
2013 Workshop on Genomics, Cesky Krumlov

 Part 1:

Short read genomics: Remapping

Instructors:

• Konrad Paszkiewicz k.h.paszkiewicz at exeter ac uk

Objectives:

By the end of the workshop you will be expected to:

• Understand how short reads are generated

• Interpret FASTQ quality metrics

• Remove poor quality data

• Trim adaptor/contaminant sequences from FASTQ data

• Count the number of reads before and after trimming and quality control

• Align reads to a reference sequence to form a SAM file (Sequence Alignment/Map file) using BWA

• Convert the SAM file to BAM format (Binary Alignment/Map format)

• Identify and select high quality SNPs and Indels using SAMtools

• Identify missing or truncated genes with respect to the reference genome

• Identify SNPs which overlap with known coding regions

Background:

• This course assumes that you have successfully completed aUnix and Perl workshop or have equivalent

knowledge.

1.1 Introduction

Welcome to the Short Read Genomics workshop. Generating reams of data in Biology is easy these

days. In little more than a fortnight we can generate more data than the entire human genome project

generated in over a decade of work. Making biological sense out of that data, understanding its

limitations and how the analysis algorithms work is now the major challenge for researchers. The aim

of this workshop is to take you through an example project. On the way you will learn how to evaluate

the quality of data as provided by a sequencing facility, how to align the data against a known and

annotated reference genome and how to perform a de-novo assembly. In addition you will also learn

how to compare results between different samples.

This workshop is broken into 6 parts. You should feel free to take as long as you like on each part. It is

much more important that you have a thorough understanding of each part, rather than try to race

through the entire workshop. We can always schedule additional sessions if necessary.

The six parts are:

 1. Introduction to Illumina sequencing-by-synthesis

 2. Setting up your Amazon EC2 instance

 3. Remapping a strain of E.coli to a reference sequence

 4. Assembly of unmapped reads

 5. Complete de-novo assembly of all reads

 6. Repeating parts 3-5 on two other strains and comparing them

For this first workshop we will assume little background knowledge, save a basic familiarity with the

Linux operating system and the Amazon cloud. We will cover the basics of how genomic DNA libraries

are generated and sequenced, and the principles behind short read paired-end sequencing. We will look

at why data can vary in quality, why adaptor sequences need to be filtered out and how to quality

control data.

In the second part we will set up and start your Amazon EC2 instance. This will be familiar to those of

you who have completed the Unix and Perl workshop.

In the third part we will take the plunge and align the filtered reads to a reference genome, call variants

and compare them against the published genome to identify missing, truncated or altered genes. This

will involve the use of a publicly available set of bacterial E.coli Illumina reads and reference genome.

In parts 4 and 5 we will look at how one can identify novel sequences which are not present in the

reference genome. In part 6, you will be asked to repeat the steps in workshops 1, 2 and 3 on 2 other

data sets and to compare the results.

A word on notation. If you see something like this:

cd ~/genomics_tutorial/reference_sequence

It means, type the highlighted text into your terminal.

1.2 Principles of Illumina-based sequencing:

There are several second generation (i.e. non-Sanger) sequencers currently on the market. These

include the Life 5500 (formerly known as the ABI SOLiD), the Roche 454 GS FLX and 454 Junior, Ion

Torrent, and the Illumina HiSeq and MiSeq systems. All of these systems rely on making hundreds of

thousands of clonal copies of a fragment of DNA and sequencing the ensembl of fragments using DNA

polymerase or in the case of the SOLiD via ligation. This is simply because the detectors (basically

souped-up digital cameras), cannot detect fluorescence (Illumina, SOLiD, 454) or pH changes (Ion

Torrent) from a single molecule.

The 'third-generation' Pacific Biosciences SMRT (Single Molecule Real Time) sequencer, is able to

detect fluorescence from a single molecule of DNA. However, the machine weighs 2 tons, produces

1/30000
th

 of the data of an Illumina run and has a 15-20% error rate. Nonetheless the sequencer does

have its uses and doubtless the error rates will improve with time, but currently the second generation

sequencers are dominating the sequencing world.

We will only look at the Illumina sequencing pipeline here, but the basic principles apply to all other

sequencers. If you would like further details on other platforms then I recommend reading Mardis ER.

Next-generation DNA sequencing methods. Annual Reviews Genomics Hum Genet 2008; 9 :387–402 Other papers are

listed at http://biosciences.ex.ac.uk/facilities/sequencing/usefulresources/

A typical sequencing run would begin with the user supplying 1-10 ug of genomic DNA to a facility

along with quality control information in the form of an Agilent Bioanalyser trace or gel image and

quantification information. The following flowchart illustrates the basic workflow.

User DNA supplied

DNA library created

Sequencing -by-synthesis

Analysis

Demultiplexing

http://biosciences.ex.ac.uk/facilities/sequencing/usefulresources/

1.3 DNA Library preparation

For most sequencing applications, paired-end libraries are generated. Genomic DNA is sheared into

300-500bp fragments (usually via sonication) and size-selected accordingly. Ends are repaired and an

overhanging adenine base is added, after which olignucleutide adaptors are ligated. In many cases the

adaptors contain unique DNA sequences of 6-8bp which can be used to identify the sample if they are

'multiplexed' together for sequencing. This type of sequencing is used extensively when sequencing

small genomes such as those of bacteria because it lowers the overall per-genome cost.

A) Steps a through e explain the main steps in Illumina sample preparation: a) the initial genomic DNA, b) fragmentation of

genomic DNA into 500bp fragments, c) end repair, d) addition of A bases to the fragment ends and e) ligation of the adaptors to the

fragments.

B) Overview of the automated the size selection protocol: The first precipitation discards fragments larger than the desired interval.

The second precipitation selects all fragments larger than the lower boundary of the desired interval.

Borgström E, Lundin S, Lundeberg J, 2011 Large Scale Library Generation for High Throughput Sequencing. PLoS ONE 6: e19119.

doi:10.1371/journal.pone.0019119

1.4 Sequencing
(adapted from Margulis, E.R., reference below)

Once sufficient libraries have been prepared, the task is to amplify single strands of DNA to form

monoclonal clusters. The single molecule amplification step for the Illumina HiSeq 2000 starts with an

Illumina-specific adapter library and takes place on the oligo-derivatized surface of a flow cell, and is

performed by an automated device called a cBot Cluster Station. The flow cell is either a 2 or 8-

channel sealed glass microfabricated device that allows bridge amplification of fragments on its

surface, and uses DNA polymerase to produce multiple DNA copies, or clusters, that each represent the

single molecule that initiated the cluster amplification.

Separate or multiple libraries can be added to each of the eight channels, or the same library can be

used in all eight, or combinations thereof. Each cluster contains approximately one million copies of

the original fragment, which is sufficient for reporting incorporated bases at the required signal

intensity for detection during sequencing. The Illumina system utilizes a sequencing- by-synthesis

approach in which all four nucleotides are added simultaneously to the flow cell channels, along with

DNA polymerase, for incorporation into the oligo-primed cluster fragments (see figure below for

details). Specifically, the nucleotides carry a base-unique fluorescent label and the 3 -OH group is

chemically blocked such that each incorporation is a unique event. An imaging step follows each base

incorporation step, during which each flow cell lane is imaged in three 100-tile segments by the

instrument optics at a cluster density of 600,000-800,000 per mm
2
. After each imaging step, the 3'

blocking group is chemically removed to prepare each strand for the next incorporation by DNA

polymerase. This series of steps continues for a specific number of cycles, as determined by user-

defined instrument settings, which permits discrete read lengths of 40–100 bases. A base-calling

algorithm assigns sequences and associated quality values to each read and a quality checking pipeline

evaluates the Illumina data from each run.

The figure on the following page summarises the process:

The Illumina sequencing-by-synthesis approach: Cluster strands created by bridge amplification are primed and all four fluorescently

labeled, 3 -OH blocked nucleotides are added to the flow cell with DNA polymerase. The cluster strands are extended by one

nucleotide. Following the incorporation step, the unused nucleotides and DNA polymerase molecules are washed away, a scan buffer is

added to the flow cell, and the optics system scans each lane of the flow cell by imaging units called tiles. Once imaging is completed,

chemicals that effect cleavage of the fluorescent labels and the 3 -OH blocking groups are added to the flow cell, which prepares the

cluster strands for another round of fluorescent nucleotide incorporation.

Next-Generation DNA Sequencing Methods Mardis, E.R. Annu. Rev. Genomics Hum. Genet. 2008. 9:387–402

Base-calling:

Base-calling involves evaluating the raw intensity values for each fluorophore and comparing them to

determine which base is actually present at a give position during a cycle. To call bases on the Illumina

or SOLiD platform, the positions of clusters need to be identified during the first few cycles. This is

because they are formed in random positions on the flowcell as the annealing process is stochastic. This

is in contrast to the 454 system where the position of each cluster is defined by steel plate with pico-

litre sized holes in which the reaction takes place.

If there are too many clusters the edges of the clusters will begin to merge and the image analysis

algorithms will not be able to distinguish one cluster from another (remember, the software is dealing

with upwards of half a million clusters per square millimeter – that's a lot of dots!).

The above figure illustrates the principles of base-calling from cycles 1 to 9. If we focus on the

highlighted cluster, one can observe that the colour (wavelength) of light observed at each cycle

changes along with the brightness (intensity). This is due to the incorporation of complementary

ddNTPs containing fluorophores. So at cycle 1 we have a T base, at 2 a G base and so on. If the colour

or intensity is ambiguous the sequencer will mark it as an N. Other clusters are also visible in the

images; these will represent different monoclonal clusters with different sequences.

The base calling algorithms turn the raw intensity values into T,G,C,A or N base calls. There are a

variety of methods to do this and the one mentioned here is by no means the only one available, but it is

often used as the default method on the Illumina systems. Known as the 'Chastity filter' it will only call

a base if the intensity divided by the sum of the highest and second highest intensity is less than a given

threshold (usually 0.6). Otherwise the base is marked with an N. In addition the standard Illumina

pipeline will reject an entire read if two or more of these failures occur in the first 4 bases of a read (it

uses these cycles to determine the boundary of a cluster).

Note that these processes are carried out at the sequencing facility and you will not need to

perform any of these tasks under normal circumstances. They are explained here as useful

background information.

A C G T

1.5 What are paired-end reads and why are they necessary?

Paired-end sequencing is a remarkably simple and powerful modification to the standard sequencing

protocol. It is nearly always worth obtaining paired-end reads if performing genomic sequencing.

Typically sequencers of any type are only able to sequence a portion of DNA (e.g. 100bp in the case of

Illumina) before the fidelity of the enzyme and de-phasing of clusters (see later) increase the error rate

beyond tolerable levels. As a result, on the Illumina system, a fragment which is 500bp long will only

have the first 100bp sequenced.

If the size selection is tight enough and you know that nearly all the fragments are close to 500bp long,

you can repeat the sequencing reaction from the other end of the fragment. This will yield two reads for

each DNA fragment separated by a known distance I.e:

 Read 1

 100bp

The added information gained by knowing the distance between the two reads can be invaluable for

spanning repetitive regions. In the figure below, the light coloured regions indicate repetitive sections

of DNA. If a read contains only repetitive DNA, an alignment algorithm will be able to map the read to

many locations in a reference genome. However, with paired-end reads, there is a greater chance that at

least one of the two reads will map to a unique region of DNA. In this way one of the reads can be used

to anchor the the other read in the pair and help resolve the repetitive region. Paired-end reads are often

used when performing de-novo genome sequencing (i.e. when a reference is not available to align

against) because they enable contiguous regions of DNA to be ordered, or when characterizing variants

such as large insertions or deletions.

Other forms of paired-end sequencing with much larger distances (e.g. 10kb) are possible with so

called 'mate-pair' libraries. These are usually used in specific projects to help order contigs in de-novo

sequencing projects. We will not cover them here, but the principles behind them are similar.

 Read 1

 100bp

Read 2

100bp

Single-end read

Paired-end read

1.6 Inherent sources of error

No measurement is without a certain degree of error. This is true in sequencing. As such there is a finite

probability that a base will not be called correctly. There are several possible sources:

Frequency cross-talk and normalisation errors:

When reading an A base, a small amount of C will also be measured due to frequency overlap and vice-

versa. Similarly with G and T bases. Additionally, from the figure below, it should be clear that the

extent to which the dyes fluoresce differs. As such it is necessary to normalize the intensities. This

normalisation process can also introduce errors.

Frequency response curve for A and C dyes

(Intensity y-axis and frequency on the x-axis)

Phasing/Pre-phasing:

This occurs when a strand of DNA lags or leads the other DNA strands within a cluster. This introduces

additional background noise into the signal and reduces the intensity of the true base. E.g. below we

have a cluster with 7 strands of DNA (very small, but this is just an example). Five strands are on a C-

base, whilst 1 is lagging behind (called phasing) on a G base and the remaining strand is running

ahead of the pack (confusingly called pre-phasing) on an A base. As such the C signal will be reduced

and A and G boosted for the rest of the sequencing run. Too much phasing or pre-phasing (i.e. > 15-

20%) usually causes problems for the base calling algorithm and result in clusters being filtered out.

A C

Other issues:

• Biases introduced by sample preparation – your sequencing is only as good as your

experimental design and DNA extraction. Also, remember that your sample will be put through several

cycles of PCR before sequencing. This also introduces a potential source of bias.

• High AT or GC content sequences – this reduces the complexity of the sequence and can

result in higher error rates

• Homopolymeric sequences – long stretches of a single base can make it difficult to determine

phasing and pre-phasing rates. This can introduce errors in determining the precise length of a

hompolymeric stretch of sequence. This much more of a problem on the 454 and Ion Torrent than

Illumina platforms but still worth bearing in mind. Especially if you encounter indels which have been

called in homopolymeric tracts.

