Genome assembly with ALLPATHS-LG: How to
make it work

= BROAD

INSTITUTE



How to use ALLPATHS-LG

What you will need:

- High-quality data

- Libraries of different sizes

- Long mate-pair links (40kb): difficult to make libraries!!

- A BIG compute server: recommended at least 1TB of RAM



Preparing data for ALLPATHS-LG

Before assembling, prepare and import your read data.

ALLPATHS-LG expects reads from:

* At least one fragment library. One should come from fragments of size ~180 bp. This
isn’t checked but otherwise results will be bad.

* At least one jumping library.

IMPORTANT: use all the reads, including those that fail the [llumina purity filter (PF).
These low quality reads may cover ‘difficult’ parts of the genome.




ALLPATHS-LG input format

ALLPATHS-LG can import data from:
BAM, FASTQ, FASTA/QUALA or FASTB/QUALB files.

You must also provide two metadata files to describe them:
in libs.csv - describes the libraries

in groups.csv -tiesfiles to libraries

FASTQ format: consists of records of the form

@<read name>
<sequence of bases, multiple lines allowed>

+
<sequence of quality scores, with Qn represented by ASCII code n+33, multiple lines

allowed>




Libraries — in_libs.csv (1 of 3)

in libs.csv isacomma separated value (CSV) file.
For clarity, blanks and tabs are allowed and ignored.

The first line describes the field names, listed below.
Each subsequent line describes a library.

library name - a unique name for the library.

Each physically different library should have a different name!



Libraries — in_libs.csv (2 of 3)

For fragment libraries only
frag size - estimated mean fragment size
frag stddev - estimated fragment size std dev

For jumping libraries only
insert size - estimated jumping mean insert size
insert stddev - estimated jumping insert size std dev

These values determine how a library is used. If insert sizeis 220000,
the library is assumed to be a Fosmid jumping library.

paired - always 1 (only supports paired reads)
read orientation -inward or outward.

Paired reads can either point towards each other, or away from each other.
Currently fragment reads must be inward, jumping reads outward, and
Fosmid jumping reads inward.



Libraries — in_libs.csv (3 of 3)

Reads can be trimmed to remove non-genomic bases produced by
the library construction method:

genomic start

genomic end - inclusive zero-based range of read bases
to be kept; if blank or O keep all bases

Reads are trimmed in their original orientation.

Extra optional fields (descriptive only — ignored by ALLPATHS)

project name - a string naming the project.

organilism name -the organism name.

type - fragment, jumping, EcoP15I, etc.
EXAMPLE
library name, type, paired, frag size, frag stddev, insert size, insert stddev, read orientation, genomic start, genomic_ end
Solexa-11541, fragment, Ly 180, 10, inward

Solexa-11623, Jjumping, L 0 , 3000, 500, outward 0, 25




Input files — required format

Each BAM or rasTq file contains paired reads from one library.

Data from a single library can be split between files.
Example, one file for each Illlumina lane sequenced.

For FASTQ format, the paired reads can be divided in two files (readsA. fastq,

readsB. fastq), or, if in a single file (reads . fastqg), must be interleaved:
pairl readA
pairl readB
pairZ2 readA
pair2 readB



Input files — in_groups.csv

Each linein in groups.csv comma separated value file,
corresponds to a BAM or rasTq file you wish to import for

assembly.
The library name must match the namesin in 1ibs.csv.

group name - a unique nickname for this file
library name - library to which the file belongs
file name - the absolute path to the file

(should end in .bam or .fastq)

(use wildcards “?’, “*’ for paired fastqgs)

Example:
group name, library name, file name
302GJ, Solexa-11541, /seq/Solexa-11541/302GJABXX.bam

303GJ, Solexa-11623, /seqg/Solexa-11623/303GJABXX.?.fastqg



ALLPATHS-LG directory structure

PrepareAllPathsInputs.pl

You create.

Root for your
assemblies.

You create.
Generally one

per data set.

Fixed name.

l

l

l

<PRE>/<REFERENCE>/<DATA>/<RUN>/ASSEMBLIES/test

T T

T

You create. You provide
Generally one name. One per
per organism. assembly.

Fixed name. Where
you’ll find
assembly results.

RunAllPaths3G




How to import assembly data files

PrepareAllPathsInputs.pl
IN GROUPS CSV=<in groups file>
IN LIBS CSV=<in libs file>
DATA DIR=<full path of data directory>
PLOIDY=<ploidy, either 1 or 2>
PICARD TOOLS DIR=<picard tools directory>
HOSTS=<1list of hosts to be used 1n parallel>

* IN GROUPS CSV and IN LIBS CSV: optional arguments with default
values ./in groups.csv and ./in libs.csv. These arguments

determine where the data are found.

« DATA DIR:imported data will be placed here.

