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Why Does Study Design Matter?

Question:
“What should | use to do this analysis?”
Answer:

“A data set with enough power.”



What Do We Mean by Power?

* Technical: what is the chance that my
experiment could detect a real event/effect/
difference in my samples? (at a given FP rate)

* Traditional: do | have enough samples to see
this difference?

— Typically the assay gives a result for most samples

* Sequencing: am | generating enough sequence
for each sample to get a result?



Example: Genotyping

* Genotyping chip:
— ~95% samples work
— ~99% loci work (for well-designed chip)
— ~99% vield of calls per sample

* Could also genotype by sequencing

— All of those parameters would be dependent on
coverage



What Really Happens on the Chip

The chip is binding DNA to features and
“counting” it by fluorescence intensity

If you don’t get enough intensity, the chip
calling software won’t make a call

You never see those intermediate results,
which are estimates of single molecular events

If your chip protocol wants 1 pg of DNA and
you use 0.1 pg, you'd probably get nothing



What Happens with Sequencing

You get a pile of reads across your SNP

This is a precise count of alleles observed

You need enough counts to know what’s there
The counts will vary by site

If your protocol says you need 50 reads per
site, and you have 5, you could still make
some calls, but they wouldn’t be much better
than the chip did on 10% of the needed DNA
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Global Considerations

What is the question?
What kind of sequencing experiment is this?

What other resources are available?
How good does the answer need to be?
What technological factors are limiting?
Are there other ways to do this?



What Is the Question?

* What scientific result do you want?

* |sthere an hypothesis you want to test?

— Early sequencing was “hypothesis free”
 The genome was the goal

— Now, it is affordable to sequence for a specific aim

 What sequence do you need for that aim?

* Understanding this shapes many decisions in
designing the experiment



What Kind of Sequencing?

 There are many different sequencing designs
— You may need more than one!
 The kind of sequencing design or designs you
use will influence or be influenced by:
— Goal(s) of the experiment
— Available genetic materials
— Existing “omics” resources
— Sequencing capacity/cost
— Analytic methods



What Resources Exist?

* All sequencing analyses except de novo
assembly require a reference genome

— If a suitable reference doesn’t already exist, de
novo assembly will be required

e Other resources may be useful if they exist
— Gene annotations
— Variation calls (divergence data for inter-species)
— Chip data for SNPs, expression, ChlP
— Genetic or other maps



Using a Reference Genome

* How good is the reference?
— Completeness
— Accuracy

 How representative is it of your genome(s)?

— Sequence absent from the reference won’t align

— Using a diverged reference (more than a few %)
e Requires more sensitive (time consuming) algorithms
» Results in loss of alignability (reads are not placed)
* Is worse if the divergence is due to insertion/deletion



How Good an Answer?

* |syour sequencing result the final answer, or
just a starting point for something else?

 What are the costs of false positives and false
negatives relative to the cost of the sequence?

* For example, identifying single base variants

might have very different needs depending on
the project



Case 1: Tumor/normal Sequencing

Difficult problem, requires very low false
positives and false negatives

Trying to find somatic events (~1-2 / Mbp)
FP rate approaching 1 / Mbp swamps signals
FN runs the risk of missing real tumor variants

Every sample is unique, so the cost of
following up (orthogonal resequencing,
custom genotyping) is high



Case 2: Microbial Evolution

e Sequence an evolved (e.g., drug resistant)
microbe to find functional changes

* Low tolerance for false negatives
— Should be able to find a variant in a small genome

* Relatively high tolerance for false positives

— Functional mutation is most likely a coding
change, so triage of calls for follow up is effective



Case 3: Vertebrate Evolution

* Sequencing to find signatures of selection

* Relatively high tolerance for false negatives
— Specific sites of variation are not important

* Low tolerance for false positives

— Background noise from sequencing error can
obscure the signature of selective sweeps



Case 4: SNPs for Model System

Sequencing multiple strains or individuals
from a model organism to design a SNP array

High tolerance for both FN and FP

— Experiment is just a first pass

Only need sufficient SNPs to design the array
Array design and testing will identify FPs

— Rate of SNPs failing to work on the array will likely
exceed the false positives from discovery



What Factors are Limiting?

* Material/biological
— Sufficient samples of good quality and quantity

 Sample Prep

— Can libraries be made from your material?
* Sequencing

— Read length

— Pairing

— Number of reads

— Complexity of library



Is There a Better Way?