• Some motifs can cause loops and other steric clashes

See Nakamura et al, Sequence-specific error profile of Illumina sequencers Nuc. Acid Res. first published online May 16,

2011 doi:10.1093/nar/gkr344

1.7 Quality scores

To account for the possible errors and provide an estimate of confidence in a given base-call, the

Illumina sequencing pipeline assigns a quality score to each base called. Most quality scores are

calculated using the Phred scale. Each base call has an associated base call

quality which estimates chance that the base call is incorrect.

Q10 = 1 in 10 chance of incorrect base call

Q20 = 1 in 100 chance of incorrect base call

Q30 = 1 in 1000 chance of incorrect base call

Q40 = 1 in 10,000 chance of incorrect base call

For most 454, SOLiD and Illumina runs you should see quality scores between Q20 and Q40. Note that

these as only estimates of base-quality based on calibration runs performed by the manufacturer against

a sample of known sequence with (typically) a GC content of 50%. Extreme GC bias and/or particular

motifs or homopolymers can cause the quality scores to become unreliable.

Accurate base qualities are an essential part in ensuring variant calls are correct. As a rough and

ready rule we generally assume that with Illumina data anything less than Q20 is not useful data and

should be excluded from the analysis.

1.8 Reads containing adaptors

Some reads will contain adaptor sequences after sequencing, usually at the end of the read. This is

usually because of short sample DNA fragments, which result in the polymerase reading into the

adaptor region. Occasionally this can also happen because of mis-priming. It is important to remove or

trim sequences containing these reads as the adaptor sequences can prevent reads mapping to a

reference sequence and will adversely affect de-novo assembly.

2013 Workshop on Genomics, Cesky Krumlov

 Part 2:

Short read genomics:

Starting your Amazon virtual

machine

Instructors:

• Konrad Paszkiewicz k.h.paszkiewicz at exeter ac uk

Objectives:

By the end of this section you will be expected to:

• Log into the Amazon Console and start your instance of the Genomics workshop AWS Image

• Log in to an Amazon EC2 Linux instance using your own computer

• Continue with the Short read genomics tutorials at your own pace

Background:

• This course assumes that you have successfully completed the Unix and Perl workshop or

equivalent knowledge

Introduction

For this workshop we will provide an overview of the cloud as described by Amazon and how, as

researchers, we can use this flexible resource to get work done quickly and relatively inexpensively.

We will dive right into starting up the pre-prepared Virtual Machine (VM) and logging into the

Amazon management console. We will give you a whirlwind tour of the features of Amazon's cloud

and then get you to start your Genomics AMI and log-in via the NX-client.

For this tutorial I borrowed documentation from the following sites:

• http://ged.msu.edu/angus/tutorials/unix-and-ssh-and-scp.html

• http://aws.amazon.com/documentation

Task 1 – Tour of Amazon's Cloud

In this section of the workshop we will log into Amazon's cloud (referred to as Amazon Web

Services or AWS) and take a look at the various services offered by Amazon. These include:

• Elastic Cloud Compute (EC2): the service AWS is known for. It enables you to rent hourly

Linux and Windows machines by the hour. Amazon now has also special High Performance

Computing nodes (HPC) and Graphical Computing nodes (GPU nodes)

• Simple Storage Service (S3): a storage service, not particularly fast but great for storing large

“buckets” of data for long term storage, sharing, or temporary storage for use between

instances

• Elastic Block Storage (EBS): similar to S3 but limited in size (max 1TB), these are virtual

hard drives that you can attach and detach very quickly to and from your running instances.

Think of these as the USB flash drive of the cloud computing world

• A ton of other services that are geared towards building highly scalable and fault-tolerant

web-based services. Many can be co-opted for use in research!

We have set up user accounts for each student in the class, take a look at the form given to you in

your welcome packet. You need to know the console URL, your username, and your password. You

will also find the access key and secret access key, both are used by various tools to log in and use

the Amazon cloud programmatically.

Task 2 - Connecting to Your Personal VM

As part of the course we were extremely fortunate to have received funding from Amazon, enough

to provide each student with $100 of compute and storage resources. This should be plenty to cover

the costs of the class. In this section of the tutorial we will log into the Amazon console web

application, setup your account and VM instance, and login to kick the tyres.

The Rules

While $100 is very generous we ask that each student adhere to the following guidelines to ensure we
have enough resources for the duration of the workshop:

1. Please only launch a single VM instance of the type specified by the instructor at the

beginning of the workshop and “stop” the instance at the end of the workshop. Do not leave

the image running overnight or over a whole week – you will quickly run out of funding.

http://ged.msu.edu/angus/tutorials/unix-and-ssh-and-scp.html
http://aws.amazon.com/documentation

2. Please name your VM instance as I do in my demo. Including your name will make it

easy to find your resources in the list of class resources

3. Please do not delete EBS volumes or terminate VM instances that don't belong to you

Step 1 – Logging Into the Console

In addition to being extremely comprehensive, the Amazon cloud has a very easy-to-use interface

for interacting with all their cloud offerings. All you have to do is log into a web application and

most of the functionality of the Amazon tools are available for you and very easy to use.

Usernames and passwords were given in your welcome packet along with the URL (which is

repeated below).

We have setup a joint account for all the students on this course using something called Identity

Access Manager. The nice thing about this is you have pretty much free access to the console and

we can have very fine grain control on what your sub-accounts can and cannot do.

To get started go to the following URL and login with your username and password.

https://genomics2013.signin.aws.amazon.com/console

After logging in you'll be presented with a wide range of options. Most likely you've logged into the
“EC2 Dashboard”. If you haven't, please click the drop down menu at the top and then click on
“Amazon Elastic Compute Cloud (EC2)”. On this page you'll get a summary of the EC2 state for your
account. You can see mine below.

Step 2 – Launch the “AMI”

From here we can create computers on Amazon's 'cloud'. What this means is that we can create as

many computers as we like, start them, log-in to them, do some work, transfer data to/from them or

destroy them altogether. Amazon worry about the hardware, power, cooling and maintenance – all

we need to do is specify how powerful a computer we want (micro, small, large or extra-large).

Amazon charge for each Gb stored every month and for each hour a machine is run. This can vary

from a few cents per hour to a few dollars. Whilst it is very convenient if you are only doing

analyses occasionally, at the moment it is still cheaper to have your own computing (although you

then have the headache of maintaining it!).

The reason we are using the cloud here is that most of you will only be doing occasional analyses. In

the case of high-throughput sequencing data (e.g. Illumina) you will find that your desktop PC may

not be powerful enough to cope with the data. As such Amazon can offer a good alternative. It also

means that you can start and stop your AMI from home and continue to work through the tutorial

from there.

Once logged into the console we can select an Amazon Machine Image (AMI) Virtual Machine and

launch it. Click on the “Launch Instance” button in the center. Then select ‘Launch Classic Wizard’.

Make sure the 'My AMIs' tab is selected.

The next step in this process is to select an AMI. The AMI is a “snapshot” of the VM we prepared for

you for this class. Select the 2013 Short Read Genomics Workshop. Please do not use any other

AMI for this workshop!

Click “Select”.

The next page is “Instance Details” where your first choice is the number and type of instances. For

this class your default choice will be micro instance. However, we will need a large instance for this

workshop. Depending on how many CPUs and how much memory you need you can choose a

different instance if you were running this outside the class. See http://aws.amazon.com/ec2/instance-

types/ for information about the instance types and http://aws.amazon.com/ec2/pricing/ for

information about pricing per hour.

Tip:

The “Availability Zone” option can be any of the options, but you should “stick to it” for the class.

If you create any S3 volumes (see the additional information in the supplementary tutorial) they are

specific to a given availability zone so you'll need to have your instances and EBS volumes in the

same zone.

Your next choice is “Launch Instances” or “Request Spot Instances”. The latter lets you bid on

how much you want to spend on your EC2 node. This is a fantastic innovation, it works really well

if you have tasks that need to get done but not urgently so you can afford to wait and, therefore,

will only run your jobs during “cheap” off-peak hours. But, for this workshop we'll use the regular

http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/pricing/

“Launch Instances”. Use a Large instance and pick either us-east-1a, us-east-1b or us-east-1c as the

Availability Zone.

Click “Continue”. You can use the defaults on the next page, click “Continue” again.

On the next page you'll be given an opportunity to name your VM. Make sure you give this VM a

name that includes your username so you can later find it in the list of instances. For example

“StudentKonrad” since the username is “StudentKonrad”. Make sure you type your name into the

'Value' column and not the 'Key' column.

The next step lets you select the “keypair” used to let you log into this machine. This keypair is a

file you download and supply to your SSH client in order to connect to the running server. By

default most servers on Amazon EC2 don't use passwords, but ours does.

Select “Proceed without a Key Pair”. Note, that for this workshop we will be using the NX client

which is pre-installed on the image you are using so you will not need to use the key. However, if

you ever use a different Amazon AMI from other sources you may need to create a new key pair for

yourself.

In the next step “Configure Firewall” select “Choose one or more of your existing security groups”.

Select 'Default'

Select “Continue”.

This will open the following ports:

• 22 (ssh)

• 80 (web server)

The next step is just a review. If it looks OK hit “Launch”. At this point you can watch your

instance boot under the “Instances” section in the “EC2” tab.

At this point you wait just a couple minutes for the AMI instance to come online. Above you can see

the instance is running, give it a couple minutes to finish its boot cycle. It's booting somewhere on a

virtualized cluster node in Virginia! If you click on “Instances” on the left-hand panel you'll get a

list of your running VMs (you'll see yours listed along with the other students, did you give it a name

you can recognize?).

Once it turns green, you should click on the AMI and copy the Public DNS address to the clipboard

(shown below is an example where the Public DNS is ec2-184-72-71-5.compute-

1.amazonaws.com). We will need it in a moment.

Step 3 – Log into the Running VM's Remote Desktop with NX

If you need a windowing environment rather than just an SSH terminal this is possible with

CloudBioLinux! This is a great option if you want to use a GUI application (Graphical User

Interface like Apollo or Artemis). It's very cool to see a remote desktop with Firefox and every other

GUI application rendered quick and snappy over the Internet!

Here are the steps to get remote NX login working, take a look at the document http://bit.ly/fA3ykQ

for more information. Note that these instructions will only work for this particular VM AMI. Many

AMIs will not have the NX server installed and therefore you will not be able to connect using the NX-

client. In these cases you will have to look at Step 4 and use SSH.

1 - Download an NX Client – Already installed if you are working in the computing lab

See http://www.nomachine.com/download.php for the various client installers. You should download

the NX client specific to your machine (i.e. Windows, Linux or Mac). Make sure you download the

NX Client and not the NX-server. Note that Mac OSX is incompatible with NX client 3.5. You should

download NX client preview version 4 if you have Mac OSX.

2 - Launch the Client and Connect

Once it is installed, start the NX Connection Wizard on your laptop. On Windows the start menu the

icon will look like:

S

At the next screen you should name the connection Genomics Workshop and set the host-name to be

the public DNS address of your Amazon AMI.

Note, if you ever stop or restart your AMI, the Public DNS address will change. Make sure you

update your NX client with the new DNS!

 Click ‘Next >’ and at the next screen ensure you change ‘KDE’ to ‘GNOME’

Click ‘Next >’ and ‘Next >’ again on the next screen. Double click on the NX shortcut which will

 be on your Desktop.

Finally enter the login username “ubuntu” and password “ubuntu” (without the quotation

marks).

Once connected you should get a nice desktop with links to the Terminal and to the Firefox web-

browser. If a window pops up asking if you would like to run any updates, just close it.

One final task is to change your password from ubuntu to something less easy to guess. Double-

click on the 'Terminal' icon and type the command 'passwd' (without the quote marks). Enter

'ubuntu' as the current password (again without the quotes) and then type in a new password

of your choice. Note that for security, no characters will appear as you type. Please make it

difficult for someone to guess your new password! You will then need to re-enter it to confirm.

Every time you log in via NX after this you will need to enter 'ubuntu' as the username and the

password you have just entered.

To close the connection just close the window, you can choose “Disconnect” if you want to log back

in later and pick up where you left off. However, if you stop or restart the AMI via the console, any

unsaved information will be lost. If you do stop or restart, remember to check and change the

Public DNS address using the AWS console and change the DNS address in NX.

25

At this point you've logged into the machine.

Step 4 – Stopping and starting the Instance

When you're done with the workshop it's very important to turn off the VM to avoid unnecessary

charges. Just log back into the console, right click the instance and select “Terminate”. It will ask

you to confirm. You can then watch the status change from “shutting down” to “terminated”. Note

– this will destroy all work done to date. If you wish to keep your data, use the 'Stop' option

instead. In this state you will not be charged for computing time, but will still be charged for

storage.

Very important!

If you stop and then start you instance your Public DNS address may change. If this happens

you will need to use the new DNS address with the NX-client or SSH.

Although much of what we have just done may not make much sense yet, most of you will feel

totally comfortable and confident working on an EC2 node running Linux within a few hours. It's

really amazing how quickly the fact that this is a remote computer will fade away. It may be

hundreds of miles away but it will act just like a local computer, especially if you connect via NX.

Move on to the genomics tutorial!

26

2013 Workshop on Genomics, Cesky Krumlov

 Part 3:

Short read genomics: Remapping

Instructors:

• Konrad Paszkiewicz k.h.paszkiewicz at exeter ac uk

Objectives:

By the end of the workshop you will be expected to:

• Interpret FASTQ quality metrics

• Remove poor quality data

• Trim adaptor/contaminant sequences from FASTQ data

• Count the number of reads before and after trimming and quality control

• Align reads to a reference sequence to form a SAM file (Sequence AlignMent file) using BWA

• Convert the SAM file to BAM format (Binary AlignMent format)

• Identify and select high quality SNPs and Indels using SAMtools

• Identify missing or truncated genes with respect to the reference genome

• Identify SNPs which overlap with known coding regions

27

3.1 Introduction

In this section of the workshop we will be analysing a (hypothetical) strain of E.coli which is involved

in urinary tract infections and causes internal hemorrhaging. The strain we start with is treatable with

standard antibiotics. We want to obtain a list of single nucleotide polymorphisms (SNPs),

insertions/deletions (Indels) and any genes which have been deleted.

