Advanced Topics: Biopython

Day Three - Testing

Peter J. A. Cock

The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK

23rd - 25th January 2012,
Workshop on Genomics, Cesky Krumlov, Czech Republic

B The James
—"

lll Hutton

) institute

Talk Outline

e Why test your code?
a Testing in Python
e Testing in Biopython

e Testing in your code

Why Test?

Why test your code?

@ To make sure it does what you want it do do!

@ Later on, to make sure it still does what you want it do do
(e.g. after updating a library)

@ To check changes don’t have unexpected side effects

Why Test?

But writing tests wastes time!

@ Yes, writing tests takes time.
Sometimes as much as writing the code.

@ BUT, overall they should save you time.
Especially if you are doing experimental work based on it.
@ PhD students may have to convince their supervisor ...

Why Test?

Writing good tests is hard!

@ Simple tests check a typical case of good input data
That is important.

@ You must also test with bad input data
Error handling is very important.

Why Test?

Test granularity

@ Big tests might verify the output of a lot of code in one go
But if it fails, where is the error?

@ Many little tests can verify each function individually
Cause of a failure is usually clear
Can be used with test driven development

@ (Aside: Big functions are a bad idea - modularise!)

Testing in Python

Testing frameworks in Python

There are two main test frameworks included in Python itself,

@ unittest - You write test objects with methods that each
run a test
http://docs.python.org/library/unittest.html

@ doctest - You write examples within docstring
documentation comments
http://docs.python.org/library/doctest.html

Also the assert statement is useful.

http://docs.python.org/library/unittest.html
http://docs.python.org/library/doctest.html

Testing in Python

Example: mycode.py

Suppose you have module mycode, with a function power:

def power(value, exponent):
answer = 1
for i in range(exponent):
answer *= value
return answer

It needs some tests, but also some documentation...

Testing in Python

Example with assert

def power(value, exponent):
"""Calculate value™exponent and return it.

answer = 1

for i in range(exponent):
answer *= value

return answer

assert power(5, 3) == 125

Testing in Python

Built in documentation

That triple quoted string at the start of the function is the
function’s docstring, accessed via help(...) command:

>>> from mycode import power
>>> help (power)

Help on function power in module mycode:

power(value, exponent)
Calculate value”exponent and return it.

Testing in Python

Example with doctest

def power(value, exponent):
"""Calculate value™exponent and return it.

Example:
>>> power(5, 3)
125
answer =1
for i in range(exponent):
answer *= value
return answer

import doctest
doctest.testmod(verbose = True)

Testing in Python

Example with doctest

Recall that triple quoted string at the start of the function is
the function’s docstring, accessed via the help(...)

command:

>>> from mycode import power

>>> help (power)
Help on function power in module mycode:

power(value, exponent)
Calculate value™exponent and return it.

Example:
>>> power(5, 3)

125

Testing in Python

Example with doctest

The docstring can contain doctest strings, real examples of
commands and their output like:

>>> power(5, 3)
125

Using doctest these examples are run and compared to the
expected output.

Testing in Python

Limitations with doctest

@ The output is compared as a string - cross platform
differences can be a problem

@ Examples of failures don’t usually make good
documentation.

@ Think of doctest strings as documentation examples that
gets tested

Testing in Python

Example with unittest

import unittest
from mycode import power

class TestPower(unittest.TestCase):
#Start tests with special method name test _
def test squared(self):
for x in [1, 2, 10, 12345]:
self.assertEqual (x*x, power(x,2))

runner = unittest.TextTestRunner(verbosity = 2)
unittest.main(testRunner=runner, exit=False)

Testing in Python

Comments on unittest

@ You can have lots of test methods

@ You can easily test exceptions, see assertRaises
@ You can even generate test methods dynamically
@ i.e. Very flexible

Testing in Biopython

Unit testing in Biopython

@ Main modules try to include some doctest examples
@ Most new tests use the unittest framework
@ Some old test scripts work with an expected output file

@ We also have doctest examples in the main tutorial

Testing in Biopython

Nightly testing with Buildbot

@ Some bugs are platform or Python version specific
— running the tests on one machine often not enough

@ We use BuildBot - http://trac.buildbot.net/
See http://testing.open-bio.org/biopython/

@ Runs tests every night on Linux, Mac OS X, Windows,
covering Python 2.5, 2.6, 2.7, 3.1, 3.2, and Jython

@ Some projects run their tests for every commit!

http://trac.buildbot.net/
http://testing.open-bio.org/biopython/

Testing in your code

Testing in your code

@ My own code has improved since | started writing tests
@ Unit testing is woefully underused in Bioinformatics

@ Don’t trust non-trivial programs without unit tests

@ Please do write tests for your own code!

Even standalone single file Python scripts can use doctest
and unittest - so that’s not an excuse.

Testing in your code

Testing in your code

Write some tests for this power function:

def power(value, exponent):
answer = 1
for i in range(exponent):
answer *= value
return answer

Perhaps compare it to Python’s built in power operator,

>>> print 5%x3
125

