
-- Introduction

Programming is a form of expression in which you describe structure
and operations on that structure. Practically, and within the context
of this workshop, much of programming within genomics surrounds ways
to organize sequences such that you can effectively ask questions, and
interrogate the data.

Programming is an incredibly powerful tool for data analysis as often,
within a research project, questions arise that cannot be answered
with the present software available. Having a cursory handle on how to
use at least one language expands the utility of your computer
infinitely, and in turn, widens the types of questions that, as a
researcher, you can ask of your data. Also, programming is FUN!!!

Beyond this very light tutorial, Zed Shaw's Learn Python the Hard way
(http://learnpythonthehardway.org/) is excellent and free. LPTH will
go into much more depth than we can do within this tutorial. When
working through this tutorial, or any tutorial on programming, it is
essential to work through the exercises. Like a spoken language, you
won't learn without using.

-- IPython

IPython is an extension to Python that provides a bit of a richer
interactive environment. Recently, the IPython project pushed out
their Notebook interface with the intent of facilitating
reproducibility (e.g. http://nbviewer.ipython.org/) with an emphasis
on the sciences. These notebooks can be saved and distributed later
very easily, and essentially any content can be embedded. Further
details and tutorials about the Notebook itself can be found here:
(http://ipython.org/ipython-doc/dev/interactive/htmlnotebook.html).

Lets start the Notebook. From the command line in your Virtual
Machine, type the following:

ipython notebook --pylab

This will produce a bunch of text that you can ignore, and
additionally pop up a Firefox web browser. You're now in the IPython
notebook.

The Notebook interface is intended to feel a bit like Google Docs, but
for programming. First, create a new Notebook from the Dashboard by

clicking "New Notebook." A new tab will open. Next, click the
"Untitled0" text and give your Notebook a name.

The notebook is based on cells. Each cell can be executed in any
order. Executing a cell makes the code and variables run within the
cell available to the entire notebook. The cells can be executed by
clicking either the play button or by pressing "shift + enter". For
instance, type the following into a cell, and execute it:

print "Hello you!"

You're now a programmer. Time for champagne (http://xkcd.com/323/).

-- IPython again

A little bit more on IPython, tab is yet again your best friend! We'll
play with this in a second.

-- How to get help

Google is your number one ally. Often, you can search for the types of
errors you encounter and get a direction to follow to resolve your
problem. If that fails, www.stackoverflow.com is a free user-driven
programming community. It is very easy to use and the responses are
great. Additionally, the search interface actually works and you may
be able to mine for your problem there. Last, www.seqanswers.com may
be able to assist on problems that may be more bioinformatic in
nature.

Python itself contains a heavy amount of documentation. This stems
from the easy mechanisms to document code within the language. You can
call help() on _ANYTHING_ and generally get back useful information.
Try the following:

help(1)

Who knew the number 1 was so detailed...

IPython extends the help() with tool tips. Type the following:

plot(

Don't put the closing parenthesis and wait a few seconds. A help box
will appear describing the function and what to pass. This is a good

place to start, at least for how to use a particular function.

-- Variables and Types

Variables hold information, like a string that represents DNA, or a
floating point number representing G+C content, or maybe an integer
that describes the number of sequences that came screaming off your
friends HiSeq2000. Variables have a type that is associated with them.
This is incredibly important within programming: the type is how the
machine interprets the 1's and 0's that reside in the systems memory,
and different types have different properties and constraints. Types
are important for optimization as the language can make more efficient
use of memory and low level processes if the types used match your
problem well. Lets explore a few basic types that are available within
Python (and many programming languages, for that matter).

The integer is the first one. This type represents whole numbers.

my_int = 5
type(my_int)

So what though? Since an integer can only be a whole number, what
happens if you divide by 2?

print my_int / 2

That's a little annoying but important to realize this can lead to
"fun" bugs in your program. If you instead divide by a floating point
number, or one that has a decimal, Python will perform what is known
as a type promotion where the number that is not a float will become
one.

So what are these floats? Lets create one

my_float = 2.123
type(my_float)

How are floating point values represented in 1's and 0's? In short, a
portion of the 1's and 0's of memory that holds the number describes
the mantissa, and a portion describes the exponent. While this works
very well, it is possible that floating point numerical errors can
happen if you perform operations on very large numbers and very small
numbers -- logarithms are your friend. As a consequence of how
floating point numbers are represented, there is a limit to the

resolution of the numbers. The smallest difference between two
floating point numbers that can be represented on a computer is known
as machine epsilon. To see it, type:

from sys import float_info
print float_info.epsilon

Last, lets create a string. Strings are one way that a piece of DNA
can be represented on a computer:

my_str = "aattggcc"
type(my_str)

Strings have some additional operators associated to assist pulling
out subsubstrings. Try the following:

print my_str[0]
print my_str[1]
print my_str[2]
print my_str[1:5]

Do the results make sense? Now try over reaching, or stepping out of bounds:

print my_str[10000]

The output you're looking at is known as a traceback. This helps the
programmer debug by identifying the offending line of code. In a
complex script, the traceback may contain many lines the current
location in operation. They always end with the specific exception
that was thrown. Try Googling the exception (IndexError: string index
out of range) to learn a little more.