In later sections you will repeat this analysis on your own using two other strains which have

developed resistance. The final section will ask you to compare the results from all three datasets.

3.2 Quality control

In this section of the workshop we will be learning about evaluating the quality of an Illumina

sequencing run. The process described here can be used with any FASTQ formatted file from any

platform (e.g 454, Illumina, Ion Torrent, PacBio etc).

2nd (and 3rd) generation sequencers produce vast quantities of data. A single Illumina HiSeq lane

will produce over 10Gb of data. However, the error rates of these platforms are 10-100x higher than

Sanger sequencing. They also have very different error profiles. Unlike Sanger sequencing, where

the most reliable sequences tend to be in the middle, NGS platforms tend to be most reliable near

the beginning of each read.

Quality control usually involves:

• Calculating the number of reads before quality control

• Calculating GC content, identifying over-represented sequences

• Remove or trim reads containing adaptor sequences

• Remove or trim reads containing low quality bases

• Calculating the number of reads after quality control

• Rechecking GC content, identifying over-represented sequences

Quality control is necessary because:

• CPU time required for alignment and assembly is reduced

• Data storage requirements are reduced

• Reduce potential for bias in variant calling and/or de-novo assembly

Quality scores:

Most quality scores are calculated using the Phred scale (Ewing B, Green P: Basecalling of automated

sequencer traces using phred. II. Error probabilities. Genome Research 8:186-194 (1998)) . Each base call has an

associated base call quality which estimates chance that the base call is incorrect.

Q10 = 1 in 10 chance of incorrect base call

Q20 = 1 in 100 chance of incorrect base call

Q30 = 1 in 1000 chance of incorrect base call

Q40 = 1 in 10,000 chance of incorrect base call

For most 454, SoLID and Illumina runs you should see quality scores between Q20 and Q40.

Note that these as only estimates of base-quality based on calibration runs performed by the

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9521922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9521922

28

manufacturer against a sample of known sequence with (typically) a GC content of 50%. Extreme

GC biases and/or particular motifs or homopolymers can cause the quality scores to become

unreliable. Accurate base qualities are an essential part in ensuring variant calls are correct. As a rough

and ready rule we generally assume that with Illumina data anything less than Q20 is not useful data

and should be excluded.

29

FASTQ format:

A FASTQ entry consists of 4 lines

1. A header line beginning with '@' containing information about the name of the sequencer, and

the position at which the originating cluster was located and whether it passed purity filters.

2. The DNA sequence of the read

3. A header line or line beginning with just '+'

4. Quality scores for each base encoded in ASCII format

Typical FASTQ formatted file:

To reduce storage requirements, the FASTQ quality scores are stored as single characters and converted

to numbers by obtaining the ASCII quality score and subtracting either 33 or 64. For example, the

above FASTQ file is Sanger formatted and the character ‘!’ has an ASCII value of 33. Therefore the

corresponding base would have a Phred quality score of 33-33=Q0 (i.e. totally unreliable). On the

other hand a base with a quality score denoted by ‘@’ which has an ASCII value of 64 would have a

Phred quality score of 64-33=Q31 (i.e. less than 1/1000 chance of being incorrect).

Just to confuse matters, there are several different methods of encoding quality scores in the ASCII

format.

Note that the latest Illumina CASAVA 1.8 pipeline (released June 2011), outputs in fastq-sanger rather

than Illumina 1.3+. Thus Illumina 1.3+ and other Illumina scoring metrics are unlikely to be

encountered if you are using Illumina sequencing data generated after July 2011.

3.2.1 Quality control – evaluating the quality of Illumina data

The first task when one receives sequencing data is to evaluate its quality and determine whether all the

cash you have handed over was well-spent! To do this we will use the FastQC toolkit

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/). FastQC offers a graphical visualisation of QC

metrics, but does not have the ability to filter data.

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/

30

Task 1:

From your home directory change into the genomics_tutorial/strain1 directory. E.g.:

cd genomics_tutorial/strain1

Note that the FASTQ files are contained within a sub-directory called illumina_reads. Change into this

directory by typing:

cd illumina_reads

Note that this is a paired-end run. As such there are two files, one for read 1 (strain1_read1.fastq) and

the other for the reverse read 2 (strain1_read2.fastq). Reads from the same pair can be identified

because they have the same header. Many programs require that the read 1 and read 2 files have the

reads in the same order. To view the first few reads we can use the 'more' command:

more strain1_read1.fastq

Press 'q' to exit more. We can do the same for read 2 and confirm that the headers are the same.

more strain1_read2.fastq

31

Again, press 'q' to exit more.

Now, let's start the fastqc program. Type:

fastqc

This should open the fastqc program. Load the strain1_read1.fastq file in the

genomics_tutorial/strain1/illumina_reads directory.

After a few minutes the program should finish analysing the FASTQ file.

The fastqc program performs a number of tests which determines whether or a green tick (pass),

exclamation mark (warning) or red cross (fail) is displayed. However it is important to realise that

fastqc has no knowledge of what your library is or should look like. All of its tests are based on a

32

completely random library with 50% GC content. Therefore if you have a sample which does not

match these assumptions, it may and 'fail' the library. For example, if you have a high AT or high GC

organism it may fail the per sequence GC content. If you have any barcodes or low complexity libraries

(e.g. small RNA libraries) they may also fail some of the sequence complexity tests.

The bottom line is that you need to be aware of what your library is and whether what fastqc is

reporting makes sense for that type of library.

In this case we have an E.coli library so a percentage GC content of 50% is consistent with our

expectations.

Quality scores:

This is one of the most important metrics. If the quality scores are poor, either the wrong FASTQ

encoding has been guessed by fastqc (see the title of the chart), or the data itself is poor quality. This

view shows an overview of the range of quality values across all bases at each position in the FastQ

file. Generally anything with a median quality score greater than Q20 is regarded as acceptable,

anything above Q30 is regarded as 'good'. For more details, see the help documentation in fastqc.

33

Per base sequence content:

For a completely randomly generated library with a GC content of 50% one expects that at any given

position within a read there will be a 25% chance of finding an A,C,T or G base. Here we can see that

our library satisfies these criteria, although there appears to be some minor bias at the beginning of the

read. This may be due to PCR duplicates during amplification or during library preparation. It is

unlikely that one will ever see a perfectly uniform distribution. See

http://biosciences.exeter.ac.uk/facilities/sequencing/dataguide/qualitycontrol/ for examples of good vs

bad runs as well as the fastqc help for more details.

http://biosciences.exeter.ac.uk/facilities/sequencing/dataguide/qualitycontrol/

34

Sequence duplication levels:

In a a library that covers a whole genome uniformly most sequences will occur only once in the final

set. A low level of duplication may indicate a very high level of coverage of the target sequence, but a

high level of duplication is more likely to indicate some kind of enrichment bias (e.g. PCR over-

amplification).

This module counts the degree of duplication for every sequence in the set and creates a plot showing

the relative number of sequences with different degrees of duplication.

35

Task 2:

Do the same for read 2 as we have for read 1. Open fastqc and the read 2 file. Look

at the various plots and metrics which are generated. How similar are they?

Note that the number of reads reported in both files is identical. This is because if one read fails to pass

the Illumina chastity filter, its partner is automatically excluded too.

Overall, both read 1 and read 2 can be regarded as 'good' data-sets.

3.2.2 Quality control – filtering of Illumina data

In this section we will be actually be filtering the data to ensure any low quality reads are removed and

that any sequences containing adaptor sequences are either trimmed or removed altogether. To do this

we will use the fastq-mcf program from the ea-utils package (available at http://code.google.com/p/ea-

utils/). This package is remarkably fast and ensures that after filtering both read 1 and read 2 files are in

the correct order.

Note: Typically when submitting raw Illumina data to NCBI or EBI you would submit unfiltered data,

so don't delete your original fastq files!

Make sure you are in the ~/genomics_tutorial/strain1/illumina_reads directory. We will execute the

fastq-mcf program which performs both adaptor sequence trimming and low quality bases. To remove

adaptor sequences, we need to supply the adaptor sequences to the program. A list of the most common

adaptors used is given in the file /usr/local/ea-utils/adaptors.fasta:

Task 3:

To run the fastq-mcf program, type the following (all on one line):

fastq-mcf /usr/local/ea-utils/adaptors.fasta strain1_read1.fastq
strain1_read2.fastq -o strain1_read1.filtered.fastq -o
strain1_read2.filtered.fastq -C 1000000 -q 20 -p 10 -u -x 0.01

After a few minutes the filtering should be complete and you should see something similar to:

http://code.google.com/p/ea-utils/
http://code.google.com/p/ea-utils/

36

37

Note that read 1 has few reads trimmed than read 2. This is generally true as read 2 tends to be of

slightly lower quality than read 1.

The filtered reads should be present in files strain1_read1.filtered.fastq and strain1_read2.filtered.fastq

Task 4:

Check the quality scores and sequence distribution in the fastqc program for the two filtered

fastq files. You should notice very little change (since comparatively few reads were filtered).

Note that although in this case filtering did very little, most runs are not as 'clean' as this so you may

find your filtering removes many more reads in the real-world.

Task 5:

We can perform a quick check (although this by no means guarantees) that the sequences in read

1 and read 2 are in the same order by checking the ends of the two files and making sure that the

headers are the same.

38

Task 6:

Check the number of reads in each filtered file. They should be the same. To do this use the grep

command to search for the number of times the header appears. E.g:

grep -c "@CP000243" strain1_read1.filtered.fastq

Do the same for the strain1_read2.filtered.fastq file.

39

3.3 – Aligning Illumina data to a reference sequence

Now that we have checked the quality of our raw data, we can begin to align the reads against a

reference sequence. In this way we can compare how the reference sequence and the strain we have

sequenced compare.

To do this we will be using a program called BWA (Burrows Wheeler Aligner Li H. and Durbin R. (2009)

Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25:1754-60.) . This uses an

algorithm called (unsurprisingly) Burrows Wheeler to rapidly map reads to the reference genome. BWA

also allows for a certain number of mismatches to account for variants which may be present in strain 1

vs the reference genome. Unlike other alignment packages such as Bowtie (version 1) BWA allows for

insertions or deletions as well.

By mapping reads against a reference, what we mean is that we want to go from a FASTQ file listing

lots of reads, to another type of file (which we'll describe later) which lists the reads AND where/if it

maps against the reference genome. The figure below illustrates what we are trying to achieve here.

Along the top in grey is the reference sequence. The coloured sequences below that indicates individual

sequences and how they map to the reference. If there is a real variant in a bacterial genome we would

expect that (nearly) all the reads would contain the variant at the relevant position rather than the same

base as the reference genome. Remember that error rates for any single read on second generation

platforms tend to be around 0.5-1%. Therefore a 100bp read is likely to contain at least one error.

Let's look at 2 potential SNPs which are in fact artefacts.

1. Sequencing error:

The region highlighted in green on the right shows that most reads agree with the reference sequence

(i.e. C-base). However, 2 reads near the bottom show an A-base. In this situation we can safely assume

that the A-bases are due to a sequencing error rather than a genuine variant.

2. PCR duplication:

The highlighted region red on the left shows where there appears to be a variant (either due to

sequencing of a diploid genome or non-clonal samples). A C-base is present in the reference and half

the reads, whilst an A-base is present in the other reads.

40

Is this a genuine difference or a sequencing or sample prep error? What do you think? If this was a real

sample, would you expect all the reads containing an A to start at the same location?

The answer is no. This 'SNP' is in fact due to PCR duplication. I.e. the same fragment of DNA has been

replicated many times more than the average and happens to contain an error. We can filter out such

reads during after alignment to the reference (see later).

3.3.1: Indexing a reference genome:

Before we can start aligning reads to a reference genome, the genome sequence needs to be indexed.

This means sorting the genome into easily searched chunks.

Task 7: Generating an index file from the reference sequence

41

Change directory to the reference_sequence directory:

cd ~/genomics_tutorial/reference_sequence

In this directory we have 2 files. Ecoli_UTI89.fna is a FASTA file which contains the reference genome

sequence. The Ecoli_UTI89.gff file contains the annotation for this genome. We will use this later.

 First, let's looks at the bwa command itself. Type:

bwa

This should yield something like:

Program: bwa (alignment via Burrows-Wheeler transformation)

Version: 0.5.7 (r1310)

Contact: Heng Li <lh3@sanger.ac.uk>

Usage: bwa <command> [options]

Command:

 index index sequences in the FASTA format

 aln gapped/ungapped alignment

 samse generate alignment (single ended)

 sampe generate alignment (paired ended)

 bwasw BWA-SW for long queries

 fa2pac convert FASTA to PAC format

 pac2bwt generate BWT from PAC

 pac2bwtgen alternative algorithm for generating BWT

 bwtupdate update .bwt to the new format

 pac_rev generate reverse PAC

 bwt2sa generate SA from BWT and Occ

 pac2cspac convert PAC to color-space PAC

 stdsw standard SW/NW alignment

BWA is actually a suite of programs which all perform different functions. We are only going to use the

three during this workshop, bwa index, bwa aln and bwa sampe.

42

If we type:

bwa index

We can see more options for the bwa index command:

Usage: bwa index [-a bwtsw|div|is] [-c] <in.fasta>

Options: -a STR BWT construction algorithm: bwtsw or is [is]

 -p STR prefix of the index [same as fasta name]

 -c build color-space index

Warning: `-a bwtsw' does not work for short genomes, while `-a is' and

 `-a div' do not work not for long genomes. Please choose `-a'

 according to the length of the genome.

