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How does a single genome gives rise to more than 200 different cells?
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Cell identity is determined by its epigenetic state

Histone post-translational Remodelling Histone Non-coding
DNA methylation modification complexes variants RNAs
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Catherine Dulac, Nature 2010



Which controls the genome functional elements

Inactive

Gene bodies

Enhancers Large-scale repression

Zhou, Goren, Berenstein, Nature Reviews | Genetics

Motivation: find the genome state using sequencing data



Sequencing can be used to measure genome state

* Find regions bound to “marked” nucleosomes
— Open promoters (H3K4me3)
— Active enhancers (H3K4me1, H3K27Ac)
— Transcribed regions (Polll, H3K36me3)

— Repressed genes (H3K27me3)
* Find regions bound by transcription factors

* Find expressed transcripts



Goal of session: computational methods to analyze such libraries

We'll cover the 3 main computational challenges of sequence
analysis for counting applications:

e Read mapping (alignment): Placing short reads in the
genome

* Reconstruction: Finding the regions that originated the reads
* Quantification:
* Assigning scores to regions

* Finding regions that are differentially represented
between two or more samples.



ChlIP-Seq: Genome state
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Once sequenced the problem becomes computational
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Overview of the session

We'll cover the 3 main computational challenges of sequence
analysis for counting applications:

e Read mapping (alignment): Placing short reads in the
genome

* Reconstruction: Finding the regions that originated the reads
* Quantification:
* Assigning scores to regions

* Finding regions that are differentially represented
between two or more samples.



Spaced seeds

Reference genome Short read
(> 3 gigabases)
Chr1 ACTCCCGTACTCTAAT
Chr2 s
Chr3 ===
Chr4
Extract seeds
Position N
Position 2
CTGC CGTA AACT AATG
Position 1 Y
ACTG CCGT AAAC TAAT ACTC CCGT ACTC TAAT
ACTG wewsx AAAC wwnw _ l 1 l
wanen COGT w»wwe TAAT SIX seed | 2 I
ACTG w#eas  wanse TAAT pail’s pel’ (—| 3 I
*xxxx  »xxx AAAC TAAT [ I'ead/ | 4 I
ACTG CCGT ##xs s#ax fragment L5 |
*xxx CCGT AAAC »xxx | 6 I

ilndex seed pairs

Seed index
(tens of gigabytes)

ACTG ###s AAAC #wew

Look up each pair
of seeds in index

Hits identify positions
in genome where
spaced seed pair

is found
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ACTG #a#s xsxx TAAT Confirm h

its

*xxx COCGT AAAC #wsw by checking
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T Report alignment to user

Trapnell, Salzberg, Nature Biotechnology 2009



Spaced seed alisnment — Hashing the genome
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Spaced seed aliscnment — Mapping reads
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Mapping quality

What does  ¢,,; = —10log,, P(read is wrongly mapped) mean?

Lets compute the probability the read originated at genome position i

q. accg atag accg aatg

q,: 30 40 25 30 30 20 10 20 40 30 20 30 40 40 30 25

q.[k]=—10log,, P(sequencing error at base k), the PHRED score. Equivalently:

4
P(sequencing error at base k) =10 '

So the probability that a read originates from a given genome position i is:

P(q1G,i)= [] P(g,good call) J] P(gbadcall)= [] P(gbad call)

J match J missmatch j missmatch

In our example
P(q1G,0)=(1-107)°A=107)*(1-107°)*(1-107)* ][ 107107 | =[0.97]*[0.001] = 0.001



Mapping quality

What does  ¢,,, =—10log,, P(read is wrongly mapped) mean?
P(q1G,i)= [] P(g,good call) J] P(gbadcall)= [] P(gbad call)

J match J missmatch j missmatch

But what we need is the posterior probability, the probability that the region
starting at i was sequenced given that we observed the read g:

PlG.HPGEIG) _ PQIG.D)PITG)
P(q1G) 2.Pq1G.))

