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Growth of Knowledge
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Next Generation Sequencing

* lllumina sequencing

* Cost of sequencing
throughput at GSC

human genome
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De Novo Assembly Problem
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o Old paradigm:

- long and non-uniform reads (800bp - 1000bp)

CS)Q)
QS



De Novo Assembly Problem
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o Old paradigm:
- long and non-uniform reads (800bp - 1000bp)

PO, - overlap; overlay; consensus
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De Novo Assembly Problem

o New paradigm:
- short and uniform reads (50bp - 150bp)
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De Novo Assembly Problem

o New paradigm:
- short and uniform reads (50bp - 150bp)

Q0. - gverlap; orerlay; corisensus
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De Novo Assembly Problem
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New paradigm:

- short and uniform reads (50bp - 150bp)
- de Bruijn graphs




De Novo Assembly Problem
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o New paradigm:
- long range information through read pairs

- graph theoretic approaches
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Assembly By Short Sequencing

Resource

ABYSS: A parallel assembler for short read sequence

data

Jared T. Simpson,1 Kim Wong, Shaun D. Jackman, Jacqueline E. Schein,

Steven J.M. Jones, and inang Birol®

Genome Sciences Centre, British Columbio Cancer Agency, Vancouver, British Columbio VSZ 4£6, Canodo

Widespread adoption of massively parallel

2dd (DNA) seque nci

has prompted the recent

development of de novo short read assem bly algorithms. A common shortoming of the available tools is their inability to
sk P . " i i A
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IEEE InfoVis 2009

ABySS-Explorer: Visualizing Genome Sequence Assemblies

Cydney B. Nielsen, Shaun D. Jackman, Inanc Birol, and Steven J.M. Jones

Jackman and Birol Genome Biology 2010, 11:202

1. ABySS-Explorer employs a novel graph representation enabling biologists to examine the global structure of a genome

jence assembly.

@

ract—One in large le genome projects is

the full genome sequence from the short sub-

http/genomebiology.com/2010/11/1/202

Genome Biology

MINIREVIEW

lences produced by current technologies. The final stages of the genome assembly process inevitably require manual inspection
ta inconsistencies and could be greatly aided by visualization. This paper presents our design decisions in translating key data
res identified through discussions with analysts into a concise visual encoding. Current visualization tools in this domain focus
jcal sequence errors making high-level inspection of the assembly difficult if not impossible. We present a novel interactive graph

Jay. ABySS-Explorer. that emphasizes the global assembly structure while also integrating salient data features such as sequence
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De novo Transcriptome Assembly with ABySS ion,
Inang Birol"”, Shaun D Jackman', Cydney Nielsen', Jenny Q Qian', Richard Varhol', Greg ::;
Stazyk', Ryan D Morin', Yongjun Zhao', Martin Hirst', Jacqueline E Schein', Doug E Hors- H by
man’, Joseph M Connors®, Randy D Gascoyne”, Marco A Marra® and Steven JM Jones' “Sl“
! Genome Sciences Centre, 100-570 W 7th Avenue. Vancouver BC V5Z 4S6. Canada. www.begse.ca f;ty
? British Columbia Cancer Agency. 600 West 10th Avenue, Vancouver, BC V5Z 4E6. Canada. www.bccancer.ca en-
a in

Associate Editor: Dr. Alex Bateman

ABSTRACT

data (Jackson et al., 2009), but it is not yet demonstrated to be

Whole i shotgun data from
non-normalized samples offer unique opportunities to study the
metabolic states of organisms. One can deduce gene expression
levels using sequence coverage as a surrogate, identify coding
changes or discover novel isoforms or transcripts. Especially for
discovery of novel events, de novo assembly of transcriptomes is
desirable.

Results: Transcriptome from tumor tissue of a patient with follicular

to exp data. Here, we present a de novo as-
sembly approach for transcriptome analysis using the ABySS as-
sembler tool (Simpson et al., 2009), which works on experimental
data, and we show that transcriptome assembly yields interesting
biological insights. ABySS was developed initially for de novo
assembly of genomes, with a special emphasis on large genomes,
and we p its capacity by the
human genome using 36bp to 42bp short reads.

© 2010 Nature America, Inc. All rights reserved.

e

De novo assembly and
analysis of RNA-seq data

Gordon Robertson', Jacqueline Schein!, Readman Chiu',
Richard Corbett!, Matthew Field', Shaun D Jackman!,
Karen Mungall‘, Sam Lee?, Hisanaga Mark Okada',
Jenny Q Qian', Malachi Griffith!, Anthony Raymond',
Nina Thiessen', Timothee Cezard"#, Yaron S Butterfield',
Richard Newsome!, Simon K Chan', Rong She!,
Richard Varhol', Baljit Kamoh'!, Anna-Liisa Prabhu',
Angela Tam!, YongJun Zhao', Richard A Moore',
Martin Hirst!, Marco A Marra®3, Steven ] M Jones'?,
Pamela A Hoodless>* & Inanc Birol!

We describe Trans-ABYySS, a de novo short-read transcriptome
assembly and analysis pipeline that addresses variation in
local read densities by assembling read substrings with varying
stringencies and then merging the resulting contigs before
analysis. Analyzing 7.4 gigabases of 50-base-pair paired-

end Illumina reads from an adult mouse liver poly(A) RNA
library, we i i known, new and i

in expressed transcripts, and achieved high sensitivity and
specificity relative to reference-based assembly methods.