By default bwa index will use the IS algorithm to produce the index. This works well for most

genomes, but for very large ones (e.g. vertebrate) you may need to use bwtsw. For bacterial genomes

the default algorithm will work fine.

Now we will create a reference index for the genome using BWA:

bwa index Ecoli_UTI89.fna

If you now list the directory contents using the 'ls' command, you will notice that the BWA index

program has created a set of new files. These are the index files BWA needs.

3.3.2: Aligning reads to the indexed reference sequence:

Now we can begin to align read 1 and read 2 to the reference genome. First of all change back into the

~/genomics_tutorial/strain1/ directory.

cd ~/genomics_tutorial/strain1/

43

Now let's create a directory to store our alignment (just to be tidy):

mkdir remapping_to_reference

And now lets change into that directory:

cd remapping_to_reference

44

We can now explore the alignment options BWA has to offer. Type:

bwa aln

Usage: bwa aln [options] <prefix> <in.fq>

Options:

 -n NUM max #diff (int) or missing prob under 0.02 err rate (float) [0.04]

 -o INT maximum number or fraction of gap opens [1]

 -e INT maximum number of gap extensions, -1 for disabling long gaps [-1]

 -i INT do not put an indel within INT bp towards the ends [5]

 -d INT maximum occurrences for extending a long deletion [10]

 -l INT seed length [32]

 -k INT maximum differences in the seed [2]

 -m INT maximum entries in the queue [2000000]

 -t INT number of threads [1]

 -M INT mismatch penalty [3]

 -O INT gap open penalty [11]

 -E INT gap extension penalty [4]

 -R INT stop searching when there are >INT equally best hits [30]

 -q INT quality threshold for read trimming down to 35bp [0]

 -c input sequences are in the color space

 -L log-scaled gap penalty for long deletions

 -N non-iterative mode: search for all n-difference hits (slooow)

 -f FILE file to write output to instead of stdout

We can see that we need to provide BWA with a FASTQ file containing the raw reads (denoted by

<in.fq>) to align to a reference file (unhelpfully this is listed as <prefix>). There are also a number of

options. The most important are the maximum number of differences in the seed (-k i.e. the first 32 bp

of the sequence vs the reference), the number of processors the program should use (-t – our machine

has 8 processors), and the file to output the results to (-f).

Note that our reference sequence is in ~/genomics_tutorial/reference_sequence/Ecoli_UTI89.fna

Our filtered reads for read 1 are in

~/genomics_tutorial/strain1/illumina_reads/strain1_read1.filtered.fastq

Our filtered reads for read 2 are in

~/genomics_tutorial/strain1/illumina_reads/strain1_read2.filtered.fastq

So to align read 1 using 8 processors and ignoring bases with quality scores less than 20 and output to

file bwa_read1.aln, type (all on one line):

45

Task 8: Aligning reads to the reference genome

bwa aln -t 8 -q 20 -f bwa_read1.aln
 ~/genomics_tutorial/reference_sequence/Ecoli_UTI89.fna
~/genomics_tutorial/strain1/illumina_reads/strain1_read1.filtered.fas
tq

This will take around 5 minutes. Once completed we can do exactly the same for read 2.

bwa aln -t 8 -q 20 -f bwa_read2.aln
 ~/genomics_tutorial/reference_sequence/Ecoli_UTI89.fna
~/genomics_tutorial/strain1/illumina_reads/strain1_read2.filtered.fas
tq

Once complete you can list the contents of the directory and you should see two new files

bwa_read1.aln and bwa_read2.aln. These files store the alignment of read 1 and read 2 to the reference

genome. They are in a binary format and only BWA will read these files (i.e. they are not human

readable).

The task is now to marry the alignments of the two reads (i.e. to include the paired-end distance

information) To do this we will use the bwa sampe command.

bwa sampe

This should yield the following description:

46

Usage: bwa sampe [options] <prefix> <in1.sai> <in2.sai> <in1.fq> <in2.fq>

Options:

 -a INT maximum insert size [500]

 -o INT maximum occurrences for one end [100000]

 -n INT maximum hits to output for paired reads [3]

 -N INT maximum hits to output for discordant pairs [10]

 -c FLOAT prior of chimeric rate [1.0e-05]

 -P preload index into memory (for base-space reads only)

 -s disable Smith-Waterman for the unmapped mate

 -f FILE sam file to output results to instead of stdout

Notes: 1. For SolID reads, <in1.fq> corresponds R3 reads and <in2.fq> to F3.

 2. For reads shorter than 30bp, applying a smaller -o is recommended to

 to get a sensible speed at the cost of pairing accuracy.

We can see that we need to provide BWA with a reference genome in FASTA format file (unhelpfully

this is listed as <prefix>), the 2 alignments of read 1 and read 2 (denoted by <in1.sai> and <in2.sai>)

and the two files containing the filtered FASTQ reads (denoted by <in1.fq> and <in2.fq>). There are

also a number of options. The most important are the maximum insert size (i.e. the distance between

the paired-end reads) and the file to output the results to (-f).

Here we will set the maximum insert-size to be 600bp (determined from the library preparation), and

the output file to be alignment.sam. The maximum insert-size enables BWA to flag potential

insertions/deletions compared to the reference.

Note that our reference sequence is in ~/genomics_tutorial/reference_sequence/Ecoli_UTI89.fna

Our filtered reads for read 1 are in

~/genomics_tutorial/strain1/illumina_reads/strain1_read1.filtered.fastq

Our filtered reads for read 2 are in

~/genomics_tutorial/strain1/illumina_reads/strain1_read2.filtered.fastq

Our bwa alignment files are in the same directory we are in (bwa_read1.aln, bwa_read2.aln). Enter the

following on the command-line.

bwa sampe -P -a 600 -f alignment.sam
~/genomics_tutorial/reference_sequence/Ecoli_UTI89.fna bwa_read1.aln
bwa_read2.aln
~/genomics_tutorial/strain1/illumina_reads/strain1_read1.filtered.fas
tq
~/genomics_tutorial/strain1/illumina_reads/strain1_read2.filtered.fas
tq

This will take around 10 minutes.

47

Once completed the alignment will be stored in the alignment.sam file.

3.4: Viewing the alignment

Once the alignment is complete, list the directory contents using the ls command, check that the

alignment.sam file is present.

The raw alignment is stored in what is called SAM format (Simple AlignMent format). It is in plain

text format and you can view it if you wish using the 'less' command. (e.g. less alignment.sam). Do not

try to open the whole file in a text editor as you will likely run out of memory!

Each alignment line has 11 mandatory fields for essential alignment information such as mapping

position, and variable number of optional fields for flexible or aligner specific information. For further

details as to what each field means see http://samtools.sourceforge.net/SAM1.pdf

http://samtools.sourceforge.net/SAM1.pdf

48

Task 9: Convert SAM to BAM file

Before we can visualise the alignment however, we need to convert the SAM file to a BAM (Binary

AlignMent format) which can be read by most software analysis packages. To do this we will use

another suite of programs called samtools. Type:

samtools view

49

Usage: samtools view [options] <in.bam>|<in.sam> [region1 [...]]

Options:

 -b output BAM

 -h print header for the SAM output

 -H print header only (no alignments)

 -S input is SAM

 -u uncompressed BAM output (force -b)

 -1 fast compression (force -b)

 -x output FLAG in HEX (samtools-C specific)

 -X output FLAG in string (samtools-C specific)

 -c print only the count of matching records

 -L FILE output alignments overlapping the input BED FILE [null]

 -t FILE list of reference names and lengths (force -S) [null]

 -T FILE reference sequence file (force -S) [null]

 -o FILE output file name [stdout]

 -R FILE list of read groups to be outputted [null]

 -f INT required flag, 0 for unset [0]

 -F INT filtering flag, 0 for unset [0]

 -q INT minimum mapping quality [0]

 -l STR only output reads in library STR [null]

 -r STR only output reads in read group STR [null]

 -s FLOAT fraction of templates to subsample; integer part as seed [-1]

 -? longer help

We can see that we need to provide samtools view with a reference genome in FASTA format file (-T),

the -b and -S flags to say that the output should be in BAM format and the input in SAM, plus the

alignment file.

Note that our reference sequence is in ~/genomics_tutorial/reference_sequence/Ecoli_UTI89.fna

Type (all on one line):

samtools view -bS -T
~/genomics_tutorial/reference_sequence/Ecoli_UTI89.fna
alignment.sam > alignment.bam

This should take around 5 minutes.

Task 10: Sort BAM file

Once this is complete we then need to sort the BAM file so that the reads are stored in the order they

appear along the chromosomes (don't ask me why this isn't done automatically....). We can do this using

the samtools sort command.

samtools sort alignment.bam alignment.sorted

This will take another 5 minutes or so. Once complete, list the directory contents (again using the ls

50

command). Note that the output file is called alignment.sorted, but actually the program appends .bam

to the end of the file (see below). Just to add confusion.

Task 11: Fill the 'MD' field using samtools

This mysterious task is an obscure term whose origins are lost in the mists of time. However, all it

means is that we want samtools to look at the BAM file and annotate where it thinks SNPs should be.

On the command-line type:

samtools fillmd -b alignment.sorted.bam
~/genomics_tutorial/reference_sequence/Ecoli_UTI89.fna >
alignment.calmd.bam

Again, this should take around 5 minutes.

Once complete, list the directory contents with the 'ls' command and confirm that the

alignment.calmd.bam file has been created.

Task 12: Remove suspected PCR duplicates

Especially when using paired-end reads, samtools can do a reasonably good job of removing potential

PCR duplicates (see the first part of this workshop if you are unsure what this means).

Again, samtools has a great little command to do this:

On the command-line type:

samtools rmdup alignment.calmd.bam alignment.calmd.rmdup.bam

This will take around 3-4 minutes. Again, once complete, list the directory.

51

Task 12: Index the BAM file

Most programs used to view BAM formatted data require an index file to locate the reads mapping to a

particular location quickly. We'll use the samtools index command to do this.

Type:

samtools index alignment.calmd.rmdup.bam

52

We should obtain a .bai file (known as a BAM-index file).

Task 13: Obtain mapping statistics

Finally we can obtain some summary statistics.

samtools flagstat alignment.calmd.rmdup.bam > mappingstats.txt

This should only take a few seconds. Once complete view the mappingstats.txt file using a text-editor

(e.g. gedit or nano) or the 'more' command.

So here we can see we have 6488111 reads in total, none of which failed QC. 97.15% of reads mapped

to the reference genome and 96.90% mapped with the expected 500-600bp distance between them.

16206 read could not have their read-pair mapped.

2 reads have mapped to a different chromosome than their pair (1 has a mapping quality > 5 – this is a

Phred scaled quality score much as we say in the FASTQ files). If there were any such reads they

would likely due to repetitive sequences (e.g phage insertion sites) or an insertion of plasmid or phage

DNA into the main chromosome.

Task 14: Cleanup

We have a number of leftover intermediate files which we can now remove to save space.

Type (all on one line):

rm alignment.bam alignment.calmd.bam alignment.sam
 alignment.sorted.bam *.aln

You should just have the alignment.calmd.rmdup.bam, the index file and the mappingstats.txt file left

after this.

Well done! You have now mapped, filtered and sorted your first whole genome data-set!

Let's take a look at it!

53

Task 15: Load the Integrative Genomics Viewer

Within your amazon instance (make sure you don't accidentally load firefox on your desktop PC), load

the Firefox web browser by double clicking the icon on the desktop. Go to

http://www.broadinstitute.org/software/igv/download

You may find that you need to register to access the download page. Please do so if you need to.

Once you have registered you should reach the downloads page (similar to the screenshot below). Click

on the 'Launch with 2GB' option. If Firefox asks you whether or not to Open or Save the file, click on

'Open'. For larger genomes you may need to use the 10Gb version (though you'll need a machine with

at least this much RAM).

After a minute or so the IGV viewer should appear:

http://www.broadinstitute.org/software/igv/download

54

Task 16: Import the E.coli UTI89 reference genome to IGV

By default IGV does not contain our reference genome. We'll need to import it.

Click on 'Genomes ->Create genome file...'

Enter the following details into and click on 'Save'.

IGV will ask where it can save the genome file. Your home directory will be fine. Click 'Save' again.

55

Note that the genome has now been imported. Two chromosomes are listed.

Task 17: Load the BAM file

Load the alignment.calmd.rmdup.bam file. Note that IGV requires the .bai index file to also be in the

same directory.

Once loaded your screen should look similar to the following. Note that you can load BAM files if you

wish to compare different samples or the results of different mapping programs.

56

Note that at the moment, you cannot see any reads. We first need to select a chromosome and zoom in.

To save memory, IGV will only display reads at a certain magnification (you can alter this in the View

-> Preferences -> Alignments menu).

Select the CP000243.1 chromosome.

Either use the the +/- keys to zoom in or use the zoom bar at the top right of the screen. At the bottom

you can see a representation of the genes that have been annotated for the reference strain. The

57

following is a snapshot of the genome at position 25171850-2543949 – a 25kb window on the genome.

The gray graph at the top of the figure indicates the coverage of the genome by the grey reads below.

The more reads mapping to a certain location, the higher the peak on the graph. You'll see a coloured

line of blue, green or red in this coverage plot if there are any SNPs (single-nucleotide polymorphisms)

present (there are none in the plot below). If there are any regions in the genome which are not covered

by the reads, you will see these as gaps in the coverage graph. Sometimes these gaps are caused by

repetitive regions, others are caused by genuine insertions/deletions in your new strain with respect to

the reference.

Below the coverage graph is a representation of each read as it is mapped to the genome. Any areas of

mismatch either due to inconsistent distances between paired-end reads or due to mutations are

highlighted by a colour. If there is a consistent column of colour, this is indicative of a SNP or Indel.