P(ilG,q)=

Fortunately, there are efficient ways to approximate this probability (see Li,
H genome Research 2008, for example)

qys =—10log,,(1- P 1G,q))



Considerations

* Trade-off between sensitivity, speed and
memory

— Smaller seeds allow for greater mismatches at the
cost of more tries

— Smaller seeds result in a smaller tables (table size
is at most 4%), larger seeds increase speed (less
tries, but more seeds)



a Spaced seeds b Burrows-Wheeler
Reference genome Short read Reference genome  Short read
(> 3 gigabases) (> 3 gigabases)
Chr1 e ACTCCCGTACTCTAAT Chr1 e ACTCCCGTACTCTAAT
Chr2 s Chr2 s
Chr3 m== Chr3 m==
Chr4 Chr4
Concatenate into
Extract seeds single string
N
- “ \p J
Po.s.ltlon Al Burrows-Wheeler
Position 2 transform and indexing
CTGC CGTA AACT AATG
- Bowtie index 3
Position 1 Y (~2 gigabytes) ; Y
ACTG CCGT AAAC TAAT ACTC CCGT ACTC TAAT N ACTCCCGTACTCTAAT
ACTG wewx AAAC wwaw _ l 1 I H T
wasx COGT weww TAAT Six seed | 2 | Look up AT
ACTG ##as sese TAAT pairsper —— 3 | ‘suffixes’ AAT
=22 x2xs AAAC TAAT [ read/ l 4 I Of read
ACTG CCGT #sxs  sass fragment LS|
*xxx CCGT AAAC =#xx | 6 I
ACTCCCGTACTCTAAT
Index seed pairs Hits identify
positions in
Seed index genome where H
(tens of gigabytes) Look up each pair  read s found =

ACTG #ews AAAC swww

*xxx COGT »xxx TAATt
ACTG #»xxx  »xxx TAAT
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AN

—

of seeds in index

Hits identify positions
in genome where
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is found

Confirm hits
by checking
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| - O
T Report alignment to user €«
Trapnell, Salzberg, Nature Biotechnology 2009
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——————




Considerations

 BWT-based algorithms rely on perfect matches for speed

 When dealing with mismatches, algorithms “backtrack” when
the alignment extension fails.

* Backtracking is expensive
* Asread length increases novel algorithms are required
 Smaller seeds result in a smaller tables (table size is at most

4K), so larger seeds increase speed (less fishing but more
seeds



Short read mapping software for ChIP-Seq
Seed-extend BWA

Short indels Use base qual Use Base qual

Maq No YES BWA YES
BFAST Yes NO Bowtie NO
GASSST Yes NO Soap?2 NO
RMAP Yes YES Stampy” YES
SeqMap Yes NO
SHRiIMP Yes NO

*Stampy is a hybrid approach which first uses BWA to map reads then uses seed-
extend only to reads not mapped by BWA



RNA-Seq: Genome output
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Jeffrey A. Martin and Zhong Wang,
Nature reviews genetics, Oct 2011



RNA-Seq read mapping is more complex

RNA (1000 b) ——

AAAAAAA

Genome
(100000 bp)

100s bp  10s kb

RNA-Seq reads can be spliced, and spliced reads are most informative



Mapping RNA-Seq reads: Seed-extend spliced alignment

&  Seed matching

EEEEEE L L1 kmer Seeds

L

J, Seed extend



Mapping RNA-Seq reads: Exon-first spliced alignment




Short read mapping software for RNA-Seq

Seed-extend

Short indels

Use base qual

Exon-first

Use base qual

GSNAP No NO MapSplice NO
QPALMA Yes NO SpliceMap NO
BLAT Yes NO TopHat NO

Exon-first alignments will map contiguous first at the expense of spliced hits




Exon-first aligners are faster but at cost

/7
Wseudogene

How do we visualize the results of these programs



IGV: Integrative Genomics Viewer | i

Viewer

A desktop application

for the visualization and interactive exploration

of genomic data
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Visualizing read alignments with |GV
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Visualizing read alignments with IGV — RNASeq
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Visualizing read alignments with IGVY — RNASeq close-up
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Visualizing read alignments with IGV — zooming out
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How can we identify regions enriched in sequencing reads?



Overview of the session

The 3 main computational challenges of sequence analysis for
counting applications:

* Read mapping: Placing short reads in the genome

* Reconstruction: Finding the regions that originate the reads

* Quantification:
* Assigning scores to regions

* Finding regions that are differentially represented
between two or more samples.



Chromatin domains demarcate interesting surprises in the transcriptome
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How can we identify these chromatin marks and the genes within!?

H3K4me3 | Short modification

HesdalTies Long modification

RNA-Seq

|1 “_ Discontinuous data
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Scripture is a method to solve this general question



Our approach

|I | Permutation
s L dll‘ .
[ Poisson
s a=0.05
Z.
g, S
d ‘ ‘ ‘ H 0 5 10 cou:‘Sts 20 25 30

We have an efficient way to compute read count p-values ...



