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What are iterators?

First I’ll show you some abstract definitions

Then I’ll describe them in terms of usage
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Wikipedia Definition: iterator

http://en.wikipedia.org/wiki/Iterator

In computer programming, an iterator is an object
that enables a programmer to traverse a container.
Various types of iterators are often provided via a
container’s interface. . . . An iterator is behaviorally
similar to a database cursor.

http://en.wikipedia.org/wiki/Iterator
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Python Glossary Definition: iterator

http://docs.python.org/glossary.html#term-iterator

An object representing a stream of data. Repeated
calls to the iterator’s next() method return
successive items in the stream. When no more data
are available a StopIteration exception is raised
instead. At this point, the iterator object is exhausted
and any further calls to its next() method just raise
StopIteration again. . . .

http://docs.python.org/glossary.html#term-iterator
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What are Python iterators?

Iterators are objects (can be functions or methods) which give
their values one by one (often in a for loop), e.g.

Every line in a file

Every entry in a list

Every letter in a string

Every prime number

BUT, you can only do this once.
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Iterators versus lists, tuples, strings, etc

Both Python iterators and Python sequences (lists, tuples,
strings, etc) can be used in for loops.

Sequences also support indexing (square brackets)

Sequences have a known length

Sequences are in memory, iterators usually not

Iterators can be infinite

Iterators can only be looped over once
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Lines in a file - list

with open( "example. txt " ) as handle :
l ines = handle . readlines ( )

print len ( l ines )

for l ine in l ines :
i f "Hello " in l ine :

print l ine

total = 0
for l ine in l ines :

total += len ( l ine )
print total
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Lines in a file - iterator

#Fi le handles are iterators ,
l ines = open( "example. txt " )

#This fa i l s ,
print len ( l ines )

#You can get the count l ike this ,
count = 0
for l ine in l ines :

count += 1
print count

#However, the iterator is now exhausted (empty) .
#The handle is at the end of the f i l e .
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Lines in a file - iterator

#Fi le handles are iterators ,
l ines = open( "example. txt " )

#Can do everything in one pass though the f i l e
count = 0
total = 0
for l ine in l ines :

count += 1
i f "Hello " in l ine :

print l ine
total += len ( l ine )

print count
print total

l ines . close ( )
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Lines in a file

Loading a file as a list of strings is more flexible:

You can loop over them multiple times

You can access lines by indexing

Might even be faster

However, there is a major downside:

Using the list puts everything into memory!

Iterating over the file will let you work with large files
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Creating an iterator

Use iter() on an existing list, tuple, string, etc

Use existing functions, e.g. open

Create an iterator object
(see __iter__ and next methods)

Create a generator function

Write a generator expression (one line)

Usually iterators are defined in terms of other iterators - the
module itertools can be very useful
http://docs.python.org/library/itertools.html

http://docs.python.org/library/itertools.html
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Selecting lines from a file

Returning to the earlier example, this for loop an iterator (a
file handle) and finds just those lines with the word “Hello” in
them:

with open( "example. txt " ) as handle :
for l ine in handle :

i f "Hello " in l ine :
print l ine

Very simple, but now let’s look at other ways to write it.
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Lines from a file - function

This function takes an iterator (a file handle) and returns a list
of matched lines:

def wanted_lines (handle ) :
wanted = []
for l ine in handle :

i f "Hello " in l ine :
wanted.append( l ine )

return wanted

with open( "example. txt " ) as handle :
for l ine in wanted_lines (handle ) :

print l ine

This solution could run out of memory if there are lots of
matching lines!
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Lines from a file - generator function

This generator function takes an iterator (a file handle) and
returns the matched lines one by one (using keyword yield):

def wanted_lines (handle ) :
for l ine in handle :

i f "Hello " in l ine :
yield l ine

with open( "example. txt " ) as handle :
for l ine in wanted_lines (handle ) :

print l ine

This specific generator function is acting like a filter.
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Lines from a file - list comprehension

I hope you’re familiar with list comprehensions in Python?

with open( "example. txt " ) as handle :
wanted = [ l ine for l ine in handle \

i f "Hello " in l ine ]
#Variable wanted is a l i s t
for l ine in wanted:

print l ine

It is trivial to turn this into a generator expression
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Lines from a file - generator expression

List comprehensions use square brackets, generator
expressions use round brackets:

with open( "example. txt " ) as handle :
wanted = ( l ine for l ine in handle \

i f "Hello " in l ine )
#Variable wanted is now a generator , not a l i s t !
for l ine in wanted:

print l ine

This was new in Python 2.4, see
http://www.python.org/dev/peps/pep-0289/

http://www.python.org/dev/peps/pep-0289/
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Tip - range versus xrange

Not that for Python 2, the built in functions range and xrange
return lists and iterators respectively:

>>> range(4)
[0 , 1, 2, 3]
>>> xrange(4)
xrange(4)
>>> for i in xrange(4) :
. . . pr int i
0
1
2
3

Python 3 moves to just having range, which returns an
iterator
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Even/odd numbers

Complete this example using a generator function,

def odd_f i l ter ( values ) :
""" F i l t e r to return just odd integers . """
for value in values :

i f . . . :
yield value

for i in odd_f i l ter (xrange(20)) :
print i
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Even/odd numbers

Complete this example using a generator expression,

odd_values = (value for value in xrange(20) i f . . . )

for i in odd_values :
print i
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Filter FASTA

Complete this example using a generator expression to select
sequences of at least length 100.

from Bio import SeqIO

records = SeqIO . parse( "genes . fasta " , " fasta " )

long_records = ( rec for rec in records i f . . . )

count = SeqIO . write ( long_records , \
"long_genes . fasta " , " fasta " )

print "Saved %i long sequences" % count
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Arithmetic progression

Complete this example using to give an infinite sequence of
numbers, each time incremented by the step size given:

def arithmetic_progression ( start , step ) :
"""Returns start , start+step , start+2*step , . . . """
yield start
#. . .

for value in arithmetic_progression (1 ,2):
print value
i f value > 100: break
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Challenges

Read a FASTA file with many sequences using SeqIO.parse
and:

calculate the mean

store the lengths in a dict

. . . and then draw a histogram (clue?)

. . . and then calculate the median (hard)

Tip:

from Bio import SeqIO
for record in SeqIO . parse( "example. fasta " , " fasta " ) :

print len ( record )