The brighter the colour, the higher the base-calling quality is estimated to be.

3.5: SNPs and Indels

The following 3 tasks are open-ended. Please take your time with these. Read the examples on the

following page if you get stuck.

Task 18: Read about the alignment display format

Visit http://www.broadinstitute.org/software/igv/AlignmentData

Task 19: Manually Identify a region without reads mapping

What is this region? Is there a gene close-by? What sort of genes seem to result in areas of low/zero

coverage? Why do you think this is? (think about repetitive sequences, what does BWA do if a read

maps to multiple locations?)

Task 20: Identify SNPs and Indels manually

Zoom into the region at the start of chromosome CP000243.1. Can you find any SNPs? Which genes

(if any) are they in? How reliable do they look? (Hint – look at the number of reads mapping, their

orientation and how bright the base-calls are).

Zoom in to maximum magnification at the site of the SNP. Can you determine whether a SNP results in

a synonymous (i.e. silent) or non-synonymous change in the amino acid? Can you use PDB

(http://www.rcsb.org/pdb/home/home.do) or other resources to determine whether or not this occurs in

a catalytic site or other functionally crucial region? (Note this may not always be possible).

What effect do you think this would have on the cell?

http://www.broadinstitute.org/software/igv/AlignmentData
http://www.rcsb.org/pdb/home/home.do

58

Example: Identifying SNPs manually

To help you there is an example pasted below for position 15,450-15,540bp on chromosome

CP000243.1.

The first thing to note is that only discrepancies with respect to the reference are shown. If a read is

entirely the same as its reference, it will appear entirely grey. Blue and red blocks indicate the presence

of an 'abnormal' distance between paired-end reads. Note that unless this is consistent across most of

the reads at a given position, it is not significant.

Here we have a G->C SNP. This changes the codon from CAG->GAG (remember this gene is on the

reverse strand as indicated by the arrows) and results in a Gln->Thu mutation in the final protein

product. As this is a cell-killing gene, this could be a very important change. Note that there is a single

T base listed in one of the reads towards the bottom of the screen. Based on the frequency of C-bases

vs T-bases at this position we can say that the T-base is likely to be a sequencing error and ignore it.

One additional check is that the SNPs occur on both read 1 and read 2. We can check this by looking at

the direction of the grey reads. We can see that approximately half of the bases reporting the G->C

mutation occur in read 1 (forward arrow), and half in read 2 (reverse arrow). This adds confidence to

the base-call as it reduces the likelihood of this SNP being the result of a PCR duplication error.

Note that sequencing errors in Illumina data are quite common (look at the odd bases showing up in the

screen above. We rely on depth of sequencing to average out these errors. This is why people often

mention that a minimum median coverage of 20-30x across the genome is required for accurate SNP-

59

calling with Illumina data. This is not necessarily true for simple organisms such as prokaryotes, but for

diploid and polyploid organisms it becomes important because each position may have one, two or

many alleles changed.

60

Example: Identifying Indels manually
To help you there is an example pasted below for position 11,200-11,250bp on chromosome

CP000243.1.

Much the same guidelines apply for indels as they do for SNPs. Here we have an A->G SNP which is

preceded by the insertion of a C base in our sample compared to the reference. Again, we can see how

much confidence we have that the insertion is real by the brightness of the colours and by ensuring that

the indel is found on both read 1 and read 2.

The insertion is signified by the presence of a purple bar. Hover your mouse over it to get more details.

We can hover our mouse over the reference sequence to get details of the gene. We can see that it is a

cytochrome C chaperone. Given that this indel changes the reading frame of the protein it could have

very significant effects.

One can research the effect the effect of a SNP or Indel may have by finding the relevant gene at

http://www.uniprot.org (or google 'yaaW uniprot' in this case).

It should be clear from this quick exercise that trying to work out where SNPs and Indels are manually

is a fairly tedious process if there are many mutations. As such, the next section will look at how to

obtain spread-sheet friendly summary details of these.

http://www.uniprot.org/

61

Recap: SNP/Indel identification

1. Only changes from the reference sequence are displayed in IGV

2. Genuine SNPs/Indels should be present on both read 1 and read 2

3. Genuine SNPs/Indels should be supported by a good (i.e. 20-30x) depth of

 coverage

4. Very important mutations (i.e. ones relied upon in a paper) should be

 confirmed via PCR/Sanger sequencing.

3.5: Automated analyses

Viewing alignments is useful when convincing yourself or others that a particular mutation is real

rather than artefactual and for getting a feel for short read sequencing datasets. However, if we want to

quickly and easily find variants we need to be able to generate lists of variants, in which gene they

occur (if any) and what effect they have. We also need to know which (if any) genes are missing (i.e.

have zero coverage).

3.5.1: Automated variant calling

To call variants we can use a number of packages (e.g. VarScan, GTK). However here, we will show

you how to use the bcftools package which comes with samtools. First we need to generate a pileup file

which contains only locations with the variants and pass this to bcftools.

Task 21: Identify SNPs and Indels using automated variant callers

Make sure you are in the ~/genomics_tutorial/strain1/remapping_to_reference directory. Type the

following:

 samtools mpileup

You should see a screen similar to the following

Usage: samtools mpileup [options] in1.bam [in2.bam [...]]

Input options:

 -6 assume the quality is in the Illumina-1.3+ encoding

 -A count anomalous read pairs

 -B disable BAQ computation

 -b FILE list of input BAM files [null]

 -C INT parameter for adjusting mapQ; 0 to disable [0]

 -d INT max per-BAM depth to avoid excessive memory usage [250]

 -E extended BAQ for higher sensitivity but lower specificity

 -f FILE faidx indexed reference sequence file [null]

62

 -G FILE exclude read groups listed in FILE [null]

 -l FILE list of positions (chr pos) or regions (BED) [null]

 -M INT cap mapping quality at INT [60]

 -r STR region in which pileup is generated [null]

 -R ignore RG tags

 -q INT skip alignments with mapQ smaller than INT [0]

 -Q INT skip bases with baseQ/BAQ smaller than INT [13]

Output options:

 -D output per-sample DP in BCF (require -g/-u)

 -g generate BCF output (genotype likelihoods)

 -O output base positions on reads (disabled by -g/-u)

 -s output mapping quality (disabled by -g/-u)

 -S output per-sample strand bias P-value in BCF (require -g/-u)

 -u generate uncompress BCF output

SNP/INDEL genotype likelihoods options (effective with `-g' or `-u'):

 -e INT Phred-scaled gap extension seq error probability [20]

 -F FLOAT minimum fraction of gapped reads for candidates [0.002]

 -h INT coefficient for homopolymer errors [100]

 -I do not perform indel calling

 -L INT max per-sample depth for INDEL calling [250]

 -m INT minimum gapped reads for indel candidates [1]

 -o INT Phred-scaled gap open sequencing error probability [40]

 -P STR comma separated list of platforms for indels [all]

Notes: Assuming diploid individuals.

If you are running this on your own datasets, please make sure you set the -d parameter if you have

high coverage (i.e. > 100x coverage) per sample.

As the samtools mpileup command outputs an unfriendly output, we will pass it directly to the bcftools

view command using the linux pipe ('|'). Type the following:

samtools mpileup -uf ~/genomics_tutorial/reference_sequence/Ecoli_UTI89.fna

alignment.calmd.rmdup.bam | bcftools view -bvcg - > var.raw.bcf

This may take 15 minutes or so and will generate a BCF (Binary Call Format) file containing the raw

unfiltered variant calls in a binary format.

This is not readable by humans, so let's use the bcftools view command and use the linux pipe ('|') with

the with the vcfutils.pl varFilter command. We can see what the options are for this program by typing

in:

63

vcfutils.pl varFilter

Usage: vcfutils.pl varFilter [options] <in.vcf>

Options: -Q INT minimum RMS mapping quality for SNPs [10]

 -d INT minimum read depth [2]

 -D INT maximum read depth [10000000]

 -a INT minimum number of alternate bases [2]

 -w INT SNP within INT bp around a gap to be filtered [3]

 -W INT window size for filtering adjacent gaps [10]

 -1 FLOAT min P-value for strand bias (given PV4) [0.0001]

 -2 FLOAT min P-value for baseQ bias [1e-100]

 -3 FLOAT min P-value for mapQ bias [0]

 -4 FLOAT min P-value for end distance bias [0.0001]

 -e FLOAT min P-value for HWE (plus F<0) [0.0001]

 -p print filtered variants

Note: Some of the filters rely on annotations generated by SAMtools/BCFtools.

We will use the -d option to limit variant calls to those positions where there are at least 10 reads. Type:

bcftools view var.raw.bcf | vcfutils.pl varFilter -d 10 > var.flt.vcf

Once complete, view the file using the 'more' command. You should see something similar to: (lines

beginning with # are just comment lines explaining the output)

You can see the chromosome, position, reference and alternate allele as well as a quality score for the

SNP. This a VCF file (Variant Call File). This is a standard developed for the 1000 genomes project.

The full specification is given at

http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-

version-41

The lines starting DP and INDEL contain various details concerning the variants. For haploid

organisms, most of these details are not necessary.

Variant qualities:

Typically one should only accept variant calls over a certain quality threshold. Typically a threshold of

60 is used (i.e. a 1 in 1000000 chance of a mis-called variant). Here you can see that all these variants

would pass these thresholds. However, for future reference, we can use the Linux 'awk' command to

http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41

64

filter the data on the quality column (i.e. column 6):

awk '($6>=60)' var.flt.vcf > out.snps.vcf4

Again viewing the final output file out.snps.vcf4 using a text-editor or the 'more' command should

yield:

This forms our definitive list of variants for this sample.

Task 22: Compare the variants found using this method to those you found in

section 3.5

Can you see any variants which may have been missed? Often variants within a few bp of indels are

filtered out as they could be spurious SNPs thrown up by a poor alignment. This is especially the case

if you use non-gapped aligners such as Bowtie.

(Hint – check out the SNP/Indel combination in the example in section 3.5 again)

3.5.2: Quickly locating genes which are missing compared to the

reference

We can use a command from the BEDTools package (http://code.google.com/p/bedtools/) to identify

annotated genes which are not covered by reads across their full length.

Type the following one one line:

coverageBed -abam alignment.calmd.rmdup.bam -b

~/genomics_tutorial/reference_sequence/Ecoli_UTI89.gff > gene_coverage.txt

This should only take a minute or so. Once complete we can view the file in LibreOffice spreadsheet.

Launch 'LibreOffice Calc' from the Applications->Office menu.

http://code.google.com/p/bedtools/

65

Click 'Insert' and then select 'Sheet From File...'. Select the gene_coverage.txt file in the

~/genomics_tutorial/strain1/remapping_to_reference directory.

When the program asks you which delimters to use, select 'Tab'. Make sure the others are deselected.

You may need to right click on the column labels for column I and select 'Column width'. Reduce this

to 5”.

Column M represents the coverage of the particular GFF entry. A value of 1 is fully covered by reads.

Less than one indicates regions with no reads mapping. Let's sort on column M in ascending order so

66

that anything missing with missing chunks shows up at the top. Select all columns and click on Data-

>Sort...

There appear to be very few missing regions. In fact there is only one missing base near the origin of

replication for this bacteria. Because the aligner doesn't know that the genome is circular (and thus to

allow reads to span the beginning and end of the chromosome), the very first base is missing from the

alignment. It is however more than likely to be present in the reads.

3.5.3: Evaluating the impact of variants

67

So, aside from a few variants we've discovered, this strain of E.coli does not seem to have lost anything

and seems very closely related to the reference genome. So lets take a closer look at the variants. We'd

like to obtain a list of genes in which these variants occur and whether they result in amino acid

changes.

To do this we'll use a custom perl script developed by David Studholme and Konrad Paszkiewicz.

We'll just need the reference annotation, sequence and the VCF file containing the SNPs.

Task 23: Determine the effect of variants

Type (all on one line):

/usr/local/scripts/snp_comparator.pl 10

~/genomics_tutorial/reference_sequence/Ecoli_UTI89.fna

~/genomics_tutorial/reference_sequence/Ecoli_UTI89.gff out.snps.vcf4 >

snp_report.txt

This program takes the information from the reference sequence and annotation, and the VCF snp files

and determines whether the variant occurs within a gene, and if so the effect of each mutation.

Once complete, view the snp_report.txt file using the more command:

In later workshops we will see how we can use this program to compare results between different

strains.

68

Task 24: Check each variant in IGV

N.B. If a variant doesn't seem to match what the snp_report file says, check the reverse reading frames.

Task 25: Check each non-synonymous SNP and Indel for a possible link to

haemorrhaging phenotypes (often known as EHEC)

Use the web for this. Search UniProt (http://www.uniprot.org) or other databases for evidence that any

of these proteins may be linked to the outbreak.

That concludes the first part of the course. You have successfully, QC'd, filtered, remapped and

analysed a whole bacterial genome! Well done!

In the next installment we will be looking at how to extract and assemble unmapped reads. This will

enable us to look at material which may be present in the strain of interest but not in the reference

sequence.

http://www.uniprot.org/

69

2013 Workshop on Genomics, Cesky Krumlov

 Part 4:

Short read genomics: Assembly of

unmapped reads

Instructors:

• Konrad Paszkiewicz k.h.paszkiewicz at exeter ac uk

Objectives:

By the end of the workshop you will be expected to be able to:

• Extract reads which do not map to the reference sequence

• Assemble these reads de novo using Velvet

• Generate summary statistics for the assembly

• Identify potential genes within the assembly

• Search for matches within the Swissprot database via BLAST and against the Pfam database

• Visualize the taxonomic distribution of BLAST hits

• Perform gene prediction and annotation using RAST

70

4.1 Introduction

In this section of the workshop we will continue the analysis of a strain of E.coli which is involved in

urinary tract infections. In the previous section we cleaned our data, checked QC metrics, mapped our

data and obtained a list of variants and an overview of any missing regions.