The genome is big, many things happen by chance

Nominal P-Value

Genome (3 billion bases)

Identified

Enriched

Expected ~150,000,000 bases

We need to correct for multiple hypothesis testing



Bonferroni correction is way to conservative

FWER-Bonferroni

Genome (3 billion bases)

Correction factor 3,000,000,000

Bonferroni corrects the number of hits but misses many true hits because
its too conservative - How do we get more power?



Controlling FWER

Max Count distribution
a=0.05 a=0.05

Density
0.15 0.20 0.25 0.30!
1 1 ]

0.10
|

0.05
1

0.00
[l

[ T T T T
0 5 10 15 20

Counts

Count distribution (Poisson)

25

30

Given a region of size w and an observed read
count n. What is the probability that one or
more of the 3x10° regions of size w has read
count >= n under the null distribution?

We could go back to our permutations and
compute an FWER: max of the genome-wide
distributions of same sized region)—>

but really really really slow!!!



Scan distribution, an old problem

* Is the observed number of read counts over our region of interest high?
* Given a set of Geiger counts across a region find clusters of high radioactivity
* Are there time intervals where assembly line errors are high?

Density

0.05 0.10 0.15 0.20 0.25 0.30

0.00

a=0.05 a=0.05

|

15
Counts

Thankfully, there is a distribution called the
Scan Distribution which computes a closed
form for this distribution.

ACCOUNTS for dependency of overlapping
windows thus more powerful!



Scan distribution for a Poisson process

The probability of observing k reads on a window of size w in a genome of size L
given a total of N reads can be approximated by (Alm 1983):

P(k|Aw,N,L) = 1 — F,(k — 1| \w)e” AN —w) P(k—1]Aw)

where

P(k —1|\w) is the Poisson probability of observing k — 1 counts given an
expected count of Aw

and

F,(k— 1| \w) is the Poisson probability of observing k — 1 or fewer counts
given an expectation of Aw reads

The scan distribution gives a computationally very efficient way to
estimate the FWER



FWER-Scan Statistics

Genome (3 billion bases)

By utilizing the dependency of overlapping windows we have greater
power, while still controlling the same genome-wide false positive rate.



Segmentation method for contiguous regions

Example : Polll ChIP

Rela

Significant windows using the FWER
corrected p-value

But, which window?



We use multiple windows

* Small windows detect small punctuate regions.

* Longer windows can detect regions of moderate enrichment
over long spans.

* |n practice we scan different windows, finding significant ones
in each scan.

* In practice, it helps to use some prior information in picking
the windows although globally it might be ok.



Applying Scripture to a variety of ChIP-Seq data

200, 500 & 1000 bp windows 100 bp windows



Application of scripture to mouse chromatin state maps

Typical signature of an expressed gene

K4me3

' LI Ll . ] "I L .I “ll "lll L0 L m ll

Identifed
* ~1500 lincRNAs

". » Conserved
* Noncoding
e * Robustly expressed
lincRNA

Mitch Guttman



Can we identify enriched regions across different data types!?

H3K4me3 l Short modification ‘/

H3K36me3
Long modification \/

Using chromatin signatures we discovered hundreds of putative genes.
What is their structure?

RNA-Seq

IJ“

I AN SN 5
I 17 7

Discontinuous data: RNA-Seq to find gene
structures for this gene-like regions




Scripture for RNA-Seq:
Extending segmentation to discontiguous regions



The transcript reconstruction problem as a segmentation problem

RNA (1000 b) —_——— =

AAAAAAA

Genome
(100000 bp)

100s bp  10s kb

Challenges:

Genes exist at many different expression levels, spanning several orders of
magnitude.

Reads originate from both mature mRNA (exons) and immature mRNA (introns)
and it can be problematic to distinguish between them.

Reads are short and genes can have many isoforms making it challenging to
determine which isoform produced each read.



Scripture: A statistical genome-guided transcriptome reconstruction

H3K4me3

H3K36me3

NPV VORI Y T okl .l

Statistical segmentation of chromatin modifications uses continuity of
segments to increase power for interval detection

RNA-Seq

If we know the connectivity of fragments, we can increase our power to detect
transcripts



Longer (76) reads provide increased number of junction reads
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Exon junction spanning reads provide the connectivity information.