Current methods for sequencing transcriptomes using short-
read technologies (RNA-seq) generate millions of short sequence
reads. These reads are associated with transcript models after
mapping the reads to a reference genome, facilitated by extend-
ing the genome sequence to include sequences for junctions
between annotated exons', as in alternative expression analysis

BRIEF COMMUNICATIONS |

‘The parameters required for an effective assembly depend on
the depth of coverage. For de Bruijn graph assemblers such as
ABySS'®7, which process each read into a set of overlapping sub-
strings (k-mers) of length k base pairs (bp), the most important
parameter is the k-mer length. Whole-genome shotgun assembly
sequencing libraries attempt to provide a uniform representation
of the genome. For these libraries it is reasonable to identify and
work with the assembly that corresponds to an optimal k value. In
non-normalized transcriptome shotgun libraries, however, indi-
vidual transcripts differ widely in expression and thus present a
wide range of sequence representations to an assembler. A single
k value is therefore unlikely to yield an optimal overall assembly
(Supplementary Note 1).

Recently, we applied the ABySS short-read assembler to human
transcriptome data'S. Based on an assembly for a single k value,
in this preliminary analysis we had identified contig structures
and alignments that are consistent with alternative isoforms, and
thus suggested that ABySS could be effective for transcriptome
analysis. However, to make de novo assembly practical for charac-
terizing annotated and new transcript structures, we anticipated
that it would be necessary to assemble at different k values to
address variable transcript expression and multiple expressed iso-
forms. Here we describe the result of work to address these issues,
Trans-ABySS, a method and pipeline for assembly and analysis of
non-normalized short-read transcriptome data.

To develop the approach and assess its performance, we generated
147.1 million (7.36 gigabases (Gb)) quality-filtered 50-bp lllumina
paired-end reads from a transcriptome library constructed from
adult mouse liver poly(A) RNA. We chose this model organism
because it has a well-annotated transcriptome and is considered
genetically uniform. We assembled the reads using ABySS v1.1.1

p y Fig. 1 and Supp y Note 1).
To assess assembly performance as a function of k values,




SE Assembly:k-mer extension on
a de Bruijn graph

PE Assembly:search for
unambiguous
contig merging
along paths

Scaffolding: search for
unambiguous
linkage across
distant contigs



NAUreNnews

nature news home | news archive | specials | opinion | features | news blog nature journal

» comments on this Published online 22 March 2011 | Aature 471, 425 (2011) | m commented
¥ story doi:10.1038/471425a
« Mice with hurman livers deal with drugs
L ] L ] L ]
. . the hurman wa
Stories by subject Genome builders face the competition T
Genetics . . . ¢« Kenvya set to give green light to GM
& SR Three independent projects seek to contrast approaches in
e Technology . . . . crops
preparation for routine analysis of genetic data. 11 July 2011
. Erika Check Havden « All eyes on the potato genome
Stories by keywords 10 July 2011
» Genornics Sequencing DMNA on an ¢ Sudan splits and science community
. Genome sequence mdustrlcjl gcale IS No diLde
. Genome sequending longer d|ff|hcu.lt. the . 08 July 2011
« Bioinformatics challenge is in assembling « Qatar sets sights on stem cells
» Ganciris asssribly a ful! genome from the 08 July 2011
multitude of short,

overlapping snippets that

This article second-generation Rela .
elsewhere sequencing machines
= W E At a meeting last week at the University of California, efiy ?mbme shelesasnams
o d Santa Cruz, three winners emerged: ALLPATHS-LG, e
¢ Addto Connotes E developed by the Broad Institute in Cambridge, 2s-beuond DUA sedusnce
2 Addto Diaa s] Massachusetts; ABySS, developed at the British uencing: the third generation
Bl 2dd o Pacsback ol Columbia Cancer Agency's Genome Sciences Centre in I
. Yancouver, Canada,; and SO&Pdenovo, developed by the
&q) Beijing Genomics Institute. But, Korf notes, "it's not just
14 8 the software, it's how people are running it" that
%(p determines the quality of each assembly.




Assembly Problem

TCG.TCG TTTTCGGCCT"" readl
TTTTCGGCCT" ~ T TT"GG read2

..GCZATCGATCGATTTTCGGCCTAATATTAGACCGATAATCGACGATC. .

A partial and unambiguous read-to-read alignment
¥ extends the length of sequence information
* First stage of an assembly algorithm is to find such
alignments
* Assembly algorithms differ in the way they find and
use these alignments
o
e




Greedy Assembly

* Find two reads with the largest overlap :)
* Merge them

Repeat until no more

Pro: fast
Con: prone to misassembly
* Assumes largest overlaps are unambiguous

RS
e



Overlap Overlay Consensus

e Overlap
Find all pairs of sequences that overlap

* Overlay (a.k.a. Layout)
Remove redundant and weak overlaps

* Consensus
Merge pairs of sequences that overlap
unambiguously
Build a consensus sequence from all reads
overlaid in a region

RoUSe
e



Find Overlapping Reads

* Naive algorithm: make all binary comparisons
Untenable when too many reads

ARACHNE
—O(n?) Colorn assembler
—RAM Newbler
— CPU Phred/Phrap

* Ferragina-Manzini index
— Apply Burrows-Wheeler transform
— Small memory footprint SGA

Build an overlap graph
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Forget About Overlapping Reads!