Now, we will examine those reads which did not map to the reference genome. We want to know what

these sequences represent. Are they novel genes, plasmids or just contamination?

To do this we will extract unmapped reads, evaluate their quality, prepare them for de novo assembly,

assemble them using Velvet, generate assembly statistics and then produce some annotation via Pfam,

BLAST and RAST.

4.2 Extraction and QC of unmapped reads

Task 1: Extract the unmapped reads

First of all make sure you are in the ~/genomics_tutorial/strain1 directory (hint: use the cd command).

Then create a directory called denovo_assembly in which we will do our de novo assembly and

analysis.

mkdir denovo_assembly/
cd denovo_assembly/

Now we will use the bam2fastq program (http://www.hudsonalpha.org/gsl/software/bam2fastq.php) to

extract from the BAM file just those reads which did NOT map to the reference genome. The

bam2fastq program has a number of options, most of which are self-explanatory. Type (all on one line):

bam2fastq --no-aligned -o unaligned\#.fastq
 ../remapping_to_reference/alignment.calmd.rmdup.bam

The --no-aligned option means only extract reads which did not align. The -o unaligned\# means dump

read 1 into a file called unaligned_1.fastq and read 2 into a file unaligned_2.fastq. Below we can see

that the program has successfully created the two files.

Note that some reads were singletons (i.e. one read mapped to the reference, but the other did not).

These will not be included in this analysis.

http://www.hudsonalpha.org/gsl/software/bam2fastq.php

71

Task 2: Check that the number of entries in both fastq files is the same. Also check

that the last few entries in the read 1 and read 2 files have the same header (i.e. that

they have been correctly paired).

Task 3: Evaluate QC of unmapped reads

Use the fastqc program to look at the statistics and QC for the unaligned_1.fastq

and unaligned_2.fastq files.

Do these look reasonably good? Remember, some reads will fail to map to the reference because they

are poor quality, so the average scores will be lower than the initial fastqc report we did in the

remapping workshop. The aim here is to see if it looks as though there are reads of reasonable quality

which did not map.

Assuming these reads look ok, we will proceed with preparing them for de novo assembly.

4.3 De novo assembly

Task 3: Prepare reads for de novo assembly

We will be using the Velvet (http://www.ebi.ac.uk/~zerbino/velvet/) assembler to stitch together the

unmapped reads. This will enable us to obtain large enough contigs to determine which genes, plasmids

or contaminant material is present (if any!). However, Velvet requires that the reads are all in a single

file and arranged such that read 1 is followed by its corresponding read 2 pair.

Fortunately Velvet comes with a script to do this for us. Type (all on one line):

perl /usr/local/velvet/shuffleSequences_fastq.pl unaligned_1.fastq
unaligned_2.fastq unaligned.fastq

Once this is complete, (it should only take a few seconds), check to make sure that the entries are

indeed arranged as read 1 followed by read 2 in unaligned.fastq (just use more and tail to do a visual

check).

http://www.ebi.ac.uk/~zerbino/velvet/

72

Task 4: Learn more about de novo assemblers

To understand more about de-novo assemblers, read the technical note at:

 http://bio-ruby.ex.ac.uk/technote_denovo_assembly_ecoli.pdf

N.B. You will also learn more in the next section so don’t worry if it doesn’t all make sense immediately.

Task 5: Generate the Velvet hash table

Velvet requires a hash table which stores all of the k-mer and paired-end information prior to trying to

assemble the data. Note that velvet ignores quality scores, so whether you pass it a FASTA or a

FASTQ file doesn't matter. However, it will automatically convert all N bases to A (this is because to

save memory it can only represent 4 bases internally). It pays to remove sequences containing Ns at the

initial filtering stage to avoid introducing ambiguities.

velveth assembly/ 31 -fastq -shortPaired unaligned.fastq

This will perform a de novo assembly using a k-mer length of 31 and put the results into the assembly/

directory. Note that if you have a large number of reads, you may well need to increase the kmer length

to reduce memory requirements. This will have the effect of excluding reads shorter than the k-mer size

(e.g. selecting a k-mer length of 41 will exclude all reads less than 39bp long).

Task 6: Perform denovo assembly

We can now (at last!) perform the de novo assembly of the unmapped reads. To do this we will use the

program velvetg (stands for velvet graph). Velvetg comes with many options, and if you are performing

de novo assembly of a full complex genome you may well need to tinker with these parameters to get

the best results. (see the Velvet manual for more detail). Type (all on one line):

velvetg assembly/ -cov_cutoff auto -exp_cov auto
-unused_reads yes -very_clean yes

http://bio-ruby.ex.ac.uk/technote_denovo_assembly_ecoli.pdf

73

Note that velvetg runs quickly. Normally this is not the case, but because we have so few reads (and

because this example is artificial) it speeds through the assembly in seconds.

The options used with velvetg -cov_cutoff and -exp_cov were set to automatic. -cov_cutoff specifies

how frequently a k-mer should appear to avoid being thrown out as noise (i.e. sequencing errors or

contamination). -exp_cov sets the expected level of coverage (i.e. how many times each k-mer should

be occur). This allows the assembler to make an educated guess as to how many copies of a sequence

are present. This is especially useful in repetitive regions.

The -unused_reads flag and -very_clean flag just mean that velvetg should output any reads which

were not included in the assembly and that it should delete as many intermediate files as possible once

it has finished.

If we change to the assembly directory and list its contents we should see several files:

74

Let's take them in turn:

1. Log

This lists the version number of Velvet, as well as the some summary statistics regarding the assembly.

(read http://en.wikipedia.org/wiki/N50_statistic for more details about what N50 means). We'll come

back to this file in the next section.

2. Pregraph
This is a file generated by Velvetg when generating the k-mer graph but is normally not

required.

3. UnusedReads.fa
This is a FASTA formatted file containing the reads which could not be assembled into contigs

larger than twice the kmer length (i.e. 2 x 31=62bp). This could be because they represent

highly repetitive sequences, or because the sequences are shorter than the kmer length selected.

(Don't worry if your file looks different to the example below).

http://en.wikipedia.org/wiki/N50_statistic

75

4. stats.txt

We can see that Velvet has managed to assemble 1 supercontig (node). This file is a simple tab-

delimited description of the contigs. The column names are pretty much self explanatory. Note

however that contig lengths are given in k-mers. To obtain the length in nucleotides of each

node you simply need to add k − 1, where k is the hash length used in velveth. The in and out

columns correspond to the number of arcs on the 5’ and 3’ ends of the contig respectively. The

coverages in columns short1 cov, short1 Ocov, short2 cov, and short2 Ocov are provided in k-

mer coverage.

The relation between k-mer coverage Ck and standard (nucleotide-wise) coverage C is Ck = C

∗ (L − k + 1)/L where k is your hash length, and L you read length.

5. contigs.fa

This contains the supercontigs as assembled by velvetg in FASTA format. It constitutes the main output

file. Note that this does not contain any annotation – Velvet only deals with assembly of DNA.

Task 7: Count number of unassembled reads in UnusedReads.fa and the number of

assembled contigs in contigs.fa. Does it tally with the Log file?

Hint, use the grep -c command

4.3 More denovo assembly statistics

Now that we have a de novo assembly, we can generate some basic statistics for it using a script called

fasta_summary.pl. Note that we can use this for any FASTA formatted file. Make sure you are in the

~/genomics_tutorial/strain1/denovo_assembly/assembly directory.

Task 8: Generate summary statistics

fasta_summary.pl -i contigs.fa -o assembly_statistics -t contig -r 1

cd assembly_statistics

ls

76

Note that this directory contains a file called stats.txt, but that this is a different file from that produced

by Velvet. View the *.txt files using a text-editor (e.g. gedit, nano) or the more command.

Note that Velvet was only able to assemble 3,326bp in 1 contig with a GC content slightly lower than

that of E.coli. Typically with a real dataset you would see many contigs here with a wide variety of

lengths – assembling just a single contig is very rare! In this case, it is because we are using simulated

data rather than 'dirty' real data.

You can also use gthumb to view various plots which have the extension .png. In this case they are not

very informative, but in future projects they can be very valuable when faced with thousands of

contigs.

77

4.4 Analysing the de novo assembled reads

Now that we have assembled the reads and have a feel for how much (or in this case, how little) data

we have, we can set about analysing it. By analysing, we mean identifying which genes are present,

which organism they are from and whether they form part of the main chromosome or are an

independent unit (e.g. plasmid).

We are going to take a 3-prong approach. The first will simply search the nucleotide sequences of the

contigs agains the NCBI non-redundant database. This will enable us to identify the species to which a

given contig matches best (or most closely). The second will call open reading frames within the

contigs and search those against the Swissprot database of manually curated (i.e. high quality)

annotated protein sequences. Finally, we will search the open reading frames against the Pfam database

of protein families (http://pfam.sanger.ac.uk).

Why not just search the NCBI blast database? Well, remember nearly all of our biological knowledge is

based on homology – if two proteins are similar they probably share an evolutionary history and may

thus share functional characteristics. Metrics to define whether two sequences are homologous are

notoriously difficult to define accurately. If two sequences share 90% sequence identity over their

length, you can be pretty sure they are homologous. If they share 2% they probably aren't. But what if

they share 30%? This is the notorious twilight zone of 20-30% sequence identity where it is very

difficult to judge whether two proteins are homologous based on sequence alone.

To help overcome this searching more subtle signatures may help – this is where Pfam comes in. Pfam

is a database which contains protein families identified by particular signatures or patterns in their

protein sequence. These signatures are modeled by Hidden Markov Models (HMMs) and used to

search query sequences. These can provide a high level annotation where BLAST might otherwise fail.

It also has the advantage of being much faster than BLAST.

Task 9: Obtain open reading frames

The first task is to call open reading frames within the contigs. These are designated by canonical start

and stop codons and are usually identified by searching for regions free of stop codons. We will use the

EMBOSS package program getorf to call these.

We will use codon table 11 which defines the bacterial codon usage table

(http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi) and state that the sequences we are

dealing with are not circular (they are nowhere near long enough!). We will also restrict the ORFs to

just those sequences longer than 300 nucleotides (i.e. 100 amino acids). We will store the results in file

contigs.orf.fa.

getorf -table 11 -circular N -minsize 300 -sequence contigs.fa -outseq contigs.orf.fa

If we look at the output file we can see that it is a FASTA formatted file containing the name of the

contig on which the ORF occurs, followed by and underscore and a number (e.g. _1) to indicate the

number of the ORF on that contig. The numbers in square brackets indicate the start and end position

of the ORF on the contig (i.e. in nucleotide space). So the first ORF occurs on NODE 1 and is between

position 1073 and 1948. Whereas the fourth ORF occurs between positions 606-989 on the reverse

http://pfam.sanger.ac.uk/
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

78

strand. This is a relatively short peptide and is unlikely to be a genuine peptide.

Also note that many ORFs do not start with a Methionine. This is because by default the getorf

program calls ORFs between stop codons rather than start and stop codons. Primarily this is to avoid

spurious ORFs due to Met residues within a protein sequence and to ensure untranslated regions are

captured.

Task 10: Search open reading frames against NCBI non-redundant database

The first thing we can do with these open reading frames is to search them against the NCBI non-

redundant database of protein sequences to see what they may match.

Here we will perform a BLAST search using the non-redundant (nr) database, using the blastp program

and store the results in contigs.orf.blastp. We'll apply an e-value (expectation value)

(http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html) cutoff of 1e-06 to limit ourselves to

statistically significant hits (i.e. in this case 1 in 1 million likelihood of a hit to a database of this size by

a sequence of this length). The -b and -v flags tell blastall to only display the top 10 results for each hit,

the -a that it should use 4 CPU cores and -I that it should include general identifier (GI) numbers in the

output.

Type (all on one line):

blastall -d nr -p blastp -i contigs.orf.fa -o contigs.orf.blastp -e 1e-06 -a 4 -I T -b 10

http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html

79

-v 10

This should take a few minutes. Once complete view the contigs.orf.blastp file in your favourite text-

editor (e.g. nano, gedit etc).

Task 11: Review the BLAST format

Have a read of http://cs124.cs.ucdavis.edu/appendices/BlastResults.html

We can see that the first ORF has a hit to a plasmid mobilization protein. It seems possible that this

single 3kb stretch of DNA sequence which has been assembled could in fact be part of or a whole

plasmid.

However, this could simply be a common protein which is shared by many plasmids and/or genomes.

Given that this protein is labelled as a 'plasmid mobilization' protein, the chances are that it shares a

considerable portion of its sequence with other plasmids As such the protein sequence is not the best

method to search for the source of this sequence. A better way is to compare the nucleotide sequence

and use the added variation caused by synonymous and non-coding regions to identify the likely source

of this extra DNA.

http://cs124.cs.ucdavis.edu/appendices/BlastResults.html

80

Task 12: Search contigs against NCBI non-redundant database

The following command executes a nucleotide BLAST search (blastn) of the sequences in the

contigs.fa file against the non-redundant database. Again we restrict ourselves to 10 results per hit and

an e-value cutoff of 1e-06.

blastall -d nt -p blastn -i contigs.fa -o contigs.fa.blastn -e 1e-06 -b 10 -v 10 -I T -a 4

Opening the results file should yield:

The plasmid encoded is in-fact Escherichia coli 0157:H7 plasmid pOSAK1/pSP70 . It is NOT the top

hit. This is because plasmids are often very similar (particularly near transposase sites). Although

BLAST does by default filter out low complexity sequence, in such a small plasmid, it may have

difficulty picking out the correct plasmid. In this example we can get a clue by looking at the amount of

coverage the plasmid gets from the assembled contigs. We find that only Escherichia coli 0157:H7

plasmid pOSAK1 has almost full coverage, the remainder (even though they have better scores and e-

values) are not the best match from a biological perspective.