* Many things can be done by sequencing

* Other options exist
— Gel assays
— Microarrays
— Capillary sequencing
— A different kind of sequencing experiment



Case 1: Association Study

* Could sequence every genome
* For organisms with existing chips/arrays
— Could run more samples on array

— Could follow up with custom local array
— Use sequencing once you have a target

e Without existing resource, might be better off
to generate that resource first
— Cheaper for large samples even with start cost



Case 2: SNPs for Model System

* Could generate light (5-10x) coverage of
several individuals/isolates to identify SNPs

— Can only call good SNPs at deeply covered sites

* Could generate light (<0.1x) coverage of
several individuals by capillary shotgun

— SNPs can be accurately called from a single read
— Likely to yield a variant every 2 reads

* Total cost may be less by capillary
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General Technology Issues

Sample prep

PCR artifacts

Pooling and barcoding
Types of read data

Primers, adapters, and tags
True single molecule
Aligning reads

Controls and replicates



Generic Sample Prep

l — Extracted/prepared

* Fragment and size (?)
— Shear, size select

l — 300-600 (<1000) bp
* Add adapters
l — Generic ends
_____________ - * Amplify (!)

— Usually needed

Select single molecules
I ‘ ‘ ‘ ‘ — Amplify in cluster/bead




Fragment Size

Most sequencers want input 300-600 bp
— Long links are a special process

For longer fragments, shear first, then adapter
— Genomic, cDNA

Short, “wrong size”: concatenate then shear

— SAGE-type DGE, some exon targeting

Right size amplified products (PCR) can be
tailed directly with adapters



PCR Artifacts

Most libraries see PCR during prep
— Targeting or amplification of adaptered fragments

After PCR, there is a single molecule stage

— Errors of PCR will be “true” bases at this step
* Undetectable by quality metrics as errors

* Rate can be quite high, e.g. 1/3000
— PCR error 1/100,000 x 30 cycles ~ 1/3000

Chimeric sequences (esp. in targeted designs)
Duplicated sequences



PCR Bias

* Most PCR protocols work best for ~50% GC

* Extreme GC sequences are underrepresented
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Pooling with Barcoding

Unique DNA tags identify samples
Allows multiple distinct samples on one run
Advantages

— Reduced cost of sequencing for small samples
— Analysis is identical to unpooled data

Disadvantages
— Some small throughput loss due to barcode fails
— Increased per sample cost for library construction



Pooling without Barcoding

Mix input DNA without identification
No way to definitively separate afterwards
Advantages

— Single library prep for a number of samples
— No yield lost to barcodes

Disadvantages

— Loss of all individual associations

— No check on accuracy of pooling



Types of Read Data

* Fragment reads
— Single read in one direction from a fragment

___________________ >

* Paired end reads
— Two reads from either of the same fragment

— Pointing towards each other




Types of Read Data

 Mate Pair Reads (Jumping Libraries)
— Long fragment of DNA is circularized
— Junction is captured (e.g., by biotinylated adapter)
— Remainder is cleaved (many methods)
— Ends are read
— Read orientations depend on the exact method




Why Different Library Types?

* Fragments
— Fastest runs (one read per fragment), less cost
— Some technologies only make one read

* Paired reads
— More data per fragment
— Help with assembly and alignment

— Same library steps as fragments, more data



Why Different Library Types?

* Mate Pairs (Jumping Libraries)
— Paired end separation limited by fragment size
— Some platforms can’t read second strand
— Only way to make long jumps
— Long jumps are very useful

* Assembly and alignment across repeats and duplication
* |dentification of large structural variants

* Phasing of small variants

— Requires much more input DNA than paired ends



Primers, Adapters, and Tags

Not every base you sequence is useful

Primers will be present if you PCR-targeted

— Sequence from primers does not represent target
— Variation seen (or not) under primers is not real
— Overlapping products will allow analysis

Short fragments may read through to adapter

Custom barcodes or other tags
— Most vendor tags will be removed automatically



True Single Molecule

Most high throughput methods isolate a single
molecule, but sequence amplified clusters

A few technologies are true single molecule

True single molecule techniques are less
subject to amplification-related bias

Single molecule techniques have no
redundancy, so higher error rates

Most still require abundant starting material



Aligning Reads

* Aligning long sequences is relatively easy
— Abundant information to predict true alignments