The power of spliced alignments

Protein coding gene with 2 isoforms
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Statistical reconstruction of the transcriptome

Step 1: Align Reads to the genome allowing gaps flanked by splice sites
genome

Step 2: Build an oriented connectivity graph using every spliced alignment
and orienting edges using the flanking splicing motifs

The “connectivity graph” connects all bases that are directly connected within the
transcriptome



Statistical reconstruction of the transcriptome

Step 3: Identify “segments” across the graph

v\t - —

Step 4: Find significant segments

M
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Can we identify enriched regions across different data types!?

H3K4me3 L Short modification ‘/
H3K36me3

Long modification \/
RNA-Seq

Discontinuous data \/

Are we really sure reconstructions are complete?



RNA-Seq data is incomplete for comprehensive annotation
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Library construction can help provide more information. More on this later



Applying scripture: Annotating the mouse transcriptome



Reconstructing the transcriptome of mouse cell types

SCRIPTURE
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Sensitivity across expression levels
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Even at low expression (20t percentile), we have:
average coverage of transcript is ~95% and 60% have full coverage



Sensitivity at low expression levels improves with depth

Fraction fully reconstructed by coverage quantile

8x increased depth
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Coverage percentile
Mean coverage

As coverage increases we are able to fully reconstruct a larger percentage of
known protein-coding genes



Novel variation in protein-coding genes
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Novel variation in protein-coding genes
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RNA-Seq

H3K4me3
oL L e ES
Reconstruction
Pt BRI W (T W | )
lﬁnm:)tation MEF
poes | | \
MLF
Novel 3’ End NPC
RNA-Seq j ll
B i 1 11 1 | ES RNA-Seq
Reconstruction +—++H——~+—+ + — t =1
: - . B I R 1 T T
P EEE - Reconstruction
"y -
] - -
Annotation
. I | r 1 | -
Novel Coding Exons Katnar2 B Pias2

RNA-Seq
[0 I 0 11 SR N RO I Y SV [ I .

Reconstruction

Annotation

Tte13 o

~85% overlap K4me3



Novel variation in protein-coding genes

Novel 5’ Start Sites

RNA-Seq
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Novel variation in protein-coding genes
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What about novel genes!?

Class |: Overlapping ncRNA

Gene 2

i Overlapping ncRNA E

Gene 1

Class 2: Large Intergenic ncRNA (lincRNA)

; Gene 2
Gene 1 ! lincRNA J
Class 3: Novel protein-coding genes
— .
Novel

Protein Coding



Class |: Overlapping ncRNA

Overlapping ncRNA ES cells 3 cell types
Chr1 Overlapping ncRNA ADAM23
S —— e 494 kb
‘ 104 kb \\\‘h““-
RNA.Seq} - | an 201 446
Reconstruction
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Overlapping ncRNAs: Assessing their evolutionary conservation
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Overlapping ncRNAs show little evolutionary conservation



What about novel genes!?

Class |: Overlapping ncRNA

Gene 2

i Overlapping ncRNA E

Gene 1

Class 2: Large Intergenic ncRNA (lincRNA)
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Class 3: Novel protein-coding genes
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Class 2: Intergenic ncRNA (lincRNA)

ES cells
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lincRNAs: Comparison to K4-K36

Chromatin Approach

~—Well seperated— ~—Well seperated—

80% have
reconstructions

RNA-Seq First Approach

85% have
chromatin

too small
(<5Kb)

lower enrichments

—il—al - i

RNA-Seq reconstruction and chromatin signature synergize
to identify lincRNAs



lincRNAs: How do we know they are non-coding?

ORF Length CSF (ORF Conservation)
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>95% do not encode proteins



lincRNAs: Assessing their evolutionary conservation

Mouse
Rat
GuineaPi g
Rabbi t
Human
Chimp
Rhesus
Orangutan
Marmoset
Bushbaby
TreeShrew
Shrew

Cat

Horse

Cow
Armadillo
Elephant
Tenrec

GTTCCAATTTGGCTTGAATTT

EE

Hedgehog -
Dog

-

Cumulative frequency

Rat
GuineaPi g
A T Rabbi t
T .
T Chimp
T.C Rhesus .
T i Orangutan . .
T.C Marmoset
G G Bushbaby
G Shrew
SC oL Hedgehog .
G Dog
G . G . Cat
C Horse
Cow
Armadillo
Elephant
Tenrec
Conserved
1.0 =
0.8 —
06 - Protein coding
: Introns
04 <
0.2 -
0.0 -
[ T T T ]
0.0 0.5 1.0 15 20
more conserved less conserved
Omega

High < Low

Conservation

Human . .