81

Task 15: Find out more about the E.coli pOSAK1 plasmid

Makino, K. et al Complete Nucleotide Sequences of 93-kb and 3.3-kb Plasmids of an Enterohemorrhagic Escherichia coli

O157:H7 Derived from Sakai Outbreak . DNA Research 5,(1-9) 1998

Additional checks (not necessary here, but will be for other genomes!):

Task 13: Check that contigs do not appear in the reference sequence

In theory, the unmapped reads used to generate the contigs should not assemble into something which

will map against the genome. However, it is always possible (especially with more complex genomes),

that this might happen. To double check:

bl2seq -i contigs.fa -j ~/genomics_tutorial/reference_sequence/Ecoli_UTI89.fna -p

blastn -e 1e-06

Here we use bl2seq (part of the BLAST package) to compare two sequences against each other. Unlike

the previous examples where we have searched against a database of sequences, here we are doing a

simple search of the contigs against the reference genome sequencing. Running this, you should find

that no hits are found with an e-value less than 1e-06. Therefore we can say with some degree of

confidence that it is novel plasmid in this strain.

Task 14: Run open reading frames through pfam_scan

Pfam is a database of protein families. They are grouped together using a number of criteria based on

their function. For more information read http://en.wikipedia.org/wiki/Pfam. Pfam is grouped into

several databases depending on the level of curation. Pfam-A is high-quality manual curation and

consists of around 12,500 families. Pfam-B is full of automated predictions which may be informative

but should not be relied upon without additional evidence. Pfam will also search for signatures of

active-sites if you specify the correct flag.

Here we want to search the Pfam database of Hidden Markov Models to see which protein families are

contained within this contig. You'll notice that this runs considerably faster than BLAST. Here we

search using the contigs.orf.fa file against the Pfam databases in /usr/local/PfamScan and output the

results to contigs.orf.pfam. We'll use 4 cpu cores for the search and state that we want to search PfamB

entries as well as active site residues.

pfam_scan.pl -fasta contigs.orf.fa -dir /usr/local/PfamScan/ -outfile

contigs.orf.pfam -cpu 4 -pfamB -as

http://en.wikipedia.org/wiki/Pfam

82

Nearly all the results we obtain are hits against Pfam-B, but one is against Pfam-A. Let's take a look at

Pfam domain PF01402 (RHH_1). Not an illuminating description, but a quick google search brings up

the entry in the Pfam database (or just go to http://pfam.sanger.ac.uk and enter the ID in the search

box).

Definitely some form of DNA binding protein, but not much information beyond that. Check out some

of the other entries in Pfam just to get a feel for the sort of detail you can expect. The other Pfam-B

matches do not tell you much that is useful.

4.5 Analysing the results in RAST

By now you should be able to see that analysing results for de novo assembled reads of any sort can be

difficult and time-consuming. Bear in mind that we have only been faced with a single contig of 3kb.

Quite often you may find yourself dealing with hundreds, if not thousands of contigs. Some will be a

few 100kb long. Others may only be 200-300bp. How should we go about analysing these in a more

efficient manner? There are a number of options here. For eukaryotes I would suggest looking at

MAKER (http://www.yandell-lab.org/software/maker.html). For prokaryotes the situation is somewhat

easier and we can use a web-based service known as RAST. This is not the only service (Xbase is

another), but it is one of the most common.

RAST is a website where you upload the results of your de novo assembly and RAST will attempt to

provide annotation in commonly used GFF and Genbank formats. This can be used to load up the

annotation in Artemis or Apollo. Alternatively RAST has its own in-built viewer.

http://pfam.sanger.ac.uk/
http://www.yandell-lab.org/software/maker.html

83

Task 15: Log in to RAST

Go to http://rast.nmpdr.org/ Log-in with the details RAST provided you before you

started this series of workshops. If you do not have one, you may need to wait several

days for your login to be issued by RAST. Please skip ahead and come back to this

section.

Task 16: Upload the assembled contigs and annotate using RAST

Click on Your jobs->Upload a Genome

http://rast.nmpdr.org/

84

Upload the contigs.fa file obtained by the de novo assembly of unmapped reads.

We know this is an E.coli genome so we can enter 562 as the Taxonomy ID and click on 'Look up

taxonomy at NCBI'. If you're dealing with a different organism, be sure to change this number. RAST

will automatically split any scaffolds (i.e. contigs with bits missing in the middle – denoted by Ns).

85

Replicate the settings above and click on 'Finish the upload'.

Your job may take several hours to run. In the meantime, proceed to the next workshop and come

back to this later.

86

Once complete, RAST should email you a message. You can then view the results or download them in

standardized formats (e.g. GFF3, Genbank, EMBL etc).

87

If you download the results in GFF3 format and open in a text-editor you can see the annotations.

Again they are not particularly enlightening as such, but we can see that this plasmid appears to consist

of 4 proteins.

How does this compare to the original paper which describes this plasmid? We can also look at other

features of RAST such as the SEED Viewer. Here we can see each predicted gene along with

annotation and further information as to how the evidence was obtained if you click on the Feature ID.

Browse the rest of the RAST server and get a feel for the possibilities the platform may offer you.

When you're ready, move on to (or back to) the de novo assembly part of the workshop!

88

2013 Workshop on Genomics, Cesky Krumlov

 Part 5

Short read genomics:

 De-novo assembly

Instructors:

• Konrad Paszkiewicz k.h.paszkiewicz at exeter ac uk

Objectives:

By the end of the workshop you will be expected to be able to:

• Perform QC and adaptor-trim Illumina reads

• Assemble these reads de novo using Velvet and VelvetOptimiser

• Generate summary statistics for the assembly

• Identify open reading frames within the assembly

• Search for matches within the Swissprot database via BLAST and against the Pfam database

• Visualize species distribution of potential matches

89

5.1 Introduction

In this section of the workshop we will continue the analysis of a strain of E.coli which

is involved in urinary tract infections. In the previous section we extracted those reads

which did not map to the reference genome and assembled them. However, it is often

necessary to be able to perform a de novo assembly of a genome. In this case, rather

than doing any remapping, we will start with the filtered reads we obtained in part 3 of

the workshop.

Although it is not strictly necessary for this particular example (because there appears to

be very little new material), we will run through the procedure here so that you are able

to do this in the next section.

To do this we will use a program called VelvetOptimiser to try to get the best possible

assembly for a given genome. We will then generate assembly statistics and then

produce some annotation via Pfam and BLAST.

5.2 Task 1 Preparation

Ensure you are in the ~/genomics_tutorial/strain1 directory. We will move the

denovo_analysis directory into the remapping_to_reference directory so we don't end up

confusing the current de novo assembly-from-scratch, with the previous one using

unmapped reads.

mv denovo_assembly/ remapping_to_reference/

Let's create a new directory to store this denovo-assembly-from-scratch. We'll call it

complete_denovo_assembly

mkdir complete_denovo_assembly/

Listing the contents of the ~/genomics_tutorial/strain1 directory you should now have:

cd complete_denovo_assembly/

90

Assembly theory

Velvet is an assembly algorithm which requires a number of parameters. The three most

important are k-mer length, expected coverage and coverage cutoff.

1. K-mer length. Rather than store all reads individually which would be unfeasible

for Illumina type datasets, Velvet converts each read to a series of kmers and stores each

kmer once, along with information about how often it occurs and which other kmers it

links to. A short k-mer length (e.g. 21) reduces the chance that data will be missed from

an assembly (e.g. due to reads being shorter than the k-mer length, but generally results

in higher memory consumption and shorter contigs.

2. Expected coverage. This is rough indication of how much sequence information

there is relative to the genome size. It is used to try to resolve repetitive regions if

paired-end information is missing or insufficient.

3. Coverage cutoff Relates to the cutoff Velvet should use to decide that a particular

k-mer is noise (i.e. error-laden or low-level contamination) and should be excluded from

the assembly.

Generally it is necessary to try a large combination of parameters to ensure that you

obtain the 'best' possible assembly for a given dataset. What 'best' actually means in the

context of genome assembly is ill-defined. For a genomic assembly you want to try to

obtain the lowest number of contigs, with the longest length, with the fewest errors.

However, although numbers of contigs and longest lengths are easy to evaluate, it is

extremely difficult to know what is or isn't an error when sequencing a genome for the

first time.

Description of k-mers:

What are they? Let's say you have a single read:

The set of k-mers obtained from this read with length 6 (i.e. 6-mers) would be obtained

by taking the first six bases, then moving the window along one base, taking the next 6

bases and so-on until the end of the read. E.g:

91

You may well ask, “So what? How does that help”? For a single read, it really doesn't

help. However let's say that you have another read which is identical except for a single

base:

Rather than represent both reads separately, we need only store the k-mers which differ

92

and the number of times they occur. Note the 'bubble' like structure which occurs when a

single base-change occurs. This kind of representation of reads is called a 'k-mer graph'

(sometimes inaccurately referred to as a de-bruijn graph).

Now let's see what happens when we add in a third read. This is identical to the first read

except for a change at another location. This results in an extra dead-end being added to

the path.

The job of any k-mer based assembler is to find a path through the k-mer graph which

correctly represents the genome sequence.

Images courtesy of Mario Caccamo

Description of coverage cutoff:

In the figure above, you can see that the coverage of various k-mers varies between 1x

and 3x. The question is which parts of the graph can be trimmed/removed so that we

avoid any errors. As the graph stands, we could output three different contigs as there are

three possible paths through the graph. However, we might wish to apply a coverage

cutoff and remove the top right part of the graph because it has only 1x coverage and is

more likely to be an error than a genuine variant.

In a real graph you would have millions of kmers and thousands possible paths to deal

with. The best way to estimate the coverage cutoff in such cases is to look at the

93

frequency plot of contig (node) coverage, weighted by length. In the example below you

can see that contigs with a coverage below 7x or 8x occur very infrequently. As such it is

probably a good idea exclude those contigs which have coverage less than this – they are

likely to be errors.

Description of expected coverage:

In the example below you can see a stretch of DNA with many reads mapping to it.

There are two repetitive regions A1 and A2 which have identical sequence. If we try to

assemble the reads without any knowledge of the true DNA sequence, we will end up

with an assembly that is split into two or more contigs rather than one.

One contig will contain all the reads which did not fall into A1 and A2. The other will

contain reads from both A1 and A2. As such the coverage of the repetitive contig will be

twice as high as that of the non-repetitive contig.

If we had 5 repeats we would expect 5x more coverage relative to the non-repetitive

contig. As such, provided we know what level of coverage we expect for a given set of

data, we can use this information to try and resolve the number of repeats we expect.

94

Task 2: Using VelvetOptimiser

VelvetOptimiser cycles Velvet through various k-mer, expected coverage and coverage

cutoff values to see which one gives the 'best' result. Best is defined by the user as either

N50 length, length of longest contig, total number of bases in contigs etc. It is

distributed with Velvet and is a 'contributed' script (i.e. not written by the original author

of Velvet, but thought to be so useful as to be worth bundling with the Velvet release).

Type:

VelvetOptimiser.pl

You should see the options list for Velvet. Note that there are a number of options which

we need to set. The first two are the upper and lower bounds for the k-mer search. The

lower bound should never be lower than 19 as memory requirements tend to spiral, and

the upper bound should not be longer than the read length (i.e. 40) – otherwise no k-

mers can be formed at all!

The next parameter we need to feed is the -f parameter which just specifies whether the

95

reads are paired or unpaired and what format they are in. We can also set -t if we have a

large memory machine to do multiple assemblies at the same time to speed things up. If

we want to estimate how much memory an assembly will require, we can set the -g flag

and indicate in megabases how large we expect the genome to be. We can also set the

optimisation functions (i.e. how VelvetOptimiser decides what the 'best' assembly is),

both for k-mer size and for coverage cutoff, but we'll leave those alone for now. Feel

free to experiment with these at a later date though!

Before we can run VelvetOptimiser.pl we need to interleave the filtered FASTQ files.

Type (all on one line):

perl /usr/local/velvet/shuffleSequences_fastq.pl

~/genomics_tutorial/strain1/illumina_reads/strain1_read1.filtered.fastq

~/genomics_tutorial/strain1/illumina_reads/strain1_read2.filtered.fastq

strain1_interleaved.fastq

Now we can run VelvetOptimiser. Let's try it first with the -g flag set to 5Mb so that we

can estimate the maximum RAM Velvet will use. Type: (all on one line)

VelvetOptimiser.pl -s 19 -e 39 -f '-shortPaired -fastq strain1_interleaved.fastq' -t 1 -

g 5

96

So the results indicate that we require around 1.6Gb of RAM to do one assembly at a

time. We have a maximum of 4.9Gb of RAM free so although we could try two threads

at a time; let's leave it at 1 thread. If the memory requirements are exceeded you may

find that your instance stops responding and you'll need to restart VelvetOptimiser with a

higher starting kmer (e.g. 25 instead of 19).

VelvetOptimiser.pl -s 19 -e 39 -f '-shortPaired -fastq strain1_interleaved.fastq' -t 1

97

Once completed after about 30 minutes you will see something similar to the above.

Here we can see that a k-mer length of 21 was found to give the highest N50 value (see

http://en.wikipedia.org/wiki/N50_statistic for details). A coverage cutoff of 5.25 and

expected coverage of 9 were the values which gave the largest number of base pairs in

contigs larger than 1kb.

In addition to the statistics, we also get a report of the estimated insert size and standard

deviation. It is important to check these (they should be around 300-600 bp) to make

sure the library prep went well.

This is a good optimised assembly. It has a high N50 (228,461bp) and although there are

a total of 655 contigs, most of the genome seems to be assembled into just 75 contigs.