(continued)



How to assemble

Do this:

RunAllPathsLG \
PRE=<prefix path> \
REFERENCE NAME=<reference dir> \
DATA SUBDIR=<data dir> \

RUN=<run dir>

Automatic resumption. If the pipeline crashes, fix the problem, then run the
same RunAllPathsLG command again. Execution will resume where it left
off.

Results. The assembly files are:

final.contigs.fasta - fasta contigs
final.contigs.efasta - efasta contigs
final.assembly.fasta - scaffolded fasta

final.assembly.efasta - scaffolded efasta



Linearized graph assemblies

Example of an assembly in efasta format

>scaffold 1
TCCTAGATCEACTTGGACTTGAGCTTTGTATATATATATATATATATA{,TA}CAAGATGACATATATAGGAGACAGCCA
GTTATACCAGCACCATTTATTGAAGACACTTTCTTTATTCCATTGTATATTTTTTTACTTCCTTGTCAAAAATCAAGTGA
CCATGAGTATGTGGTTTCATTTCTGGGTCTTCAATTGTATTCCATTAGTCAACATATCTGTCTCTGTACCAATACCATGC
NNNNNNNN
AGTTTTTACCACAATTGCTCTATAGTAAAGCTTGAGGTCAGGGTTGGTGATCCCTCCAGCCATTCTTTCATTATTAAGAA
TTGTTTTCCCTAGTCTGGGTTTTTTGCTTTTCCAGGCGAATTTGAGAATTGCTCTTTCCATGTCTTTGAAGAATTGTGTT
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
GGGATTTTGATGGGGTTTGCATTGAATCTGTAGATTGTCTTTGGTAAGATGGTTAGTTTTACTATGTTAATTCTGCCAAT
CCACAAGCATGGGAGCGCTCTCCATTTTCTGAGATCTTCTTCAATTTCTTTCTTGAGAAACTTGAAGTTATTGTCATACA
>scaffold 2
CTGAAGTTGTTTATCAGCTGGAGAAGTTCTCAGGTAGAATTTTTGGGATT{A,C,G}GCTTATGTATGCTATCTTGCAAA
TAGTGATACCTTGATTTCTTTTTTACCAATATGTATCCCATTGATCTCTTTCTGTTGTCTTATTGTTCTAGCTAACACTT
CAAGTACTATATTGAATAGATATGGGGAGAGTGGGAATCCTTGTCTTGTCTCCGATTTCAGTGGGATTGCTTCAAGTATG



Metrics, output and diagnostics

final.assembly.efasta
final.contigs.efasta
final.contigs.fastb
final.summary
final.assembly.fasta
final.contigs.fasta
final.rings
final.superb

assembly stats.report
library coverage.report

Metric: N50
“length-weighted median”
= 50% of sequences are this long or longer



Things that can go wrong

* Not enough RAM
* Not enough CPU time (allpaths can resume from where it died!)

e Artifacts in the data



Computational requirements

* 64-bit Linux
* runs multi-threaded on a single machine

* memory requirements
o about 160 bytes per genome base, implying
- need 512 GB for mammal (Dell R315, 48 processors, €18,000)
- need 1 GB for bacterium (theoretically)
o if coverage different than recommended, adjust!

o potential for reducing usage

» wall clock time to complete run
o 5 Mb genome = 1 hour (8 processors)
- 2500 Mb genome —> 500 hours (48 processors)



Short jumping libraries (2-3 kb)

10 pg DNA

lllumina protocol, blunt-
i shear and size select end ligation

2-3 kb fragments

@ i biotinylate ends é

circularize

shear

é
S~ and select




Short jumping libraries (2-3 kb)

Problem 1. Many steps = many opportunities for failure.

Example: a reagent might degrade. (This has happened.)



Short jumping libraries (2-3 kb)

Problem 2. Many steps = many DNA losses.

Here are good results for a mammalian genome:

Input: 10 yg DNA <€—>» ~3,000,000x physical coverage
Output: (if fully sequenced) ~3,000x physical coverage

Loss: 99.9% (not including DNA between reads)

Small genomes are much easier!



Short jumping libraries (2-3 kb)

Problem 3. Read passes through circularization junction. This reduces the effective read
length (and complicates algorithm).

What might be done to reduce incidence of this:
shear circles to larger size and select larger fragments



Short jumping libraries (2-3 kb)

Problem 4. Reads come from nonjumped fragments and are thus in reverse orientation
and close together on the genome. This reduces yield (and complicates algorithm).

4

Putative cause: original DNA is nicked or becomes nicked during process — biotins
become ‘ectopically’ attached at these nicks

— A




Long jumping libraries (~6 kb)

Method 1. Instead of shearing circles, using EcoP15I restriction
enzyme.

Pros

- demonstrated to work
- no artifacts

Cons

- read length = 26 bases

Method 2. Use lllumina blunt-end ligation protocol, but shear and size
select larger fragments.

Pros

- long reads

Cons

- yield may be very low (probably not problem for small genomes)