Shred reads to a uniform length k

Build a special overlap graph: de Bruijn Graph

TCGATCGATTTTCGGCCT
TCGITCGATTTTCG
CGLTCGATTTTCGG
G TCGITTTTCGGC
TCGATTTTCGGCC

.GCATCGATCGATTTTCGGCCT

read:E 20-mer

HHEHa 3334

[

— seven 14-mers

\

TT~.GG read2 : 20-mer

T

TT

TT — seven 14-mers
TTAG

TT GG

TT-.GGCCG . T "TCG"CG"TC

Euler

Velvet
ABySS
SOAPdenovo
ALLPATHS



De Bruijn Graph

* Load k-mers in memory
— 2x4 possible extension of every k-mer
* Check if thereis a “next” k-mer
— O(n) algorithm
..GCLTTGC... seql

E; CLTTAT.. seq2

Sa

KD k=5
e



Memory Concerns

* Human genome has over 2 billion unique k-mers

* If we represent every k-mer using, say 50 bytes
¥ we require over 100 GB RAM
just to represent k-mers

Solution #1: Clustering reads Curtain (w/ Velvet)
Phusion (w/ Phrap)

Solution #2: Distributed computing ABySS

SOAPdenovo
CSDOO ALLPATH-LG

e



Partitioning Read Space

Distribute sub-reads and reverse-complements over nodes

n-mer read

TTGCATCGATCGATTTATCGGCCCTAATCTATTACC

k-mers
TTGCATCG.TCG TTT TCGGCCCT
TGC TCG TCG .TTT TCGGCCCT

GCATCGATCGATTTATCGGCCCTAAT

CATCGATCGATTTATCGGCCCTAATC
TCGATCGATTTATCGGCCCTAATCT
TCGATCGATTTATCGGCCCTAATCT
CGATCGATTTATCGGCCCTAATCTAT
GATCGATTTATCGGCCCTAATCTATT
TCGATTTATCGGCCCTAATCTATT
TCGATTTATCGGCCCTAATCTATTAC
CGATTTATCGGCCCTAATCTATTACC

node
94

40
19
2
0
87
145
128
84
106

Read length n = 36
Hash key length k= 26

GCATCGATCGATTTATCGGCCCTAAT

1001001101100011011000111111001101101001010111 11

XOR
TT GGGCCGT TCGATCG TGC
1111001010100101100011 1101100011011000111001

I
1010111111001010000000001111110000001010001111111010

modulo 160

40



Graph Generation

A given k-mer can have
up to 8 extensions

Each node announces
the list of k-mers that
it has to the nodes that
hold their possible
extensions

Each node records if
there are any
extensions of the k-mers
that it stores

node i-1

This forms adjacency information for A-mers over a distributed

de Bruijn graph




Trimming

Data would have
experimental noise
de Bruijn graph
would have false
branches

Some read errors are
filtered by removing
such branches

Trimming prevents the
later assembly step to
come to a premature end
because of read errors

o—CO—@—O O
—O)
o—0—10@ 0000 O




Bubble Popping

Repeat read errors and single
nucleotide allelic differences

would cause “bubbles” of
length 2k-1

Bubbles are popped by removing
either of those branches

Complex bubbles can form when
multiple bubbles intersect

— Bubble popping step either
reduces the bubble orders by one

— Or creates dead branches

Popped bubbles are recorded in a
log file to study potential allelic
differences

.@.__..{:::}m__
e




Assembly - SET

 Remaining de Bruijn
graph is analyzed for
contig extension
ambiguities

e If there is a multiplicity
in the inbound or
outbound contig
extensions, then
contig growth is
terminated

e SET assembly step then
concatenates the remaining connected nodes in the di-graph,
creating independent contigs that overlap by no more than 4-1

CpOo bases

e



Assembly - PET

After SET assembly,
reads are aligned to
contigs

Using reads that hit
the same contig,
empirical fragment size
distribution(s) is (are)
calculated

Using reads that hit
multiple contigs,

] =¥
........
------------

—0-0-0
a . Ty e
"1 0-0-0-0
—= > e <<
=== 0—0—O—O»# i nnnnn Om@m O O O O @ O O e O O e
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inter-contig distances are inferred with a maximum likelihood

estimator

Contigs with coherent and unambiguous distances are joined



Adjacency Graph

* SET assembly result as a graph
— Nodes: contigs
— Edges: overlaps (k-1 bp)




Adjacency Graph

* SET assembly result as a graph

— Nodes: overlaps (k-1 bp) e o

— Edges: contigs



Assembly As a Hairball




IEEE InfoVis 2009

ABySS-Explorer: Visualizing Genome Sequence Assemblies

Cydney B. Nielsen, Shaun D. Jackman, Inanc Birol, and Steven J.M. Jones
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Contig Length

1 oscillation = 100 bp



Paired End Tag Information

e ol A

A

\ J \ J \ )

inbound partners selected contig outbound partners
(light orange) (orange) (dark orange)

3



Paired End Contigs

13+ 48

.. 13+ 44- 46+ 4+ 79+ 70+ .

ue gradient: SET contig path in PET assembly
Orange: selected SET contig



ABySS-Explorer GUI

File
ISc:r:k
length &
e o 1000
labels ™

paired end contigs M

1842+

paired-end partrers ™

inbounc

1342 [d= 3lbpic=3100n=12)

cutbound

Single-end contig id: 5- (32 bp; 67 kmer cav)

Paired-end contig id: 1829+

[Single-end contig memhbers: 398+ 1077- 1621~ 1696- 239+ 1438+ 291+ 1638~ 80+ 1181+ 1007+ 1045+ 1487- 1679- 612+ 129+ 152+ 1591+ 792+ 891~ 739- 636- 523+ 344+
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15+ 4D1+ 194+ 1178+ 349- 714- 396- 1275- 158+ 433+
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Statistics Display
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Nxx plot and N50

weighted median of
contig sizes

L2 e The N50 summarizes
)i a single point on the
E Nxx plot

e Better assemblies are
further to the right




k-mer Coverage Histogram

 Counts the number
of occurrences of = "
each k-mer ol '\.\

* Useful for l{’/; P
°°°° N,

00000

— estimating the L& :
e
\

genome size 2
\\ ™
. E:,s:).ooo ‘\,h \'\ \\
— measuring mean S BN \\ U N
NN
coverase NN

— library quality control ™
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ABySS — Canada’s Michael Smith Genome Sciences Centre - Mozilla Firefox

