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Plummeting cost of DNA sequencing
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Sequence Data
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Sequencing: applications

* Genome assembly
*  Ancient DNA (Neanderthal)
* Pathogen discovery

Counting applications
*  Profiling
— microRNAs
— Immunogenomics *  Metagenomics
8
— Transcriptomics
* Epigenomics
— Map histone modifications
— Map DNA methylation

Polymorphism/mutation discovery:Whole genome OR Targeted
— Bacteria
— Genome dynamics
— Exon (and other target) sequencing
— Disease gene sequencing
*  Normal human variation and association studies
*  Human genetics and gene discovery
* Cancer genomics
— Map translocations, CNVs, structural changes
— Profile somatic mutations




How does a single genome gives rise to more than 200 different cells?
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Cell identity is determined by its epigenetic state

Histone post-translational Remodelling
DNA methylation modification complexes
| | | | 1
P Me
Histones (b &

Chromatinli )

Histone Non-coding
variants RNAs

Catherine Dulac, Nature 2010



Which controls the genome functional elements
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Motivation: find the genome state using sequencing data
Zhou, Goren Berenstein, Nature Rev. Genetics 2011



How does it work?

Zhou, Goren Berenstein, Nature Rev. Genetics 2011
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Goal: Find the genome state and output

® Transcriptomics (output)

* Epigenomics (state)
— Open promoters (H3K4me3)

— Active enhancers (H3K4mel, H3K27Ac)

— Transcribed regions (Polll, H3K36me3)

— Repressed genes (H3K27me3)

Catherine Dulac, Nature 2010

The goal of this session is to survey computational tools to analyze sequencing data
to measure state and output



Which require three main approaches

We’'ll cover the 3 main computational challenges of sequence
analysis for counting applications:

e Read mapping (alignment): Placing short reads in the
genome

* Reconstruction: Finding the regions that originated the reads
e Quantification:
* Assigning scores to regions

* Finding regions that are differentially represented
between two or more samples.



|. ChlIP-Seq: Genome state
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Once sequenced the problem becomes computational
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Overview of the session

We’'ll cover the 3 main computational challenges of sequence
analysis for counting applications:

e Read mapping (alignment): Placing short reads in the
genome

* Reconstruction: Finding the regions that originated the reads
e Quantification:
* Assigning scores to regions

* Finding regions that are differentially represented
between two or more samples.



Spaced seeds

Reference genome
(> 3 gigabases)
Chr1 e
Chr2 s

Short read

ACGT@:TAAT

Chr3 m==
Chr4
Extract seeds
Position N
Position 2
CTGC CGTA AACT AATG
Position 1 \/
ACTG CCGT AAAC TAAT ACTC CCGT ACTC TAAT
ACTG wewsx AAAC wwnw _ l 1 l
wanen COGT w»wwe TAAT SIX seed | 2 I
ACTG w#eas  wanse TAAT pail’s pel’ (—| 3 I
=22 x2xs AAAC TAAT [ I'ead/ | 4 I
ACTG CCGT ##xs s#ax fragment L5 |
*xxx CCGT AAAC »xxx | 6 I

ilndex seed pairs

Seed index
(tens of gigabytes)

ACTG ###s AAAC #wew

Look up each pair
of seeds in index

. Hits identify positions
H in genome where
O spaced seed pair
L .
s is found
xxxx CCGT #»xxx TAAT t:—J
ACTG #axs xxxx TAAT Confirm hits
«axs CCGT AAAC =ass by checking

“exxx” poSIitions

N
T Report alignment to user

Trapnell, Salzberg, Nature Biotechnology 2009



Spaced seed alisnment — Hashing the senome
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Spaced seed alisnment — Mapping reads
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But, how confidence are we in the placement?
q,s = —10log,, P(read is wrongly mapped)



Mapping quality

What does  ¢,,; = —10log,, P(read is wrongly mapped) mean?

