 33 – c�2012 Peter Beerli

Estimation of 9 parameters in a 3 population migration model using data from a
total of 100 loci, distributed over 4, 8, 16, 32, 64, 101 computer nodes.
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Speed up
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Speed of total run depends on the “slowest” locus (here out of 50)

51 nodes
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Speed up
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11 nodes

51 nodes
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Load-balancing allows more
effective use of all available
compute nodes.
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Speed up even more? MIGRATE

MIGRATE 2.2 (2007) 28 of 33 – c�2012 Peter Beerli

Genetic data
Auxillary files

Output files

Director

Locus 1

Locus 2

Replicate 1

Replicate 2

Replicate m

Locus n
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Run time versus accuracy One long run
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One long run:
all samples used (no burn-in)

Contour lines are at 50%, 95%, and 99% credibility level

⇥ = 4Neµ (population size scaled by mutation rate)

M = m
µ (immigration rate scaled by mutation rate)

Posterior density for a 2-parameter model (population size and gene flow) A run
for 50 ⇥ 106 steps (sampling 3 quantities: 2 parameters and genealogies) took
about 20 hours.
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Run time versus accuracy 10 replicated runs
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One long run: 20 hours
all samples used (no burn-in)

10 replicates: 2 hours
all samples used (no burn-in)

Contour lines are at 50%, 95%, and 99% credibility level

⇥ = 4Neµ (population size scaled by mutation rate)

M = m
µ (immigration rate scaled by mutation rate)

Posterior density for a 2-parameter model (population size and gene flow) 10 runs
each for 5⇥ 106 steps took about 2 hours.
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Run time versus accuracy 10 replicated runs⇤
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One long run: 20 hours
all samples used (burn-in)

10 replicates: 2 hours
first 50% of samples discarded

Contour lines are at 50%, 95%, and 99% credibility level

⇥ = 4Neµ (population size scaled by mutation rate)

M = m
µ (immigration rate scaled by mutation rate)

Posterior density for a 2-parameter model (population size and gene flow) 10 runs
each for 5⇥ 106 steps took about 2 hours.
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Learn a computer scripting language today to

be ready for tomorrow, the parallel genome

sequencing revolution has begun.

33Wednesday, February 6, 13