File Edit View History Bookmarks Tools Help

é » 7 ?& 0 ﬁ ’@ http://www . bcgsc.ca/platform/bioinfo/software/abyss lV‘GoogIe ‘@“]
Log in o]
BC Cancer Agency PO, CENOME |
CARE + RESEARCH %@8 CS(E"ENTCRESE [search site Search

only in current section
An agency of the Provincial Health Services Authority D“' y Incurrent sectior

Home Platforms Projects Training Services Faculty Careers About

You are here: Home » Platforms » Bioinformatics - GSC Software Centre » ABySS

Platforms A B yS S Project Resources

Bioinformatics Assembly By Short Sequences - a de novo, = Releases

parallel, paired-end sequence assembler = Support

Bioinformatics Licenses
® Contact address

GSC Software Centre C t I
urrent release Project owner: Shaun Jackman
PASsiT
ABYSS 1.3.0 () Subscribe to updates for this
Adapter Trimming for . N project
Small RNA Sequencing el B b 2L

Mate-pair data can be used to scaffold contigs. Specify your

Spark
mate-pair libraries using the *mp' parameter of abyss-pe. ) Parst [ 2admnsy
TASR ;
More about this release...
XpressAlign: FPGA Short
Read Aligner ‘@ Get ABySS for all platforms (498 k8)
Source
Anchor
3 Trmming 4) Bubitle Popping
A Get ABySS for Linux (1.2 mB) ) F= -
BLISS r
Debian package (amd64)
MiIRNA Profiling
. . . . e
ORegAnno: Open Project Description - =
Regulatory Annotation ) el iy
ABySS is a de novo, parallel, paired-end (7 B SS =Y
SNVMix sequence assembler that is designed for “ \ 6} >
Sliderll short reads. The single-processor s
ABySS version is useful for assembling genomes up to 100 Mbases in
size. The parallel version is implemented using MP| and is capable .
. Screenshot — click to enlarge
Releases of assembling larger genomes.

ABySS-Explorer .
To assemble transcriptome data, see Trans-ABySS.
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reade_1fa.gz | reads

ABYSS paired-end pipeline version 1.3.0

3
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Merge paths of contigs o create larger contigs

Hlign reacs 1o contigs

Find pairs of ads in algnments

Estmate distances between cortgs

Merge dstance sstmates
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Merge sequences of contigs Dz
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Merge pains of contigs o creats larger contigs

Scattoid contgs using the distance estimate graph



lib2

| reads_1.fq.gz I reads_2.fq.gz |-—/

Assemble the input files

reads_1.fq.gz

reads_2.fq.gz

coverage.hist

Find overlaps of [m k) bases

Identify and pop simple bubbles

| ecoli-1.fa |

| ecoli-bubbles.fa

I ecoli-1.adj

PopBubbles

A

ecoli-3.adj

Merge paths of contigs to create larger contigs.

ecoli-indel.fa

Align reads to contigs

Find pairs of reads in alignments

Estimate distances between contigs

Merge distance estimates

e
A
ecoli-1.path

MergeContigs
\ 4
ecoli-3.fa
—
abyss-map abyss-map
A
abyss-fixmate abyss-fixmate

—

ABySS paired-end pipeline version 1.3.0

ABYSS tool

output file

lib2-3.hist

sort

DistanceEst

DistanceEst

\ 4

A4

lib1-3.dist

lib2-3.dist

abyss-joindist

| abyssjoiniet |




Assembly Operations

* SET contig building: de Bruijn
— k-mer overlap information

e SET error removal: adjacency
* PET contig merging: adjacency & linkage
— PET alignments

 PET/MPET scaffolding: adjacency & linkage
— PET/MPET alignments

e Gap closure and contig extensions: read overlap
— PET alignments

REUSe
Qi



SET Graph Operations

1. Erode low-coverage tips

-e, --erode=COVERAGE
erode bases at the ends of blunt contigs with coverage less than this threshold
-E, --erode-strand=COVERAGE

erode bases at the ends of blunt contigs with coverage less than this threshold on
either strand

— —— —>®

{



SET Graph Operations

2. Trim tips
-t, --trim-length=TRIM_LENGTH
maximum length of dangling edges to trim

3



SET Graph Operations

3. Remove low coverage contigs

-c, --coverage=COVERAGE
remove contigs with mean k-mer coverage less than this threshold

N
{

-— —— —
———

%44 8



SET Graph Operations

4. Pop bubbles

-b, --bubbles=N
pop bubbles shorter than N bp (default: 3*k)
-b0, --no-bubbles

do not pop bubbles

,.<>FF

g
I N

3



Scaffold Graph Operations

1. Resolve forks




Scaffold Graph Operations

2. Trim tips




Scaffold Graph Operations

3. Remove repeats
>

e

X

S



Scaffold Graph Operations

4. Remove transitive edges

e

[l
.




Scaffold Graph Operations

5. Trim tips




Scaffold Graph Operations

6. Pop bubbles




Scaffold Graph Operations

7. Remove weak edges
- —a\:;o
—0

-0—0—0—=
— 00— 00— 00—

>

> >

e



Running ABySS

o Assemble the paired-end reads in the file
reads.fa

> abyss-pe name=ecolili k=32 n=10
in=reads. fa
o Assemble the paired-end reads in the files
reads_1.fa and reads_2.fa:

> abyss-pe name=ecolili k=32 n=10
in="'reads 1l.fa reads 2.fa'



Running ABYSS in Parallel

o Run ABYSS using eight threads
> abyss-pe np=8 name=ecolil k=32
n=10 in='reads 1.fa reads 2.fa'

o ABYSS uses MPI, the Message Passing
Interface. OpenMPI is an open-source
implementation of MPI

s



Running Parallel Jobs on a Cluster

o Run ABYSS on a cluster using 8 threads
> gqsub -pe openmpi 8 -N ecoli
abyss—-pe np=8 name=ecolili k=32 n=10
in="'reads 1l.fa reads 2.fa'

o abyss-pe uses the environment variables
JOB NAME and NSLOTS passed to it by SGE as
the default values for name and np