Lets compute the probability the read originated at genome position i

q. accg atag accg aatg

q,: 30 40 25 30 30 20 10 20 40 30 20 30 40 40 30 25

q.[k]=-10log,, P(sequencing error at base k), the PHRED score. Equivalently:

. s [k]
P(sequencing error at base k) = 10~ 10

So the probability that a read originates from a given genome position i is:

P(q|1G,i) = H P(q,good call) H P(q,bad call) = n P(g,bad call)

J match J missmatch j missmatch

In our example
P(q1G,0) = [(1 ~107)°1 =101 -10")*(1 - 10-2)2] [10-‘10-2] =[0.97]1*[0.001] = 0.001



Mapping quality

What we want to estimateis  g,,; = —10log,, P(read is wrongly mapped)

That is, the posterior probability, the probability that the region starting at i was
sequenced given that we observed the read g:

P(g1G,)PI1G) P(qlG,)P>I1G)

P(ilG,q) = =
DT 16 > P(q1G.j)

Fortunately, there are efficient ways to approximate this probability (see
Li, H genome Research 2008, for example)

qys = —10log, (1 - P(i1G,q))



Considerations

* Trade-off between sensitivity, speed and
memory

— Smaller seeds allow for greater mismatches at the
cost of more tries

— Smaller seeds result in a smaller tables (table size

is at most 4%), larger seeds increase speed (less
tries, but more seeds)



a Spaced seeds b Burrows-Wheeler
Reference genome Short read Reference genome  Short read
(> 3 gigabases) (> 3 gigabases)
Chr e ACTCCCGTACTCTAAT Chr s ACTCCCGTACTCTAAT
Chr2 e Chr2 e
Chr3 m== Chr3 m==
Chr4 Chr4
Concatenate into
Extract seeds single string
I
(- N J
Position N
o.s.mo Burrows-Wheeler
Position 2 transform and indexing
CTGC CGTA AACT AATG
- Bowtie index 3
(1]
Position 1 Y (~2 gigabytes) - Y
ACTG CCGT AAAC TAAT ACTC CCGT ACTC TAAT N ACTCCCGTACTCTAAT
ACTG wewx AAAC wwnw — l 1 l H T
wsaw CCGT seae TAAT Six seed L2] Look up AT
ACTG ##as sese TAAT pairsper —— 3 | ‘suffixes’ n AAT
*xxx  #2xx AAAC TAAT [ read/ | 4 I Of read
ACTG CCGT #xxx  saxn fragment | 5 I
*xxx CCGT AAAC »xxx | 6 I .
ACTCCCGTACTCTAAT
Index seed pairs Hits identify
positions in

Seed index

genome where

(tens of gigabytes)

ACTG ###s AAAC #wew

*xxx COGT »xxx TAATt:
ACTG #»xxx  »xxx TAAT
*xxx CCGT AAAC »wxn

—

Look up each pair read is found

of seeds in index

Hits identify positions
in genome where
spaced seed pair

is found

Confirm hits
by checking
“exxx” poSIitions

—————————— s O
T Report alignment to user €«

Convert each

hit back to

genome location
E——

Trapnell, Salzberg, Nature Biotechnology 2009



Considerations

* BWT-based algorithms rely on perfect matches for speed

* When dealing with mismatches, algorithms “backtrack” when
the alignment extension fails.

* Backtracking is expensive

* As read length increases novel algorithms are required



Short read mapping software for ChlP-Seq
Seed-extend BWT

Short indels Use base qual Use Base qual

Maq No YES BWA YES
BFAST Yes NO Bowtie NO
GASSST Yes NO Soap?2 NO
RMAP Yes YES Stampy” YES
SeqMap Yes NO Bowtie2” (NO)
SHRiIMP Yes NO

*Stampy is a hybrid approach which first uses BWA to map reads then uses seed-extend only to
reads not mapped by BWA
*‘Bowtie2 breaks reads into smaller pieces and maps these “seeds” using a BWT genome.






What' s the fuss

Expression arrays| Exon Arrays Tiling Arrays RNASeq
| | J x x J
-'Q-';\’- X \/ X \/

® A “finished”
one based cDNA and EST a




RNA-Seq Read mapping

molecule 1 molecule 2

Genome

RNA (1000 b) e

Genome
(100000 bp)



Mapping RNA-Seq reads: Seed-extend spliced alignment (e.g. GSNAP)




Mapping RNA-Seq reads: Exon-first spliced alignment (e.g. TopHat)




Short read mapping software for RNA-Seq

Seed-extend Exon-first

Short indels Use base qual Use base qual

GSNAP Yes ? MapSplice NO
QPALMA Yes NO SpliceMap NO
BLAT Yes NO TopHat NO

Exon-first alignments will map contiguous first at the expense of spliced hits



Integrative
Genomics
Viewer

IGV: Integrative Genomics Viewer

A desktop application
for the visualization and interactive exploration

of genomic data

Microarrays
Epigenomics - =

NGS alignments == o
Comparative genomics

E<BROAD

INSTITUTE



Visualizing read alignments with IGV — RNASeq
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Visualizing read alignments with |GV — zooming out
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Mapping longer reads

