
Advanced Topics: Biopython
Day One - Iterators

Peter J. A. Cock

The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK

23rd – 25th January 2012,
Workshop on Genomics, Český Krumlov, Czech Republic

What are iterators? Usage Creating an iterator Exercises Evening Class

Talk Outline

1 What are iterators?

2 Usage

3 Creating an iterator

4 Exercises

5 Evening Class

What are iterators? Usage Creating an iterator Exercises Evening Class

What are iterators?

First I’ll show you some abstract definitions

Then I’ll describe them in terms of usage

What are iterators? Usage Creating an iterator Exercises Evening Class

Wikipedia Definition: iterator

http://en.wikipedia.org/wiki/Iterator

In computer programming, an iterator is an object
that enables a programmer to traverse a container.
Various types of iterators are often provided via a
container’s interface. . . . An iterator is behaviorally
similar to a database cursor.

http://en.wikipedia.org/wiki/Iterator

What are iterators? Usage Creating an iterator Exercises Evening Class

Python Glossary Definition: iterator

http://docs.python.org/glossary.html#term-iterator

An object representing a stream of data. Repeated
calls to the iterator’s next() method return
successive items in the stream. When no more data
are available a StopIteration exception is raised
instead. At this point, the iterator object is exhausted
and any further calls to its next() method just raise
StopIteration again. . . .

http://docs.python.org/glossary.html#term-iterator

What are iterators? Usage Creating an iterator Exercises Evening Class

What are Python iterators?

Iterators are objects (can be functions or methods) which give
their values one by one (often in a for loop), e.g.

Every line in a file

Every entry in a list

Every letter in a string

Every prime number

BUT, you can only do this once.

What are iterators? Usage Creating an iterator Exercises Evening Class

Iterators versus lists, tuples, strings, etc

Both Python iterators and Python sequences (lists, tuples,
strings, etc) can be used in for loops.

Sequences also support indexing (square brackets)

Sequences have a known length

Sequences are in memory, iterators usually not

Iterators can be infinite

Iterators can only be looped over once

What are iterators? Usage Creating an iterator Exercises Evening Class

Lines in a file - list

with open("example. txt ") as handle :
l ines = handle . readlines ()

print len (l ines)

for l ine in l ines :
i f "Hello " in l ine :

print l ine

total = 0
for l ine in l ines :

total += len (l ine)
print total

What are iterators? Usage Creating an iterator Exercises Evening Class

Lines in a file - iterator

#Fi le handles are iterators ,
l ines = open("example. txt ")

#This fa i l s ,
print len (l ines)

#You can get the count l ike this ,
count = 0
for l ine in l ines :

count += 1
print count

#However, the iterator is now exhausted (empty) .
#The handle is at the end of the f i l e .

What are iterators? Usage Creating an iterator Exercises Evening Class

Lines in a file - iterator

#Fi le handles are iterators ,
l ines = open("example. txt ")

#Can do everything in one pass though the f i l e
count = 0
total = 0
for l ine in l ines :

count += 1
i f "Hello " in l ine :

print l ine
total += len (l ine)

print count
print total

l ines . close ()

What are iterators? Usage Creating an iterator Exercises Evening Class

Lines in a file

Loading a file as a list of strings is more flexible:

You can loop over them multiple times

You can access lines by indexing

Might even be faster

However, there is a major downside:

Using the list puts everything into memory!

Iterating over the file will let you work with large files

What are iterators? Usage Creating an iterator Exercises Evening Class

Creating an iterator

Use iter() on an existing list, tuple, string, etc

Use existing functions, e.g. open

Create an iterator object
(see __iter__ and next methods)

Create a generator function

Write a generator expression (one line)

Usually iterators are defined in terms of other iterators - the
module itertools can be very useful
http://docs.python.org/library/itertools.html

http://docs.python.org/library/itertools.html

What are iterators? Usage Creating an iterator Exercises Evening Class

Selecting lines from a file

Returning to the earlier example, this for loop an iterator (a
file handle) and finds just those lines with the word “Hello” in
them:

with open("example. txt ") as handle :
for l ine in handle :

i f "Hello " in l ine :
print l ine

Very simple, but now let’s look at other ways to write it.