Mouse A C A C

A

PEEPPOP A4

TA

)

0OOOOO>

ar6-
- on

B

T

B CEEEEEE ]

G TCAGA

T .
G T
GTCT
GT GT
G T
GT - -
GTCT
G A A
G T
.
G cT
G T
G TT
A cT

Neutral

-“0o ., 0006

anon

R

Or»>

T

-n

QOO0 OP000O0G



What about novel coding genes!?

Class |: Overlapping ncRNA

Gene 2

i Overlapping ncRNA E

Gene 1

Class 2: Large Intergenic ncRNA (lincRNA)

; Gene 2
Gene 1 ! lincRNA J
Class 3: Novel protein-coding genes
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Distinguishing coding and non-coding genes: Comparative analysis

Synonymous -::- Non-synonymous

Coding region

SIRT1 XIST Tal

> proteln coding gene) (ncRNA) (small peptides)
£
o
° llm i
o Y
g me m m*mm NMN MMWM WW‘N‘W" Ty
8
]
z
\/ —
ORF length = 576 aa Max ORF length = 172 aa ORF length = 11 aa

- [l

=32 aa

~40 novel protein-coding genes

Mike Linn, Manolis Kelis



Other transcript reconstruction methods



Transcriptome reconstruction main approaches
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Direct assembly

a Generate all substrings of length k from the reads

BGEGE ETeTT GGTEG
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Nature Reviews | Genetics



Pros and cons of each approach

* Transcript assembly methods are the obvious choice for
organisms without a reference sequence.

* Genome-guided approaches are ideal for annotating high-
qguality genomes and expanding the catalog of expressed
transcripts and comparing transcriptomes of different cell
types or conditions.

* Hybrid approaches for lesser quality or transcriptomes that
underwent major rearrangements, such as in cancer cell.

* More than 1000 fold variability in expression leves makes
assembly a harder problem for transcriptome assembly
compared with regular genome assembly.

* Genome guided methods are very sensitive to alighment
artifacts.



RNA-Seq transcript reconstruction software

Assembly Genome

Guided

Oasis Cufflinks

Trans-ABySS Scripture

Trinity




Differences between Cufflinks and Scripture

e Scripture was designed with annotation in mind. It reports all
possible transcripts that are significantly expressed given the
aligned data (Maximum sensitivity).

» Cuffllinks was designed with quantification in mind. It limits
reported isoforms to the minimal number that explains the
data (Maximum precision).



Maximum sensitivity vs. maximal precision
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Differences between Cufflinks and Scripture - Example
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Cufflinks
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Comparing reconstructions

Total Genes fully Mean isoforms Mean
Memory reconstructed per fragments
reconstruction per known

annotation

Cufflinks 10 14G 5,994 1.2 1.4
Scripture 16 35G 6,221 1.6 1.3
Trans- Abyss 650 120 G* 3,330 4.7 2.6

Number of
fragments
predicted

159,856

61,922

3,117,238

Many of the bogus locus and isoforms are due to alignment artifacts



Why so many isoforms

Annotation ————t—————t— 4ttt —

Reconstructions

REREEEER:

Every such splicing event or alignment
artifact doubles the number of isoforms
reported

il




Reconstruction comparison

Percent of annotated Refseq genes fully
reconstructed per expression quantile

B Scripture
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Alignment revisited — spliced alignment is still work in
progress



Exon-first aligners are faster but at cost

/7
Wseudogene

Alignment artifacts can also decrease sensitivity



Missing spliced reads for highly expressed genes
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Can more sensitive alignments overcome this problem?

* Use gapped aligners (e.g. BLAT) to map reads
— Align all reads with BLAT

— Filter hits and build candidate junction “database” from BLAT hits (Scripture
light).

— Use a short read aligner (Bowtie) to map reads against the connectivity graph
inferred transcriptome

— Map transcriptome alignments to the genome

Reads




Many junctions can be rescued
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ScriptAlign: Can increase alisnment across junctions

25,000,000

20,000,000

15,000,000
® TopHat

10,000,000 - M ScriptAlign

5,000,000 -

0 —

Spliced Reads

““Map first’”’ reconstruction approaches directly benefit with mapping improvements
We even get more uniquely aligned reads (not just spliced reads)



Overview of the session

The 3 main computational challenges of sequence analysis for
counting applications:

* Read mapping: Placing short reads in the genome

* Reconstruction: Finding the regions that originate the reads

e Quantification:

* Assigning scores to regions

* Finding regions that are differentially represented
between two or more samples.



