
Advanced Topics: Biopython
Day Three – Testing

Peter J. A. Cock

The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK

23rd – 25th January 2012,
Workshop on Genomics, Český Krumlov, Czech Republic

Why Test? Testing in Python Testing in Biopython Testing in your code

Talk Outline

1 Why test your code?

2 Testing in Python

3 Testing in Biopython

4 Testing in your code

Why Test? Testing in Python Testing in Biopython Testing in your code

Why test your code?

To make sure it does what you want it do do!

Later on, to make sure it still does what you want it do do
(e.g. after updating a library)

To check changes don’t have unexpected side effects

Why Test? Testing in Python Testing in Biopython Testing in your code

But writing tests wastes time!

Yes, writing tests takes time.
Sometimes as much as writing the code.

BUT, overall they should save you time.
Especially if you are doing experimental work based on it.

PhD students may have to convince their supervisor . . .

Why Test? Testing in Python Testing in Biopython Testing in your code

Writing good tests is hard!

Simple tests check a typical case of good input data
That is important.

You must also test with bad input data
Error handling is very important.

Why Test? Testing in Python Testing in Biopython Testing in your code

Test granularity

Big tests might verify the output of a lot of code in one go
But if it fails, where is the error?

Many little tests can verify each function individually
Cause of a failure is usually clear
Can be used with test driven development

(Aside: Big functions are a bad idea - modularise!)

Why Test? Testing in Python Testing in Biopython Testing in your code

Testing frameworks in Python

There are two main test frameworks included in Python itself,

unittest - You write test objects with methods that each
run a test
http://docs.python.org/library/unittest.html

doctest - You write examples within docstring
documentation comments
http://docs.python.org/library/doctest.html

Also the assert statement is useful.

http://docs.python.org/library/unittest.html
http://docs.python.org/library/doctest.html

Why Test? Testing in Python Testing in Biopython Testing in your code

Example: mycode.py

Suppose you have module mycode, with a function power:

def power(value , exponent) :
answer = 1
for i in range(exponent) :

answer *= value
return answer

It needs some tests, but also some documentation. . .

Why Test? Testing in Python Testing in Biopython Testing in your code

Example with assert

def power(value , exponent) :
""" Calculate value êxponent and return i t .
"""
answer = 1
for i in range(exponent) :

answer *= value
return answer

assert power(5 , 3) == 125

Why Test? Testing in Python Testing in Biopython Testing in your code

Built in documentation

That triple quoted string at the start of the function is the
function’s docstring, accessed via help(...) command:

>>> from mycode import power
>>> help (power)

Help on function power in module mycode:

power(value, exponent)
Calculate value^exponent and return it.

Why Test? Testing in Python Testing in Biopython Testing in your code

Example with doctest

def power(value , exponent) :
""" Calculate value êxponent and return i t .

Example:
>>> power(5 , 3)
125

"""
answer = 1
for i in range(exponent) :

answer *= value
return answer

import doctest
doctest . testmod(verbose = True)

Why Test? Testing in Python Testing in Biopython Testing in your code

Example with doctest

Recall that triple quoted string at the start of the function is
the function’s docstring, accessed via the help(...)
command:

>>> from mycode import power
>>> help (power)
Help on function power in module mycode:

power(value, exponent)
Calculate value^exponent and return it.

Example:
>>> power(5, 3)
125

Why Test? Testing in Python Testing in Biopython Testing in your code

Example with doctest

The docstring can contain doctest strings, real examples of
commands and their output like:

>>> power(5 , 3)
125

Using doctest these examples are run and compared to the
expected output.

Why Test? Testing in Python Testing in Biopython Testing in your code

Limitations with doctest

The output is compared as a string - cross platform
differences can be a problem

Examples of failures don’t usually make good
documentation.

Think of doctest strings as documentation examples that
gets tested

Why Test? Testing in Python Testing in Biopython Testing in your code

Example with unittest

import unittest
from mycode import power

class TestPower(unittest . TestCase) :
#Start tests with special method name test_ . . .
def test_squared (se l f) :

for x in [1 , 2, 10, 12345]:
se l f . assertEqual (x*x , power(x ,2))

runner = unittest . TextTestRunner(verbosity = 2)
unittest .main(testRunner=runner , exit=False)

Why Test? Testing in Python Testing in Biopython Testing in your code

Comments on unittest

You can have lots of test methods

You can easily test exceptions, see assertRaises

You can even generate test methods dynamically

i.e. Very flexible

Why Test? Testing in Python Testing in Biopython Testing in your code

Unit testing in Biopython

Main modules try to include some doctest examples

Most new tests use the unittest framework

Some old test scripts work with an expected output file

We also have doctest examples in the main tutorial

Why Test? Testing in Python Testing in Biopython Testing in your code

Nightly testing with Buildbot

Some bugs are platform or Python version specific
→ running the tests on one machine often not enough

We use BuildBot – http://trac.buildbot.net/
See http://testing.open-bio.org/biopython/

Runs tests every night on Linux, Mac OS X, Windows,
covering Python 2.5, 2.6, 2.7, 3.1, 3.2, and Jython

Some projects run their tests for every commit!

http://trac.buildbot.net/
http://testing.open-bio.org/biopython/

Why Test? Testing in Python Testing in Biopython Testing in your code

Testing in your code

My own code has improved since I started writing tests

Unit testing is woefully underused in Bioinformatics

Don’t trust non-trivial programs without unit tests

Please do write tests for your own code!

Even standalone single file Python scripts can use doctest
and unittest – so that’s not an excuse.

Why Test? Testing in Python Testing in Biopython Testing in your code

Testing in your code

Write some tests for this power function:

def power(value , exponent) :
answer = 1
for i in range(exponent) :

answer *= value
return answer

Perhaps compare it to Python’s built in power operator,

>>> print 5**3
125