3



Running for Multiple k Values

« Assemble every 8" k from 32 to 96

> gsub -pe openmpl 8 -N ecoli
-t 32-96:8 abyss-pe k=32 n=10
in='reads 1.fa reads 2.fa'

o abyss-pe uses the environment variable
SGE TASK ID passed to it by SGE as the
default value for k

3



%57

Assembling Multiple Libraries

> abyss—-pe name=ecoll
k=32 n=10
lib="pe200 pe500'
pe200="pe200 1.fa pe200 2.fa'
pe500="pe500 1.fa pe500 2.fa'



3

Assembling a Mix of PET and SET

> abyss—-pe name=ecoll
k=32 n=10
lib="pe200 pe500"
pe200="pe200 1.fa pe200 2Z2.fa'
ped00="pe500 1.fa pe500 2Z2.fa'
se='long.fa'



Parameters of ABySS

o name: name of the assembly

o lib: name of the libraries (one or more)

o se: paths of the single-end read files

« ${lib}: paths of the read files for that library

o Example
> abyss—-pe name=ecoli k=32 n=10
lib="pe200 peb500"
pe200="pe200 1.fa pe200 2.fa'
pe500="peb500 1.fa ped00 2.fa'
se="'long.fa'



Parameters of ABySS (SET)

o k: the size of a k-mer

e g: quality trimming removes low-quality bases
from the ends of reads

« e and c: coverage-threshold parameters
o €:erosion removes bases from the ends of contigs
o C: coverage threshold removes entire contigs

o p: the minimum identity for bubble popping

RoUSe
Qe
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Parameters of ABySS (PET)

o s: the minimum size of a seed contig

o n: the number of pairs required to join two
contigs

o Example
> abyss-pe name=ecolil
k=04 g=3 p=0.9 s=100 n=10
lib="pe200 peb00"
pe200="pe200 1.fa pe200 2.fa'
pe500="pe500 1.fa peb00 2.fa'
se='long.fa'



Optimizing k

« Assemble every 8" k from 32 to 96
Nine assemblies: 32 40 48 56 64 72 80 88 96

o Find the peak

« Assemble every 2" k around the peak

For example, if the peak were at k=64...
Eight assemblies: 56 58 60 62 66 68 70 72

e SGE:
> gsub -t 32-96:8 gsub-abyss.sh
> gsub -t 56-72:2 gsub-abyss.sh

REUSe
Qe
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Output Files of ABySS

S{name}-contigs.fa
The final contigs in FASTA format

S{name}-bubbles.fa
The equal-length variant sequences (FASTA)

S{name}-indel.fa
The different-length variant sequences

(FASTA)

S{name}-contigs.dot
The contig overlap graph in Graphviz format



e

Intermediate Output Files of ABySS

o .adj: contig overlap graph in ABySS adj format

o .dist: estimates of the distance between
contigs in ABySS dist format

o .path: lists of contigs to be merged
o .hist: fragment-size histogram of a library
o coverage.hist: k-mer coverage histogram



Case Study

Mountain Pine Beetle
Genome Assembly



Mountain Pine Beetle Genome

Assembly statistics
| contis | scaffolds
n 1,128,463 1,103,221
n:500bp 33,591 11,657
n:N50 4,324 82
N50 (bp) 11,220 541,443
Max (bp) 276,135 3,583,207

Reconstruction (Gb) 201.9 200.4




Assembly As a Hairball

* ABySSv1.2.7

— PET/MPET information disambiguates short contig
extensions (\f\&

Node connectivity* / \)3{;/ /{} >{\§/‘
in\1 2 3 4 5 &+ Pt } /yﬂ ; >
15822 7354 1882 530 ‘47? Q\\/ L
9814 1817 456 »')%D:\ ) VA- %U e
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Zoom-in

P

B O

e Contig 4 is (eventually) followed by Contig 7
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Number of fragments larger than x

Fragment size distribution
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Biotin Read-Through

circularized insert



lllumina’s

Biotin Read-
Through



Triage of MPET Reads

_ Which
one”?

Challenge: _
A B
(—x\\ ’,ﬂ—)
B A
? ,A—_
Information:

e Distances from contig ends
e Base mismatches on read ends

% ¢ Inferred contig orientations
S



Triage of MPET Reads

Read 1 Read 2
< >
B
< pexx > MPET-like
< s
B
-1
> <
B PET-like
XEXXXT
> <
B
< ! > MPET-like
—> < PET-like
B
<€ )I MPET—IIke
> <« PET-like



Scaffolding
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Anchor

e Scrubbing “homozygous” variations

132 bp 110 bp

| sooI bp | 520I bp | | l,32|0 bp : 1,34:1 bp
ot —
M —
= m
i i
P
Indel SNPs
(2,935) (19,715)
&008 www.bcgsc.ca
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Anchor

* Local directional assembly
— scaffold gap filling

(10,499 of 63,986) >S5
— extension
|
%
(20,213 of 53,487) >

3



Quality Assessment

Alignment of 81,047,980 reads
I T T

Mapped 65,624,456 66,949,341 + 1,324,885
(80.97%) (82.60%)

Paired 43,207,118 44,732,320 + 1,525,202
(53.31%) (55.19%)

Single-end 9,536,178 8,846,977 -689,201
(11.77%) (10.92%)

Gene alighments

_ 2,180 ESTs 248 Conserved Genes
Compiete ] partal | Complee
968

1169 212 18

Contigs
Scaffolds 1,481 619 228 5

PO
S



Final Hairball

* ABySSv1.2.7

— Read pairs and inferred distances allow for
scaffolding

%) % o<
| contigs | scaffolds %gg‘{\ / f}%;@
n 1,128,463 1,103,221 y, \%E/V K % ..