For a an exercise, using a single print statement, print three lines
such that the first line contains a string, the second line contains a
float and the third contains an integer. (hint: a is \n)

Before moving, explore the string with dir() to see what methods are
part of the string. Try to figure out what a few of the methods do,
and see if you can use them.

-- Constructs

In some senses, programming can be conceptualized with a flow chart
(http://xkcd.com/518/). Right now, we can add in lines into a single

cell in the notebook and execute them, however, the execution will
only be linear. Do this, then this, then this. Pretty boring. What we
really want is to be able to, say, walk over a piece of DNA (i.e.
looping) or perhaps execute different code based on the presence of a
particular k-word (i.e. if-statements). More generally, these
constructs are forms of flow control. Lets first experiment with an
if-statement. The idea is simple: if this happens, do this, otherwise
do that.

if 5 > 0:
 print "that's a refreshing"
else:
 print "this language is broken"

The if-statement operates on boolean logic. If the conditional (the 5
0 part) evaluates as True, the block of code underneath the
conditional will be executed. Try just typing 5 > 0:

print 5 > 0

Variables can be used as well. For instance:

length_of_dna = len("aattggcc")
if length_of_dna > 5:
 print "our DNA is over 5 nucleotides long"
else:
 print "our DNA is really short!!!"

In the preceding example, we used a Python built in function called
len(). Before moving on, learn a little more about it and experiment
with it. Does len() work on integers? How can we use a forloop if we
have multiple conditions? (hint: elif)

We can now perform conditional operations. That's super cool, right?
Think of all the things you could conditionally do now, like, drink a
beer if the right one is available. But, what if there are a lot of
different types of beer? And we need to evaluate all of them? For
this, we need a way to loop. Try the following:

my_dna = 'aattggcc'
for c in my_dna:
 print c

We've now walked over our DNA. We could interpret the code above as:

for each character in my_dna, store that character in the new variable
c, and print the character. But what about the beer you ask???

for beer in ['lager','pale ale','pilsner','stout','porter']:
 if beer == 'pilsner':
 print "when in cesky, go pilsner or go home"

We've introduced a few new things here. First, what's this funky thing
in the square brackets? It's known as a list, and we'll dive into
lists in the next section (but please experiment!). Second, we
introduced a new type of evaluation, the ==. A single equals sign is
used to denote assignment, like when we stored the integer in my_int.
Two equals signs is used to test whether two things are equal to each
other. For instance:

print 5 == 5
print 5 == 6

A few other important boolean evaluations are: <, >, !=, >= and <=.
What do they do?

There's one more important loop known as a while-loop. The structure
is: while <conditional>. See if you can recreate either of the
forloops above using a while loop instead of the forloop.

Before moving to the next section, there are a few more interesting
and very useful operators (beyond +, -, *, and /). Play with the
following and figure out what they do: +=, -=, and %.

-- Complex types

We've played with the basics, now lets dive deeper. One of the
absolutely fantastic things about Python is that it offers a few
incredibly useful datatypes for use within the language. Sure, we
could always implement complex data types (and it is done quite often
in practice), there are a few data types that are used so frequently
that the designers of Python opted to just include them (and uber
optimize them).

The first type is a list. A list is an ordered list of items and can
be created by using the square brackets. For instance:

my_list = [10,20,'attggcc']

If you've programmed before, you may be shocked to see that the list
can contain multiple different types. In this case, we have two
integers and a string. Many languages do not allow this as type
ambiguity is computationally expensive, however it allows for ease of
programming (although there are strong arguments against this). Try
indexing into the list and pull out the first item.

The second type is called a set. Sets act like sets from math. They
are unordered data structures that allow instantaneous lookup (very
useful for searching).

my_set = set([1,2,3,4,4,4,4,5,'aattggcc','ccggttaa'])
print my_set

Now try to pull out some items... but that doesn't make sense, does
it? One common use for sets is to help with lookup. Try the following:

if 1 in my_set:
 print "1 is in my set"
if 10 in my_set:
 print "10 is not in my set"

If you call dir() on your set, you'll see a lot of other functionality
like intersections and unions. In this last example, we introduced the
'in' keyword. Try using this with a list. Does it work? Why might you
not want to use 'in' with a list?

Next is the Python dictionary. Dictionaries allow you to associate a
key with a value, and allow instantaneous lookup like sets.
Dictionaries are created using curly braces. For example:

my_dict = {'seq1':'aattggcc', 'seq2':'ttggttgg','seq3':'tgtgccc'}

The basic form is {key:value, ...}. You can add more items to the
dictionary easily using square braces:

my_dict['another sequence'] = 'tatatat'

You can pull sequences out in a similar fashion. Experiment!