Quantification: only one isoform

1 I — 2 IF—— §
Low High . S _ S
- 3 E
=== == === T--FI == ad
3 I N 4 I—
Short transcript Long transcript 1 2 3 4 1 2 3 4
RPKM — 10° #reads Reads per kilobase of exonic

length x TotalReads sequence per million mapped reads

(Mortazavi et al Nature methods 2008)

*Fragmentation of transcripts results in length bias: longer transcripts have higher
counts

*Different experiments have different yields. Normalization may be required for cross
lane comparisons

This is all good when genes have one isoform.



Quantification: gene expression with multiple isoforms

Condition 2 Lo T e T e emmmm e T e T e memmmeeTL T
N 1soform 1
] Isoform 2

Exon intersection method Transcript expression method

Exon intersection model: Score constituent exons
Exon union model: Score the the “merged” transcript

Transcript expression model: Assign reads uniquely to
different isoforms. Not a trivial problem!



Quantification: read assighment method

---——— - - - - |soform 1

- — : - Isoform 2

Transcript expression method

25% (-~ -~ 7"

Likelihood of isoform 2

0% 259% 100% Isoform 1 Isoform 2



Quantification with multiple isoforms

_ _ I
I—1I—
_ _

How do we define the gene expression?
How do we compute the expression of each isoform?



Computing gene expression

Ideal: RPKM of the - mmmm
constitutive reads = ==

(Neuma, Alexa-Seq, i -

Scripture)



Computing gene expression — isoform deconvolution




Computing gene expression — isoform deconvolution

ey -
T -
T T — e |
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If we knew the origin of the reads we could compute each isoform’s expression.
The gene’s expression would be the sum of the expression of all its isoforms.

E = RPKM, + RPKM, + RPKM,



Programs to measure transcript expression

Implemented method

Alexa-seq

Gene expression by constitutive exons

ERANGE

Gene expression by using all Exons

Scripture

Gene expression by constitutive exons

Cufflinks

Transcript deconvolution by solving the
maximum likelihood problem

MISO

Transcript deconvolution by solving the
maximum likelihood problem

RSEM

Transcript deconvolution by solving the
maximum likelihood problem




Impact of library construction methods



Paired-end sequencing impact in analysis

5 (5

@lc1 © ©
}
I

Adapted from the Helicos website



Paired-end reads are easier to associate to isoforms

PL punememssssssssnnsssnnan,
R Ty
Isoform 1 I I _
Isoform 2 [ { -
Isoform 3 I -

Paired ends increase isoform deconvolution confidence
* P, originates from isoform 1 or 2 but not 3.
* P, and P, originate from isoform 1

Do paired-end reads also help identifying reads originating in isoform 3?



We can estimate the insert size distribution
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. and use it for probabilistic read assicnment
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And improve quantification

R |

l Single-end estimate, ¥,
Fragmentation and amplification

mRNA fragments sampled in proportion

to isoform length and expression level ¥ C Insert variability:
l - g=d\it
QD
9 <
Sequencing g
Short reads generated from fragments B
=
)
- g
Alignment 3 Insert length (nt)
Reads aligned to genome and splice
junctions

Paired-end estimate, ¥y, 50

Incorporation of paired ends

Assign reads to isoforms using insert
length distribution

--- Intron
1 Skipped exon
mm— Constitutive exons

Inclusion reads

=
—
—_
- —_—
Constitutive ™m= Constitutive
reads ——  reads
Exclusion
reads

Katz et al Nature Methods 2008



Quantification with paired ends (FPKM)

Cufflinks leverages paired ends to quantify fragments rather than raw reads. The

extension of RPKM.

9 #reads
RPKM =10
length X Total Re ads
Fragments per kilobase of exonic
FPKM =10° # fragments sequence per million mapped
fragments

length X TotalFragments
(Trapnel et al Nature Biotechnology 2010)

paired-end reads improve quantification accuracy



Paired-end improve reconstructions
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Paired-end data complements the connectivity graph



t4.SCRPTR.chr1.375
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Or split regions
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Summary

 Paired-end reads are now routine in lllumina and SOLiD
sequencers.