) LSRN0
n:500bp 33,591 11,657 4%‘?6\ AT LR o
n:N50 4,324 82 (%{)) ‘\%%\?\;ﬁ (}ZJ o
N50 (bp) 11,220 541,443 f?‘if ./*r! *dfz’g& ﬁ/ﬁz/& S
LA (
Max (bp) 276,135 3,583,207 Ef { %/\/@7 >
Reconstruction (Gb) 201.9 200.4 $‘3\ZY% .4 ki ="
AT A,
&\%\_,

PO
S



ABySS
Version

August 2009 1.0.11 3x GAiix 81,431 1,526 20,755 107.3e6
November 2009 1.0.15 +2x GAiix 104,958 2,333 55,845 195.8e6
February 2010 1.1.1 +4x GAIix 157,081 2,790 136,637 346.3e6
July 2010 1.2.0 +2x GAiix 146,313 3,354 129,008 376.2e6
November 2010 1.2.4 +1x GAiix 100,690 4,474 294,323 268.8e6
+1x GAiix
(MPET)
May 2011 1.2.7 -- 18,660 108,158 1,908,773 201.4e6
July 2011 1.2.7 + 1x HiSeq 11,657 541,443 3,583,207 200.4e6
+1x HiSeq
(MPET)
August 2011 1.2.7 -- 11,523 561,847 3,746,698 206.5e6
&008

3



Future Work

e Clean up the chaff

— Place short contigs on Anchored scaffolds
— Annotate repeat elements

 §
u g 108 bp
W§§ 1085,160 bp 1,085,150 bp 1,085,200 bp 1085220 bp 1,085240 bp
gy 1 | 1 ! L 1 | | | |
254
5)072-chaff.bam Cover v
age
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© T < A
T © A
T G ¢ A
81 Reference TGGATTTTTCTTGAAATTTTTAGCAGTTGTAAAGTGAACTTITCTTCTAAATATTGTIGTAACTTTCAAGTTGCTTCTGGCCCCAGTTGGGGAGCTACGGATTTTTGARA
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Transcriptome Assembly



Transcriptome Sequencing

* RNA-seq protocol
* Brings information on ‘e
how a genome “acts” &

— Expression levels
* Allelic expression

— Present isoforms
— Gene fusions

— Other transcriptional events
— Post-transcriptional RNA editing Rodrigo Goya

RoUSe
S



Transcriptome Assembly

pop bubbles bubble contigs

extend contigs R
é&

C

SE contigs

|

define neighbors

ﬂ}

write
PE contigs

align to genome

: P
‘ IR o N
IR f <]
- - - |
Qo - Transcript models
84 8

Transcriptome assembly is
different from genome
assembly

— varying coverage levels
= varying expression levels

— split assembly paths
= isoforms/splice variants

— small contig sizes
= small product sizes



What Overlap to Choose?

5000 - - - -
- N (thousands)

1000 -

500 -

' N(L=100 bp)

" (thousands)
100+
50 -
10"
6% 30 3 40 45 50
8 k

3



What Overlap to Choose?

* Selection of parameter k depends on read coverage
depth

* Expression levels vary over 5 orders of magnitude

|||||||||||||||||||||||||||||||||||||

1500} TH-

1000} l

Nbr of transcripts

|




i

Selection of k

specific sensitive

k




Assembly Merging

W

_—

Kaq

A X

1.

\ 5
5..8

Ksg Kzg

A X A X

Contigs (1000s)

350+
300|
250/

200/

150

100}

5()|||
L

buried
parent
P untouched

HDHEDQK

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50



Multi-k Assembly

We capture a wide range of expression levels

Gray: all transcripts with a read alignment
Blue: at least 80% of a transcript in a single contig
Red: at least 80% of a transcript is reconstructed

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

1500}

1000 Lt

Nbr of transcripts

500

1 0 1 2 3 4
Log,,(C)



Trans-ABySS

| | A versatile tool for

L= (2k-2) L < (2k-2)

e | |rnees | | ome | @ Transcript reconstruction

o | [FE]  Gene identification
l i:::r;:::;:::z‘:;z::l * InDel and SNV discovery
Genomg sequence

( ) ¢ Chimeric transcript
¥V Vi§  ¥VY .
J J chimerto InDels SNVs d ISCOvVe ry

Annotated genome sequence — G e n e fu S i O n S

— Trans-splicing

Known, novel events

* Expression analysis



Nbr of transcripts Nbr of transcripts

Nbr of transcripts

1500

1000+

500

o

1500

1000+

500}

1500

1000+

500

Transcriptome Assembly

...................

- Trans-ABySS

:__,._,-Z,.HIHH H

-1 0 1 2 3 4

Cufflinks 0.8.3

__,,F,Lﬂ] H

Scripture

:_,._;.HIJJ”HHM ' |

-1

De novo assembly
based on ABySS

Reference-based
assembly based on

TopHat alignments

[Trapnell et al., 2010;
Guttman et al., 2010;
Trapnell et al., 2009]



transcript
model

full match

novel
5 UTR

novel short
3 UTR

novel long
3'UTR

alternative
splicing

skipped
exon

novel
exon

retained
intron

novel intron/
deletion

Events

el

+ chimeric transcripts



Detecting Fusions

112456

I cONA

-ams -
N - .
- - .
- s e

assemble reads

I = contig

E> sparning align contig

reads
to genome

e .
- -=  read pairs
|2 x|

genomic region A genomic region B

(993 8 Lucas Swanson, Readman Chiu and Gordon Robertson

eXe

Conventionally detected
through identifying
translocations in genomes
Assembled transcriptome
contigs span multiple
genes