— Can trim sequences based on alignment

* Short reads are harder
— Less information per read
— Often need full length alignments
— For diverged sequences, may not match at all
— Many, many more sequences, so speed matters



Controls and Replicates

You can publish next gen analyses without!
They can be useful
Resequencing the reference

— |If DNA (or appropriate input) exists for reference
individual, sequence will control for alignability

Unenriched samples (for ChIP-Seq)

Replicates (for RNA-Seq)
— Variance of read depth is larger than Normal
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Sequencing Experiment Types

Resequencing/variant discovery

Targeted resequencing

De novo assembly

RNA-Seq

ChlP-Seq

Metagenomics

Sequencing as an assay for something else



Resequencing Design

* Requires a genome!
— Quality of the resequencing bounded by genome

* Considerations:
— Alignability
— Coverage
— Read length
— Read pairing
 What do you want to find?



Alignability

Not all of the reference is accessible

Parts are too similar for unique alignments
— Duplications, recent repeats, gene families

Longer reads and pairing increase alignability
— Example, for human genome resequencing:

| Nopairing | 400 bp pair _| 6000 bp pair

36 bp read 85% 96%
100 bp read 93% 97% 98%

Adapted from The 1000 Genomes Project Consortium, Nature (2010)



Coverage for SNP Finding

Type of Experiment Coverage Required

Haploid SNPs/divergence > 10 x
Diploid SNPs/divergence > 30 x
Aneuploid/somatic mutations > 50 x
Continuous variation > 200 x

* Why do we need so much?



Example: Haploid SNPs

Know there is only one base at each locus
Make majority call
How likely is a correct majority call?

— Assume uniform 1% error rate

Depth at Locus % Correct Majority % No Majority % Error Majority

99.000 0.00 1.00
2 98.010 1.98 0.01
3 99.970 0.00 0.03
4 99.941 0.06 <0.001

5 99.999 0.00



Adjusting for Random Sampling

Probabilities if reads randomly distributed:

62.475 37.153 0.372
2 85.646 14.075 0.279
3 94.409 5.432 0.158
4 97.786 2.134 0.081
5 99.110 0.851 0.039
8 99.938 0.059 0.004
10 99.987 0.012 <0.001

Reality will be worse: reads are not random



Diploid or Aneuploid Samples

* Diploid samples, twice as much coverage
— Want to be able to call heterozygotes
— Need to see each allele as often as for haploid

* Aneuploid or somatic mutation samples
— Cannot rely on expected 1:0 or 1:1 allele ratios
— Often unique variants, harder to confirm



Continuous Variation

* Pooled or host/environmental samples
 Want to find all real variants

* What sensitivity do we have at X coverage?
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Read Length and Pairing

* Read length only matters for alignability
— (For equal total coverage)

* Paired end reads also only help alignment
— Aligning one end uniquely localizes other end
— Aligners may use this to run more sensitive align

— Allows finding highly variant regions and small
indels if the other read aligns cleanly

* Long links are of relatively little use for SNPs



Discovery of Structural Variants

Read depth can identify copy number changes

Paired end spacing can mark regions of
insertion, deletion, or rearrangement

Long reads can be aligned at multiple places
(split-read alignment) to find breakpoints

De novo assembly (global or local) can find
novel insertions and define breakpoints



Read Depth Analysis

e Can use depth of coverage to estimate copy

* Caveats:
— How many copies of the duplication in reference?
— How similar are copies?
— Are events homozygous or heterozygous?
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Paired End Analysis

* We expect a certain orientation and spacing

* |f these vary, they signal rearrangement
— Deletion: reads too far apart
— Insertion: reads too close together
— Inversion: too far apart and wrong orientation

* Works better with long pairs (jumps)
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Split Read Alignments

* Gives base level breakpoint resolution

* Only works with long reads
— Short reads have too many spurious splits

e Caveat: breakpoints are often duplicated
— Reads won’t split if single alignment is as good
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De Novo Assembly

* Assemble whole genome
— Align contigs to reference

— Look for insertions, deletions, rearrangements

* Use paired ends to identify potential events

— Assemble unaligned reads whose mates align near
the event

— |terate this to build up an insertion or a deletion
breakpoint



Targeted Resequencing

* Mostly similar to whole genome resequencing
e Targets specific region or regions (e.g., exome)
— PCR amplification
— Hybrid selection