Check out the contents of the auto_data_21 directory. You'll see that the results are in a

file called 'contigs.fa'. The files have exactly the same format as those seen in the

previous workshop.

http://en.wikipedia.org/wiki/N50_statistic

98

A good check at this point is to map the original reads back to the contigs.fa file and

check that all positions are covered by reads. Amazingly it is actually possible for de-

novo assemblers to generate contigs to which the original reads will not map.

5.5 Task 3: Map reads back to assembly

Here we will use BWA again to index the contigs.fa file and remap the reads. This is

almost identical to the procedure we followed in Part 3, the only difference is that

instead of aligning to the reference genome, we are aligning to the contigs.fa file.

Make sure you are in the following directory.

~/genomics_tutorial/strain1/complete_denovo_assembly/auto_data_21

Let's start by indexing the contigs.fa file-management. Type:

bwa index contigs.fa

Once complete we can start to align read 1 back to the contigs. Type (all on one line):

bwa aln -t 8 -q 20 -f bwa_read1.aln contigs.fa
~/genomics_tutorial/strain1/illumina_reads/strain1_read1.filtered.fas
tq

We won’t do read 2 for the sake of convenience and because BWA tends to get horribly

confused if reads map to different contigs. (N.B. If we wanted to use paired end reads

we could use the Bowtie (v1) aligner instead).

We can then incorporate the paired-end information by running bwa sampe

bwa samse -f alignment.sam contigs.fa bwa_read1.aln
 ../../illumina_reads/strain1_read1.filtered.fastq

This may take longer than the original mapping to the reference.

Once complete we can convert the SAM file to a BAM file:

99

samtools view -bS -T contigs.fa alignment.sam > alignment.bam

And then we can sort the BAM file:

samtools sort alignment.bam alignment.sorted

Once completed, we can index the BAM file:

samtools index alignment.sorted.bam

We can then (at last!) obtain some basic summary statistics using the samtools flagstat

command:

samtools flagstat alignment.sorted.bam

We can see here that almost 14% of reads did not map back to the contigs.

Task 4: View assembly in IGV

As in part 3, load up Firefox (make sure it is within your Amazon instance and not on

your desktop). Google for the IGV viewer and load up the 2Gb version of the viewer.

(On 32-bit windows machines you will only be able to load the 1.6Gb version).

Click File->Import Genome. We are going to import the contigs we have assembled as

the reference. Unlike the reference genome though, we have no annotation available.

100

Make sure you select the contigs.fa file for the complete de novo assembly (not the

unmapped reads assembly).

Once saved, click on File->Load From File… select the alignment.calmd.rmdup.bam

file. Again, make sure you load the file in the complete_denovo_assembly directory.

101

Once loaded, explore some of the contigs in IGV. Can you find examples of some which

have no reads mapping back to the assembly? Do you notice anything they tend to have

in common?

102

Annotation of de-novo assembled contigs

We will now annotate the contigs using BLAST, Pfam and RAST as with the unmapped

contigs.

Task 5: Obtain open reading frames

As before, we’ll call open reading frames within the de-novo assembly. Again, we will use codon table

11 which defines the bacterial codon usage table

(http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi) and state that the sequences we are

dealing with are not circular. We will also restrict the ORFs to just those sequences longer than 300

nucleotides (i.e. 100 amino acids) We will store the results in file contigs.orf.fa.

getorf -table 11 -circular N -minsize 300 -sequence contigs.fa -outseq contigs.orf.fa

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

103

The following two tasks are optional. Be warned - the BLAST searches and RAST will

take several days! I recommend you skip these and proceed to Task 9.

Task 6 (Optional): Search open reading frames against NCBI non-redundant

database

We can also search these open reading frames against the NCBI non-redundant database.

blastall -d nr -p blastp -i contigs.orf.fa -o contigs.orf.blastp -e 1e-06 -a 4 -I T -b 10

-v 10

Task 7 (Optional): Search contigs against NCBI non-redundant database

The following command executes a nucleotide BLAST search (blastn) of the sequences in the

contigs.fa file against the non-redundant database. Again we restrict ourselves to 10 results per hit and

an e-value cutoff of 1e-06.

blastall -d nt -p blastn -i contigs.fa -o contigs.fa.blastn -e 1e-06 -b 10 -v 10 -I T -a 4

Task 8 (Optional): Run the contigs through the RAST server and import the

resulting GFF annotation into IGV

Task 9: Run open reading frames through Pfam

As with the unmapped reads we will search the open reading frames against the Pfam

HMM database of protein families. Later on we will be able to use these results to

identify Pfam domains which are unique to a particular strain.

pfam_scan.pl -fasta contigs.orf.fa -dir /usr/local/PfamScan/ -outfile

contigs.orf.pfam -cpu 4 -pfamB -as

This will take around 5 hours so it is recommended that you leave this running while

continuing with the rest of the tutorial. If it is still running when you finish your session

for today, leave your instance running overnight, but please be sure to turn it off in the

morning!

104

2013 Workshop on Genomics, Cesky Krumlov

 Part 6

Short read genomics:

 Comparison of results between

different strains

Instructors:

• Konrad Paszkiewicz k.h.paszkiewicz at exeter ac uk

Objectives:

In this workshop you will:

By the end of the workshop you will be expected to be able to:

• Run parts 1-3 of the workshop on 2 new datasets

• Use pre-prepared scripts to compare SNPs and Indels between strains

• Generate pseudo-sequences based on synonymous SNPs

• Draw simple trees to illustrate the likely evolutionary relationship between strains

• Compare Pfam matches between strains

105

Projects!

In the previous sections you have been taken through the steps required to:

1. QC and filter Illumina data

2. Remap Illumina short-read data to a reference sequence

3. View the results in IGV

4. Identify SNPs and Indels in an automated fashion using samtools and bcftools

5. Determine whether SNPs result in synonymous or non-synonymous changes in the

corresponding amino acid

6. Extract unmapped reads

7. Assemble unmapped reads and obtain assembly statistics

8. Annotate unmapped reads using Pfam, RAST and/or BLAST

9. Assemble a bacterial genome de-novo using Velvet

10. Obtain assembly statistics

11. Annotate as per the unmapped reads (where computationally feasible).

Now we want you to do the same for another two strains of E.coli urinary tract infections which have

been isolated. For each strain, make a list of:

1. SNPs, Indels and their effects (from the remapping)

2. Missing genes (from the remapping)

3. Novel plasmids and/or genes (Pfam domains are the easiest way to do this via denovo assembly

of unmapped reads)

Once completed, see if you can predict what the phenotype of these bacteria might be. Then proceed to

the final part of the tutorial where we will compare the results from all of these strains.

N.B.

It is recommended that you follow the same directory naming convention we have followed here (i.e.

one for remapping to the reference, another for assembly of unmapped reads and a final one for the

denovo assembly).

You will find the data for the other two strains in the ~/genomics_tutorial/strain2 and

~/genomics_tutorial/strain3. These tasks may take you several days. However, remember that all of the

basic procedures are detailed in the previous sections – only the input FASTQ files will have changed.

Feel free to refer to these previous tasks to remind yourself of the commands and parameters. By all

means feel free to play around with different parameters if you wish, although remember that the

results may differ from those you see here.

Just to give you some guidance: You should find that strain 2 yields many more SNPs than strain 1.

Strain 2 should be missing a Beta lactamase and Strain 3 Type III secretory pathway and flagellar

proteins. You should also find a different plasmid. You may find that some scripts and programs run

more slowly because of these extra differences. Also, if you find the de novo assembly process causes

your NX session to end, the chances are that Velvet has caused your instance to run out of memory. If

this happens, increase the minimum k-mer size in VelvetOptimiser.

106

Comparing variants between several samples and a reference genome:

Here we will use a script to compare the variants called in each sample. Ensure you are in the

~/genomics_tutorial directory

First of all, let’s make a directory to store the results of the comparison:

mkdir snp_comparison/

cd snp_comparison/

cp ~/genomics_tutorial/strain1/remapping_to_reference/out.snps.vcf4 ./strain1

cp ~/genomics_tutorial/strain2/remapping_to_reference/out.snps.vcf4 ./strain2

cp ~/genomics_tutorial/strain3/remapping_to_reference/out.snps.vcf4 ./strain3

Note that the last two copy commands may require modification depending on where you have saved

the variant call results.

perl /usr/local/scripts/snp_comparator.pl 10

~/genomics_tutorial/reference_sequence/Ecoli_UTI89.fna

~/genomics_tutorial/reference_sequence/Ecoli_UTI89.gff strain1 strain2 strain3 >

snp_comparison.txt

Looking at the snp_comparison.txt file (either in a text editor, or in a spreadsheet):

Here we can see the chromosome ID, the position in bp, the reference base and the base at each

position as well as the gene (if any) the variant occurs in as well as the effect (silent, non-silent or

indel).

Obtaining a phylogeny based on synonymous SNPs only:

How are the three strains related on the basis of these variants? We can ask a number of questions, but

if we are looking at the long-term evolutionary history of the strains we should only look at

synonymous (i.e. silent) mutations as these should not confer a significant selective advantage to any

strain. Using the data snp_comparison.txt file we can form ‘pseudo-sequences’ using the script in

/usr/local/scripts/snp2tree_fullsequence.pl. These are concatenated bases consisting of only those

positions which are silent across all strains. It is essentially the same as turning each column of each

strain in the snp_comparison.txt file into a FASTA entry.

107

perl /usr/local/scripts/snp2tree_fullsequence.pl snp_comparison.txt >

synonymous_tree.fasta

Examine the contents of the tree.fasta file. We can then treat this file as an alignment (since each base

in each sequence is at the same position on the chromosome) and pass it to a phylogeny program called

FastTree. FastTree will take an input alignment and output a Newick formatted tree

(http://en.wikipedia.org/wiki/Newick_format).

FastTree -nt -gtr < synonymous_tree.fasta > synonymous_tree.newick

Now we can visually represent this tree by using the newick2pdf program to create a visual

representation of the tree based on the synonymous_tree.newick file.

newicktopdf synonymous_tree.newick

We can then view the resulting PDF file using the evince program or Adobe Acrobat.

evince synonymous_tree.pdf

Advanced task (optional):

Copy the snp2tree_fullsequence.pl script to this directory and modify it so that it selects positions

containing only non-silent mutations (not indels as these modify the alignment). Generate a new

alignment and compare the resulting tree against the silent mutations.

Advanced task (optional):

Try to repeat one of the analyses with the new BreSeq pipeline

(http://barricklab.org/twiki/pub/Lab/ToolsBacterialGenomeResequencing/documentation/introduction.

html). This pipeline automatically aligns your reads to a reference genome and calls SNPs along with

generation of pretty HTML files detailing the likely effects of mutations. Compare the SNP calls you get

with BreSeq with the SNPs you get using the methods used here. You will need to use the GenBank

(gbk) files in the reference_sequence directory.

This is an example of the command you may want to execute.

breseq –r /home/ubuntu/reference_sequence/Ecoli_UTI89_mainchr.gbk –r

/home/ubuntu/reference_sequence/Ecoli_UTI89_plasmid.gbk

/home/ubuntu/strain1/illumina_reads/strain1_read1.fastq

/home/ubuntu/strain1/illumina_reads/strain1_read2.fastq

As always, keep your results organized – put the breseq results in a separate directory.

http://barricklab.org/twiki/pub/Lab/ToolsBacterialGenomeResequencing/documentation/introduction.html
http://barricklab.org/twiki/pub/Lab/ToolsBacterialGenomeResequencing/documentation/introduction.html

108

Comparing Pfam domains found in each strain:

Here we will use a script to compare the various Pfam domains found in each sample. Ensure you are

in the ~/genomics_tutorial directory

First of all, lets make a directory to store the results of the comparison:

mkdir pfam_comparison/

cd pfam_comparison/

cp

~/genomics_tutorial/strain1/complete_denovo_assembly/contigs.orf.pfam ./strain1

cp ~/genomics_tutorial/strain2/

complete_denovo_assembly/contigs.orf.pfam ./strain2

cp ~/genomics_tutorial/strain3/

complete_denovo_assembly/contigs.orf.pfam ./strain3

Note that the last two copy commands may require modification depending on where you have saved

the Pfam search results.

perl /usr/local/scripts/pfam_comparison.pl strain1 strain2 strain3 >

pfam_comparison.txt

Examining the pfam_comparison.txt file you should see something similar to:

PF02705 K_trans strain2.pfam,strain1.pfam,

PF02706 Wzz strain2.pfam,strain1.pfam,

PF02729 OTCace_N strain2.pfam,strain1.pfam,

PF02730 AFOR_N strain2.pfam,strain1.pfam,

PF02733 Dak1 strain2.pfam,strain1.pfam,

PF02734 Dak2 strain2.pfam,strain1.pfam,

PF02737 3HCDH_N strain2.pfam,strain1.pfam,

PF02738 Ald_Xan_dh_C2 strain2.pfam,strain1.pfam,

PF02739 5_3_exonuc_N strain2.pfam,strain1.pfam,

PF02742 Fe_dep_repr_C strain1.pfam,

PF02744 GalP_UDP_tr_C strain2.pfam,strain1.pfam,

Search the Pfam database to see what some of these differences are (http://pfam.sanger.ac.uk)

109

Concluding remarks:

Well done! If you have reached this far, you deserve a round of applause. You have completed some

of the most common tasks in short-read sequencing. You can use the same machine and the same

scripts to perform analysis of any short-read dataset! All you need to do is transfer the FASTQ files

to the server – you can either do this via Firefox if using the Exeter Sequencing Service (just click

on the link in the email), or if you have them on your personal desktop you can use WinSCP

(windows) , Fugu or Cyberduck (Mac OSX) or any other SFTP program.

A tutorial can be found at http://www.siteground.com/tutorials/ssh/ssh_winscp.htm

http://www.siteground.com/tutorials/ssh/ssh_winscp.htm