Break points (usually)
correspond to exon
boundaries

Break points are
supported by

— Spanning reads

— Read pairs linking regions



Detecting Partial Tandem Duplications

112/3/2 345 °

assemble reads

2k-2 [ PE contig
> spanning reads
align contig °
fo genome

E B
LI e B e
ﬁ read pairs

CS) Lucas Swanson, Readman Chiu and Gordon Robertson

s

One or more exons get
repeated in their entirety

Usually coexist with the

wild-type

PTD events are manifested

in a particular contig type

— A short contig with 50/50
split alignment

Break points are supported

by

— Spanning reads

— Read pairs in opposite
orientation



Detecting Internal Tandem Duplications

1 2 34
°
| 1 | cDNA
°
assemble reads
| i | PE contig
Q:E'- spanning reads
align contig
fo genome
E ()
R 2 D R
| e | | |,
- l P ’
= _— read pairs
(9 Lucas Swanson, Readman Chiu and Gordon Robertson

3

Tandem duplications
internal to exons

Contig alignments result
In

— Query gaps

— Contiguous target blocks
Read support on break
point(s)

Aberrant read pair
distances



Performance

 Compared to mapping-based analysis tools
Trans-ABYSS constructs

— as many transcripts
— with better sensitivity and specificity

M
® @ ABySS a1
LN L S S R L S B R R L S L B I B B S S s 5 A o
; Culfflinks
10000 Cufflinks 0.3 ,
g 1 Vs
i o a cripture
8000 Scripture ‘E’ a

1} Q Tophat
R r c
& 6000+ o 0.2+
2 o
§ [ 20
" 4000 o

i Z

r n

2000 0.1
100
O | e e
-2 -1 0 1 2 3 4
Lo C 00— 0
910(©) 0.0 0.1 0.2 0.3 .

(1-SP) re. reference introns

o)
CS)96 8 [Trapnell et al., 2010; Guttman et al., 2010; Trapnell et al., 2009]




Sequence Alignment



LW, http://en.wikipedia.org/wiki/Sequence_alignment_software

Short-Read Sequence Alignment

Name

BFAST

BLASTN

Description

Explicit time and sccuracy tradeoff with s prior accuracy estimstion, supported by indexing the reference sequences. Optimally compresses indexes. Can handle
billions of short reads. Can handle insertions, deletions, SNPs, and color emrors {can map ABI SCLID color space reads). Performs a full Smith Waterman
alignment.

BLAST's nuclectide alignment program, slow and not accurste for short reads, and uses s sequence database (EST, sanger sequence) rather than a reference
genome.

BLAT

Made by Jim Kent. Can handle one mismatch in initial alignment step.

Bowtie

Uses a Burrows-Wheeler transform to create a permanent, reussble index of the genome; 1.2 GB memory footprint for human genome. Aligns more than 25
million lllumina reads in 1 CPU hour. Supports Mag-like and SOAP-like alignment policies (can be run from inside Geneious Server).

BWA

Uses a Burrows-Wheeler transform to create an index of the genome. It's a bit slower than bowtie but allows indels in alignment {can be run from inside Geneious
Server).

CASHX

Quantify and manage large quantities of shortread sequencs data. CASHX pipeline contains a st of tools that can be used together or as independent
modules on their own. This algorithm is very accurate for perfect hits to a reference genome.

CUDA-EC

Short-read alignment emror comrection using GFUs.

drFAST

ELAND

Read mapping slignment software that implements cache obliviousness to minimize main/cache memory transfers like mrFAST and mrsFAST, however
designed for the SOLID sequencing plstform (color space reads). It also returns all possible map locations for improved structural varistion discovery.

Implementad by lllumina. Includes ungaspped alignment with a finite read length.

GNUMAFP

GEM

Accurstely performs gapped slignment of sequence dats obtsined from next-generstion sequencing machines (specifically that of Solexa/lllumina) badito a
genome of any size. Includes sdaptor trimming, SNF calling and Bisulfite sequence analysis.

High-gquslity alignment engine (exhsustive mapping, that is 100% of sensitivity, for any number of substitutions; 1 non-exhaustive indel). Seversl standslone
applications (mapper, split mapper, mappability, and other) provided.

GMAP and
GSNAP

Robust, fast, short-read alignment. GMAFP: longer reads, with multiple indels and splices (see entry above under Genomics analysis); GSNAFP: shorter reads, with
a single indel or up to two splicss per read. Useful for digital gene expression, SNP and indel genotyping. Developed by Thomas Wu at Genentech. Used by the
National Center for Genome Resources (NCGR) in Alpheus.

Geneious
Assembler

Fast, sccurate overlap assembler with the sbility to handle any combination of sequencing technology, read length, any pairing orientations, with any spacer
size for the psiring, with or without s reference genome.

LAST

MAQ

Ungspped slignment that takes into sccount quality scores for esch base (can be run from inside Geneious Server).

mrFAST and

=T AT

Gapped (mrFAST) and ungspped (mrsFAST) alignment software that implements cache cbliviousness to minimize main/cache memory transfers. They are

Ammimmmed b b Hliimmimm mmmiimmmimm olmbbmemn mmed i mmem smbiivm mll mmemilnlo mmmem lmmmbimme bme immmemosmel mbeiimbiiom]l Comeimbimm olimmm s
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Sequence alignment

o Global
o Local
e Glocal



Global alighment

Base-by-base alignment of one sequence to another
allowing for both mismatches and gaps

Example:
G .GTGCTGCCGCC
GLTGTACTGCGCC

Alignment:
G -GTGCTGCCGCC

BEEE R R R
GATGTACTGC-GCC

12 matches of 15 bp = 80% identity



Local Alignment

« Given two sequences, find a matching substring from
each of those two sequences

« Example:

GATGTGCTGCCGCC
TTTGTACTG

TGTGCTG

RN
TGTACTG

o 6 matches of 7 bp = 86% identity



Glocal Alighment

« Given a query sequence and a reference sequence,
identify a substring of the reference sequence that
matches the entirety of the query sequence

o Example:
Reference: "G.TGTGCTGCCGCC . CGT
Query: TTTGT -CTG
GATGTGCTGCCG

NEEEEN
TTTGTACTG

o 6 matches of 12 bp = 50% identity



Criteria for Choosing an Aligner

obal, local or glocal alignment
igning short sequences to long sequences

igning long sequences to long sequences
andling small gaps (insertions and deletions)
andling large gaps (introns)

andling split alignments (chimera)

o Speed and ease of use



Popular Alignment Software

Short reads Long sequence
« BWA « BWA-SW
« GSNAP « GMAP
o Bowtie o BLAT
o TopHat o BLAST
« SOAP  Exonerate

e« MUMmer



Seed and Extend

o For large sequences, an exhaustive alignment
is very slow

o Many aligners start by finding perfect or near
perfect matches to seeds

o The seeding strategy has a large effect on the
sensitivity of the aligner

o €.g. BLAT requires two perfect nearby 11-mer
matches



Memory Use

Hashing Burrows-Wheeler

* Load a representation Transformation
of all the reads and/or (Ferragina-Manzini,
the reference into indexing)
memory * Compress reads and/or
— GSNAP the reference before
— SOAP loading
— mr/mrsFAST — BWA
— KAligner — Bowtie

— Abyss-map
&008



Hashing

TGCATCTCG TT CGGCCCT

TCAACATCGTCATTTACCT =

GCTCATTATCCATACATCT

CGATATGGCCAATCTATTAC

Hashing

Function




Rotate

TGC.CTWK

GC/ .CTST
CL.CTSTG
CTSTGC
CTSTGC
TSTGCC
STGC CT

BW Transform

Sort

$TGC AT
CTSTGEC]
C .CTS$TG
CTSTG
GC .CTYT]
TSTGC|C|
TGC.CT$

Index

H

v QN



Inverse BW Transform

round 3

Index

T
C
G

H

v N

prepend

>

iterate

sort

round 1
ST
C
C
CT
G C
T $
T G

round 2

$T
C
C
CT
GC

T $

T G

round 6

S$TGC
CTS$
C CT
CTS$T
GC C

C
T G
$T
G C
TS

TS$TGC

T G C

CT

G

T
C
$

=

ST
C
C
CT
GC

T $

G C
TS
CT
$T
C
T G

TGC

round 5

$STG

CTSTG

C C
CTS$
G C
TS$T
TGC

C C

TS T
T GC
CTS$
GC
CT

round 4

$TG
CT
C C
CTS$S
G C
TS T
TGC

C
ST
TS
T G
CT
G C

C



Summary

De Novo Assembly Problem De Bruijn Graph

* Load k-mers in memory

A
< DS
%‘%M'{ gf — 2x4 possible extension of every k-mer
\%@Mf ~ag ¢ Checkif there is a “next” k-mer
— O(n) algorithm

CATTGC.. seql
CATTAT.. seq2

\ = D
« Old paradigm:
CATT

- long and non-uniform reads (800bp - 1000bp)
k=5

|
)
{

ABySS-Explorer GUI

Adjacency Graph

* SET assembly result as a graph
— Nodes: overlaps (k-1 bp)
— Edges: contigs

,,,,,,,




Summary

Assembly As a Hairball Scaffold Graph Operations

s ABySSv1.2.7 1. Resolve forks
— PET/MPET information disambiguates short contig
extensions 3 \?i;&\
«w%/j o TR
WEN /RS
Node connectivity* vy F? N
) ‘\/9"{\

3
7354 1882 530 109

J \ ]
% o 1 %,
i o [YAKY A e
in\1 2 4 5 6+ J?( \\\ Ny %(//)f ‘ Il

1 A" gt

s ), M o
2 7354 9814 1817 456 ’SL ) AL =N { J A
3 1882 1817 1074 238 £ % —~R Feisat / ﬁg

AT s \
4 530 456 238 e A /R /AR A ¢
5 109 72 ol N ,f*(‘ V2 &te
6+ 3 L A ,7W%w\r} »

* For contigs > 2 kb p"*\“‘/‘;rg A ko
S “{ ‘\\C'/:\.v/"kr A

45

Biotin Read-Through Anchor

Y * Local directional assembly

o N — scaffold gap filling

I, \\
/ \ > <«
i \ (10,499 of 63,986) > %_
| ! S € <
\ ! > <
\\ ’l .

AN / — extension

<
->
- — . . . —
circularized insert (20,213 of 53,487) -> i




Summary

Trans-ABySS Detecting Fusions
A versatile tool for TZeEE * Conventionally detected
I o\ through identifying

L2 (22) L<(2k2)
contigs jnctn contigs.

translocations in genomes

Assembled transcriptome
contigs span multiple

* Transcript reconstruction

Yrene ) Exon  mare

Manconts | [BSkecion

v

* Gene identification

oo v * InDel and SNV discovery — . gfgae; solnts (usually]
( e ] * Chimeric transcript h correspond to exon
VvV WiV ¥v¢ . boundaries
g discover g
S y . ol "1-143—‘- * Break points are
v Aot gename s — Gene fusions _ - - B l— supported by
l I — Trans-splicing = A - “B ~ Spanning reads
] ) genomiereg genomereaen — Read pairs linking regions
o pol v |« Expression analysis
Lucas Swanson, Readman Chiu and Gordon Robertson
BW Transform www.bcgsc.ca -> software
ABYSS,
Rotate Sort Index Trans- ABySS
V4

sTec di T

GCCTST crsrde c ABySS-Explorer,

C/CTSTG CACTSTG] G

CTSTGC CTSTG AnChor
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