These types support whats known as iteration, which is a fancy way to
say that Python knows how to walk over them with a forloop. Let's say
we wanted to look at all of the keys we have in our dictionary:

for key in my_dict:
 print "The key is:", key, "And the value is:", my_dict[key]

Imagine the possibilities...

One last type worth mentioning is the array offered by the package
numpy. Let's add it to our environment and create an array. These
objects are useful for numerical work, and we'll show some examples
here:

from numpy import array
a = array([[1,2,3],[4,5,6]])
print a
print a + 10
print a.sum()

Stepping back slightly, it is important to understand that the choice
of algorithms and data structures can have large impacts on your code.
Say we wanted to determine if two words are anagrams of each other.
Two words are anagrams if the letters in one word can be rearranged
into the other word. "quite" and "quiet" are anagrams. Within the
context of sequence data, perhaps we want to know if two sequences
have the same composition. We could naively check if the words are
anagrams by shuffling the letters and checking for equality:

from random import shuffle
word1 = list("quiet")
word2 = list("quite")
while word1 != word2:
 shuffle(word1)

Stepping through this, we're adding some additional functionality to
our environment. "random" is a Python module that contains a lot of
useful functionality. You can explore what's in there by importing it
and calling dir() or, see if you can Google it :). Back to the code,
we're casting each string into a list in order to be able to shuffle
them. A string is immutable (Google!), and in short, we cannot
modified the contents of a string. However, a list is mutable, and
thus can be modified. The while loop will loop until the words are
identical, therefore are anagrams. If the are not equal, word1 is
randomly shuffled. What are some problems with this approach? Can you
think of a better way to solve this problem?

-- functions

Abstraction is central computers. For instance, web browser abstracts
out the complex interactions with the internet protocols when you type
in a web address. Behind the scenes, the web browser may have some
function called get_url() that accepts a web address, but as a user,
you don't need to care about those details. Functions offer a means to
abstract out blocks of code. In addition, the make it easier to verify
that the small components of your program are correct and adds
verbosity. For instance, say you wanted to compute GC content on a set
of sequences:

my_dict = {'seq1':'aattggcc', 'seq2':'ttggttgg','seq3':'tgtgccc'}
for key in my_dict:
 gc = 0.0
 for nt in my_dict[key]:
 if nt == 'c' or nt == 'g':
 gc += 1
 print gc / len(my_dict[key])

But that's hard to read and interpret easily. What if instead we
chopped out the code the computes GC into a function, and gave it a
pretty name:

def compute_gc(sequence):
 gc = 0.0
 for nt in sequence:
 if nt == 'c' or nt == 'g':
 gc += 1
 return gc / len(my_dict[key])

We have added in a few new terms here, "def" and "return". "def" tells
Python that we want to create a function. And "return" allows us to
have the function give a result back. We can now rewrite our forloop
from above in a much more elegant form:

my_dict = {'seq1':'aattggcc', 'seq2':'ttggttgg','seq3':'tgtgccc'}
for key in my_dict:
 print compute_gc(my_dict[key])

It is much easier to read the code and see what's going on now, right?
Here's a challenge: write a function that takes as input a string and
a number and returns the set of all unique k-mers (where k is the
number passed in).

-- File I/O

So you've got your sequences in a file and you want to play with them.
How? Writing robust parsers is outside of the context of this
tutorial, and in the case of Python they aren't necessary (see
PyCogent). However, basic file input/output is pertinent. Lets first
open a file and write some data to it.

my_file = open('a_test_file.txt','w')

Note the 'w'. That specifies the mode to open the file with. Be
careful though, the 'w' is destructive! Any file open with 'w' will
destroy its contents. How would you open a file to append data to it?

Lets put some sequences in our file:

my_file.write('aattggcc\n')
my_file.write('aattc\n')
my_file.write('aattttaggcc\n')

The write method is naive, and you have to structure the output
exactly as you want. We added the newline character so that there is a
single sequence per line. Now, lets read the sequences back in:

ro_file = open('a_test_file.txt','r')

There are a few methods to read the file. What are they? How would you
read each each individual line? You'll notice that if you read the
file once, you can't read it again. Once you've read the file, the
offset, or position in the file that you're at, is the end of the
file. You can reset the position by either reopening the file, or
calling:

ro_file.seek(0)

We use 0 here because we want to go to the 0th byte in the file. See
if you can read the sequences into a set.

-- matplotlib

You can make pretty pictures in Python too!! Try the following:

plot([1,2,3],[4,5,6])
scatter([1,2,3],[2,4,6])

Google "matplotlib example". It is a remarkably powerful visualization
library.

-- Additional exercises

* Determine sequence similarity based on shared k-word composition.
unweighted? weighted?
* Stitch together reads, or, assemble into contigs
* Histograms of k-word frequency	

