Advanced Topics: Biopython

Day One - Iterators

Peter J. A. Cock

The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK

23rd - 25th January 2012,
Workshop on Genomics, Cesky Krumlov, Czech Republic

B The James
—"

lll Hutton

) institute




Talk Outline

o What are iterators?
e Usage

e Creating an iterator
e Exercises

e Evening Class



What are iterators?
€000

What are iterators?

@ First I'll show you some abstract definitions
@ Then I'll describe them in terms of usage



What are iterators?
0e00

Wikipedia Definition: iterator

http://en.wikipedia.org/wiki/Iterator

In computer programming, an iterator is an object
that enables a programmer to traverse a container.
Various types of iterators are often provided via a
container’s interface. ... An iterator is behaviorally
similar to a database cursor.


http://en.wikipedia.org/wiki/Iterator

What are iterators?
[eYe] Yo

Python Glossary Definition: iterator

http://docs.python.org/glossary.html#term-iterator
An object representing a stream of data. Repeated
calls to the iterator’s next () method return
successive items in the stream. When no more data
are available a Stoplteration exception is raised
instead. At this point, the iterator object is exhausted
and any further calls to its next () method just raise
StopIteration again. ...


http://docs.python.org/glossary.html#term-iterator

What are iterators?
ocooe

What are Python iterators?

Iterators are objects (can be functions or methods) which give
their values one by one (often in a for loop), e.g.

@ Every linein a file
@ Every entry in a list
@ Every letter in a string
@ Every prime number
BUT, you can only do this once.



Usage
°

Iterators versus lists, tuples, strings, etc

Both Python iterators and Python sequences (lists, tuples,
strings, etc) can be used in for loops.

@ Sequences also support indexing (square brackets)
@ Sequences have a known length

@ Sequences are in memory, iterators usually not

@ Iterators can be infinite
°

Iterators can only be looped over once



Usage
€000

Lines in a file - list

with open("example.txt") as handle:
lines = handle.readlines()

print len(lines)

for line in lines:
if "Hello" in line:
print line

total = 0

for line in lines:
total += len(line)

print total



Usage
oe00

Lines in a file - iterator

#File handles are iterators,
lines = open("example. txt")

#This fails,
print len(lines)

#You can get the count like this,
count = 0
for line in lines:
count +=1
print count

#However, the iterator is now exhausted (empty).
#The handle is at the end of the file.



Usage
ocoeo

Lines in a file - iterator

#File handles are iterators,
lines = open("example.txt")

#Can do everything in one pass though the file

count = 0
total =0
for line in lines:
count +=1
if "Hello" in line:
print line

total += len(line)
print count
print total

lines.close()



Lines in a file

Loading a file as a list of strings is more flexible:
@ You can loop over them multiple times
@ You can access lines by indexing
@ Might even be faster
However, there is a major downside:
@ Using the list puts everything into memory!

Iterating over the file will let you work with large files



Creating an iterator
.

Creating an iterator

@ Use iter() on an existing list, tuple, string, etc
@ Use existing functions, e.g. open

@ Create an iterator object
(see __iter__ and next methods)

@ Create a generator function
@ Write a generator expression (one line)
Usually iterators are defined in terms of other iterators - the

module itertools can be very useful
http://docs.python.org/library/itertools.html


http://docs.python.org/library/itertools.html

Creating an iterator
°

Selecting lines from a file

Returning to the earlier example, this for loop an iterator (a
file handle) and finds just those lines with the word “Hello” in
them:

with open("example.txt") as handle:
for line in handle:
if "Hello" in line:
print line

Very simple, but now let’s look at other ways to write it.



Creating an iterator
.

Lines from a file - function

This function takes an iterator (a file handle) and returns a list
of matched lines:

def wanted lines(handle):
wanted = []
for line in handle:
if "Hello" in line:
wanted.append(line)
return wanted

with open("example.txt") as handle:
for line in wanted lines(handle):
print line

This solution could run out of memory if there are lots of
matching lines!



Creating an iterator
°

Lines from a file - generator function

This generator function takes an iterator (a file handle) and
returns the matched lines one by one (using keyword yield):

def wanted lines(handle):
for line in handle:
if "Hello" in line:
yield line

with open("example.txt") as handle:
for line in wanted _lines(handle):
print line

This specific generator function is acting like a filter.



Creating an iterator
°

Lines from a file - list comprehension

| hope you're familiar with list comprehensions in Python?

with open("example.txt") as handle:
wanted = [line for line in handle \
if "Hello" in line]
#Variable wanted is a list
for line in wanted:
print line

It is trivial to turn this into a generator expression



Creating an iterator
°

Lines from a file - generator expression

List comprehensions use square brackets, generator
expressions use round brackets:

with open("example.txt") as handle:
wanted = (line for line in handle \
if "Hello" in line)
#Variable wanted is now a generator, not a list!
for line in wanted:
print line

This was new in Python 2.4, see
http://www.python.org/dev/peps/pep-0289/


http://www.python.org/dev/peps/pep-0289/

Creating an iterator
°

Tip - range versus xrange

Not that for Python 2, the built in functions range and xrange
return lists and iterators respectively:

>>> range(4)

[0, 1, 2, 3]

>>> xrange(4)

xrange(4)

>>> for i in xrange(4):
print i

W NP2 O -

Python 3 moves to just having range, which returns an
iterator



Exercises
.

Even/odd numbers

Complete this example using a generator function,

def odd _filter(values):
"""Fjlter to return just odd integers."""
for value in values:
if
yield value

for i in odd_filter(xrange(20)):
print i



Exercises
°

Even/odd numbers

Complete this example using a generator expression,

odd_values = (value for value in xrange(20) if ...)

for i in odd_values:
print i



Exercises
]

Filter FASTA

Complete this example using a generator expression to select
sequences of at least length 100.

from Bio import SeqlO

records = SeqlO.parse("genes.fasta", "fasta")
long_records = (rec for rec in records if ...)
count = SeqlO.write(long _records, \

"long_genes.fasta", "fasta")
print "Saved %i long sequences" % count



Exercises
°

Arithmetic progression

Complete this example using to give an infinite sequence of
numbers, each time incremented by the step size given:

def arithmetic_progression(start, step):
"""Returns start, start+step, start+2xstep, ..."""
yield start
#...

for value in arithmetic_progression(1,2):
print value
if value > 100: break



Evening Class
°

Challenges

Read a FASTA file with many sequences using SeqI0.parse
and:

@ calculate the mean

@ store the lengths in a dict

@ ...and then draw a histogram (clue?)

@ ...and then calculate the median (hard)
Tip:
from Bio import SeqlO

for record in SeqlO.parse("example.fasta", "fasta"):
print len(record)