* Paired end alignment is supported by most short read aligners
* Transcript quantification depends heavily in paired-end data

* Transcript reconstruction is greatly improved when using
paired-ends (work in progress)



Giving orientation to transcripts — Strand specific libraries

Scripture relies on splice motifs to orient transcripts. It orients every edge in the
connectivity graph.

Y LY

Connectivity [ | (| 6T | 6T IGT I
graph I ol I 1 I I I AG AG

?

Single exon genes are left unoriented



Strand specific library construction results in oriented reads.

lllumina RNA ligation mRNA

+ * 3" preaden
3’ preadenylated adaptors and i Ligation adaptor Sequence depends
5" adaptors ligated sequentially No gel size selection

, 5" adaptor + on the adapters
to RNA without cleanup l Ligation .
(S. Luo and G. Schroth, No gel size selection ligated
personal communication)
oo S d-strand synthesis
econd-stra y i .
dUTP second strand'® with dUTP The second strand is
-u UU = UU =
Second-strand synthesis with dUTP; destroyed, thus the cDNA
remove ‘U’s after adaptor ligation v dis al .
and size selection ~ } USER P’ read IS always In reverse
/- = = orientation to the RNA
e

Adapted from Levine et al Nature Methods

Scripture & Cufflinks allow the user to specify the orientation of the reads.



The libraries we will work with are strand sepcific

4.SCRPTR.chr1.225



Summary

* Several methods now exist to build strand sepecific RNA-Seq
libraries.

 Quantification methods support strand specific libraries. For
example Scripture will compute expression on both strand if
desired.



Overview of the session

The 3 main computational challenges of sequence analysis for
counting applications:

* Read mapping: Placing short reads in the genome
* Reconstruction: Finding the regions that originate the reads
* Quantification:

* Assigning scores to regions

* Finding regions that are differentially represented
between two or more samples.




The problem.

* Finding genes that have different expression between two or more
conditions.

* Find gene with isoforms expressed at different levels between two
or more conditions.

* Find differentially used slicing events
* Find alternatively used transcription start sites

* Find alternatively used 3’ UTRs



Differential gene expression using RNA-Seq

I
Condition ]| — — — — — — — — Ll
- Condition 2
Condition 1 Condition 2
@ Condition 1 mEmm Condition 1
5 —= Condition 2 > —= Condition 2
2 g
< o
) o
Expression estimate Expression estimator value

*(Normalized) read counts €< -2 Hybridization intensity



Differential analysis strategies

* Use read counts
— Standard Fisher exact (no preplicates) or X’ test

(replicates)

Condition A Condition B

Gene A reads n ny

d
Rest of reads N N,

a

— Model read counts (Poisson, negative binomial)
and test whether models are distinct

e Use a summary statistic and “standard” array
analysis methods.



Cufflinks differential issoform ussage

Let a gene G have n isoforms and let p,, ..., p, the estimated fraction of expression of
each isoform.

Call this a the isoform expression distribution P for G

Given two samples the differential isoform usage amounts to determine whether
H,: P, =P,or H,: P, |=P,are true.

To compare distributions Cufflinks utilizes an information content based metric of how
different two distributions are called the Jensen-Shannon divergence:

p1+-.-+pm> X HG)

m

JS(pl,...,pm):H< :

m

H(p) == pilogp;.
1=1

The square root of the JS distributes normal.



RNA-Seq differential expression software

Underlying model Notes

DegSeq Normal. Mean and Works directly from
variance estimated from reference transcriptome
replicates and read alignment

EdgeR Negative Bionomial Gene read counts table

DESeq Poisson Gene read counts table

Myrna Empirical Sequence reads and

reference transcriptome



Digital gene expression

If all you want is the expression level

Easy
* Fragment RNA (heat)

* PolyA select -> RT -> 2" strand

Amplify
* Seqguence

Cheap
RNASeq requires 100 mill reads.

DGE requires ~6-10 mill reads.

No size bias

Mouse ES cells

RNASeq

Pou5f1
-l

ad ll
DGE - Ad

RNASeq

Replicates will be natural and analysis standard



| hope this was useful

* Analysis methods:
— Mapping for RNA-Seq and ChlP-seq
— Transcript reconstruction with scripture and other methods
— Transcript quantification with RNA-Seq
* Applications:
— Reconstruction of the mouse ES transcriptiome

— Integrative approach of the innate immune pathogen
response transcriptional network.
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