— Targeted genome amplification

* Some special analysis considerations



Targets Require More Coverage

* Targeting introduces additional bias

* More coverage required to overcome this
— Want 3 times or more as much average depth

e Off-target reads
— Not all reads will come from targeted regions
— Need to bulk up coverage to overcome this
— Amount will depend on specificity of the targeting



Alignment and Targeting

* Targets including repeats and duplications
— Pull other copies of those sequences

— Need to align to whole genome to insure that
uniqgue hits in target are best in genome

* True of off-target reads even if targets unique

* Aligning to targets first and then only alighing
hits to whole genome can save some compute



Should You Target at All?

* Significant cost savings if target <<< genome
* Can achieve higher coverage on target

* Drawbacks
— Cost of targeting reagents can be high
— Some sequenceable regions very hard to target
— Variability of coverage is higher
— Miss untargeted sequences (does it matter?)
— Targeting may introduce bias



De Novo Assembly

* Why assemble?
— No genome reference
— Identify novel insertions, other structural variants

— Alternative method of SNP finding
* Mostly for small, haploid genomes

* Provides better diversity calling for indels and
particularly difficult to align regions



Requirements for Assembly

e Very deep coverage (at least 50x, 100x better)

* Long reads help greatly
— Provide connectivity through low coverage
— Resolve repetitive/duplicated regions
— For 454 (450 bp reads), can assemble at 20x

* Paired reads necessary for complex genome

* Long links (jumps) are not always necessary,
out yvield much better connectivity




Coverage Requirements

Next Gen assembler use DeBruijn graphs
Chains of k-mers

ATGTGTACGTACGTACGTA
TGTGTACGTACGTACGTAT
GTGTACGTACGTACGTATC
TGTACGTACGTACGTATCC
GTACGTACGTACGTATCC?

To continue assembling, next k-mer must
overlap last and extend one base

What is the probability that a read exists that
will extend the graph?



Read Coverage # k-mer Coverage

* |f the last k-mer starts at position i, there must
exist a read that starts at or before i + 1 and
extendstoi + k

» Effective coverageis(L-k+1)/L

Effective k-mer Coverage

=50 bp reads

=75 bp mads
100 bp reads
c ~
0 0.2 — =13 bp reads
& 0a
E 0 - 150 bp reads
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KmersSee



How Large Does k Need to Be?

* Cannot directly resolve repeats longer than k
* Almost all genomes have some long repeats

K E. coli (%) S. cerevisiae (%) A. thaliana (%) H. sapiens (%)

200 98.5 95.9 97.4 97.6
160 98.3 95.6 97.1 97.2
120 98.2 95.2 96.6 96.6
80 98.0 94.7 95.4 95.2
60 97.8 94.4 94.4 93.1
50 97.7 94.2 93.4 91.2
40 97.6 93.9 92.2 88.3
30 97.4 93.5 90.4 83.4
20 97.0 92.9 86.5 71.8
10 0.0 0.0 0.0 0.0

From Butler et al., Genome Res. (2008)



Paired Reads in Assembly

e Span and fill gaps
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RNA-Seq

e Capture information about transcriptome
* Using a reference genome

— Like resequencing, but additional challenges
— Coverage is uneven
— Reads may be spliced

* Without a reference genome

— Align to existing ESTs or cDNAs
— De novo assembly of transcripts



Making RNA-Seq Libraries

Number of standard protocols for prep

Strand-specific libraries
— Strand of reads match strand of transcribed RNA

Normalization of libraries

— Reduce high abundance transcripts

Hybrid selection for RNA-Seq
— Enrich specific transcript targets



Strand-Specific Libraries

e Better resolution of overlapping genes
* Detection of anti-sense transcripts
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Strand-Specific Methods

* Multiple methods available
— Compared in Levin et al., Nat. Methods (2010)

* Factors
— Ease of use
— Input RNA required
— Degree of strand specificity

— Uniformity of coverage



Normalization

Input material for RNA-Seq may span several
orders of magnitude

Complete and quantitative sequencing of low
abundance transcripts requires many reads

Or, reduce the abundance of most common
Normalizing excludes expression quantitation
Will not rescue very low abundance

— Removing top 50% abundance only doubles low



Hybrid Selection

Similar to targeted
resequencing

Capture from fully
prepared library

Increases coverage of
target genes

Maintains relative
expression levels!