What are iterators? Usage Creating an iterator Exercises Evening Class

Lines from a file - function

This function takes an iterator (a file handle) and returns a list
of matched lines:

def wanted_lines (handle) :
wanted = []
for l ine in handle :

i f "Hello " in l ine :
wanted.append(l ine)

return wanted

with open("example. txt ") as handle :
for l ine in wanted_lines (handle) :

print l ine

This solution could run out of memory if there are lots of
matching lines!

What are iterators? Usage Creating an iterator Exercises Evening Class

Lines from a file - generator function

This generator function takes an iterator (a file handle) and
returns the matched lines one by one (using keyword yield):

def wanted_lines (handle) :
for l ine in handle :

i f "Hello " in l ine :
yield l ine

with open("example. txt ") as handle :
for l ine in wanted_lines (handle) :

print l ine

This specific generator function is acting like a filter.

What are iterators? Usage Creating an iterator Exercises Evening Class

Lines from a file - list comprehension

I hope you’re familiar with list comprehensions in Python?

with open("example. txt ") as handle :
wanted = [l ine for l ine in handle \

i f "Hello " in l ine]
#Variable wanted is a l i s t
for l ine in wanted:

print l ine

It is trivial to turn this into a generator expression

What are iterators? Usage Creating an iterator Exercises Evening Class

Lines from a file - generator expression

List comprehensions use square brackets, generator
expressions use round brackets:

with open("example. txt ") as handle :
wanted = (l ine for l ine in handle \

i f "Hello " in l ine)
#Variable wanted is now a generator , not a l i s t !
for l ine in wanted:

print l ine

This was new in Python 2.4, see
http://www.python.org/dev/peps/pep-0289/

http://www.python.org/dev/peps/pep-0289/

What are iterators? Usage Creating an iterator Exercises Evening Class

Tip - range versus xrange

Not that for Python 2, the built in functions range and xrange
return lists and iterators respectively:

>>> range(4)
[0 , 1, 2, 3]
>>> xrange(4)
xrange(4)
>>> for i in xrange(4) :
. . . pr int i
0
1
2
3

Python 3 moves to just having range, which returns an
iterator

What are iterators? Usage Creating an iterator Exercises Evening Class

Even/odd numbers

Complete this example using a generator function,

def odd_f i l ter (values) :
""" F i l t e r to return just odd integers . """
for value in values :

i f . . . :
yield value

for i in odd_f i l ter (xrange(20)) :
print i

What are iterators? Usage Creating an iterator Exercises Evening Class

Even/odd numbers

Complete this example using a generator expression,

odd_values = (value for value in xrange(20) i f . . .)

for i in odd_values :
print i

What are iterators? Usage Creating an iterator Exercises Evening Class

Filter FASTA

Complete this example using a generator expression to select
sequences of at least length 100.

from Bio import SeqIO

records = SeqIO . parse("genes . fasta " , " fasta ")

long_records = (rec for rec in records i f . . .)

count = SeqIO . write (long_records , \
"long_genes . fasta " , " fasta ")

print "Saved %i long sequences" % count

What are iterators? Usage Creating an iterator Exercises Evening Class

Arithmetic progression

Complete this example using to give an infinite sequence of
numbers, each time incremented by the step size given:

def arithmetic_progression (start , step) :
"""Returns start , start+step , start+2*step , . . . """
yield start
#. . .

for value in arithmetic_progression (1 ,2):
print value
i f value > 100: break

What are iterators? Usage Creating an iterator Exercises Evening Class

Challenges

Read a FASTA file with many sequences using SeqIO.parse
and:

calculate the mean

store the lengths in a dict

. . . and then draw a histogram (clue?)

. . . and then calculate the median (hard)

Tip:

from Bio import SeqIO
for record in SeqIO . parse("example. fasta " , " fasta ") :

print len (record)