Low input/mixed RNA

CDS Sequence Coverage: After Hybrid Selection
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Reads for RNA-Seq

* Read length is very important!
— Detecting spliced reads much easier if longer
— Short reads align in exons or to mature transcripts
— Spanning multiple exons confirms isoforms

* Pairs are also very important

— Pairs landing in different exons confirm transcript
structure, includes pairs in non-adjacent exons

— Help with unique placements in reference aligns

— Scaffold de novo assembly of complete transcripts



Digital Gene Expression

Specifically target transcript tagging sequences
(as in SAGE) instead of full transcripts

Sequencing single tags
— Requires very short reads, fragment only
— Requires many reads

Concatenate and shear (traditional SAGE)
— Longer reads much better

Not much advantage over full length RNA-Seq



ChIP-Seq

Also applies to other methods of non-
sequence-based enrichment (e.g., methyl-cap)

Goal: identify regions of the genome with that
feature and quantify their occupancy

Fragment length is often set by capture

Sequence is not important except as a means
to identify genomic position



Reads for ChlP-Seq

Need only be long enough to place uniquely

Paired ends are not needed
— Other end of fragment can be inferred
— Would be helpful only for unique placement

Loci not uniquely alignable often excluded
Smaller enrichment requires more reads
— Non-specific capture

— High background rate (e.g., nucleosomes)



Metagenomics

* Inherently pooled sequencing, but harder
— May not have a reference (WGS metagenomics)
— No known bound on number or breadth of taxa

* Many factors can affect results
— Sample Prep
— Sequencing Technology
— Read length and read depth
— Analysis tools



Different Sample Preps

* PCA plots from three samples (colors)
sequenced by three groups using different
protocols (left) and identical protocols (right)
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Human Microbiome Project Data Generation Working Group, submitted



Different Sequencing Technologies

 Same mock community (known) sequenced
on 3730, 454, and lllumina
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Different Sequencing and Analysis

* Mock community of 21 samples sequenced by
3730 and 454 and filtered differently show
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Filtering Whole Genome Data
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Reads for Metagenomics

* Length is very important for all strategies
— For 16S, length provides more of target
— For WGS, better assemblies
— More chance of indentifying gene from single read

* Importance of pairs depends on strategy
— For 16S, provides more length only

— For assembly methods, very important
— Will not help much with direct gene finding



Sequencing as an Assay

Sequence DNA that is tagging something else
as a readout

Ligate two disparate pieces of DNA
— Hi-C (chromosome conformation)
— Protein-protein interaction with DNA tails

Use DNA tails to label, count by sequencing
Reads long, accurate enough to distinguish
As many reads as possible
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Suboptimal Data

 Sometimes you can’t design the experiment
— Samples or resources are limited
— Data were already collected
— Piggybacking on another experiment

* How can you make the best of this?

* Understand what you really cannot do



Filter Your Analysis

Most common failure is lack of sufficient data

ldentify regions where data are sufficient
— Sites with enough coverage for SNP calls

— Contigs consisting of multiple read lengths
— Genes with reasonable transcript coverage

Analyze these sites and try to extrapolate

Check that the sites you are analyzing are
reasonable tails and not outliers or artifacts



Combine Data

You may have multiple samples or even
multiple data types that could be used

Merged data may still tell you something
about your samples as a whole

Applies to pooling before sequencing to save
costs, or combining different data sets

Check that results do not correlate with a
particular subset of the data



Scale Back the Goal

* |sthere a simpler question that could be
answered with the available data?

* Even if the data are underpowered to prove
something, they may be able to disprove it

e Can you use the existing data to suggest what
or how much data would be needed to really

address the question?



Off the Map

* |[n most cases, there is no pushbutton to
answer your scientific question

* The tools taught in this (or any) sequencing
analysis course are only the starting point

— These are standard methods to take raw data and
turn it into calls of valid genomic features

* Most of your analysis for a given project will
occur after you have used these methods



Thanks!

* Thanks to the following people who provided
slides or references to help with this talk:

— Ashlee Earl, Dirk Gevers, Joshua Levin, Michael
Ross, David Jaffe, Brian Weiner, Sarah Young

* Please ask questions!