MiSeq “Bench” sequencer
~15 Million 2x250 base reads.
Ideal for deep annotation of Targeted RNA

Large number of expected mismatches
Given sequencing errors (>1.5%) + SNPs
expect many reads with >4 missmatches

> > > > > L =

— Short (76b) reads

Long (250b) reads

Longer, reads mapping cannot be done with standard BWT based aligners



How do “short” read aligners responded to read increase!

* Break reads into seeds (e.g. | 6nt every 10nt)

e Use BWT or HashTable to find candidate
positions

* Prioritize candidates

* Extend top candidates using classical alignment
techniques.

Aligner Technique

TopHat2 (Bowtie2) BWT
GSNAP Hash Table




Overview of the session

The 3 main computational challenges of sequence analysis for
counting applications:

* Read mapping: Placing short reads in the genome

* Reconstruction: Finding the regions that originate the reads

* Quantification:
* Assigning scores to regions

* Finding regions that are differentially represented
between two or more samples.



Chromatin domains demarcate interesting surprises in the transcriptome

I ILI L Ll . ] " i L l“ T - "l‘l L0 L m ll

Xist RNA coating
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inactive
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replication

These regions likely contain similar non-coding RNA genes Mitch Guttman



How can we identify these chromatin marks and the genes within?

H3K4me3 | Short modification

HesdalTies Long modification

RNA-Seq

| 1 “_ Discontinuous data

F——1t——

- —HHHHHHHHH -

RNA " Coad e i Ul e A
K4me1
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Stat1 |
Stat2 L

Scripture is a method to solve this general question



Our approach

||I | . Permutation
2 1 -ll-.l .
] Poisson
g a=0.05
2.
g, p
i | il H H 0 5 10 cou:‘ﬁts 20 25 30

We have an efficient way to compute read count p-values ...



The genome is big, many things happen by chance

Nominal P-Value

Genome (3 billion bases)

Identified

Enriched

Expected ~150,000,000 bases

We need to correct for multiple hypothesis testing



Bonferroni correction is way to conservative

FWER-Bonferroni

Genome (3 billion bases)

Correction factor 3,000,000,000

Bonferroni corrects the number of hits but misses many true hits because its too
conservative — How do we get more power?



Controlling FWER

Max Count distribution
a=0.05 a=0.05

Density
0.15 0.20 0.25 0.30
1 1 1 ]

0.10
|

0.05
1

0.00
[l

I T T T T
0 5 10 15 20

Counts

Count distribution (Poisson)

25

30

Given a region of size w and an observed read
count n. What is the probability that one or
more of the 3x10° regions of size w has read
count >= n under the null distribution?

We could go back to our permutations and
compute an FWER: max of the genome-wide
distributions of same sized region)—>

but really really really slow!!!



Scan distribution, an old problem

* Is the observed number of read counts over our region of interest high?
* Given a set of Geiger counts across a region find clusters of high radioactivity
* Are there time intervals where assembly line errors are high?

Scan distribution

a=0.05 a=0.05

Density
0.15 0.20 0.25 0.30
1 1 1 ]

0.10
1

0.05
1

Y —

0.00
t

I T T T
0 5 10 15

Counts

Poisson distribution

20

30

Thankfully, the Scan Distribution computes a
closed form for this distribution.

ACCOUNTS for dependency of overlapping
windows thus more powerful!



Scan distribution for a Poisson process

The probability of observing k reads on a window of size w in a genome of size L
given a total of N reads can be approximated by (Alm 1983):

P(k|Aw,N,L) = 1 — F,(k — 1| \w)e” AT —w) Ph—1]w)

where

P(k —1|A\w) is the Poisson probability of observing k — 1 counts given an
expected count of Aw

and

F,(k— 1| \w) is the Poisson probability of observing k — 1 or fewer counts
given an expectation of Aw reads

The scan distribution gives a computationally very efficient way to
estimate the FWER



FWER-Scan Statistics

Genome (3 billion bases)

By utilizing the dependency of overlapping windows we have greater
power, while still controlling the same genome-wide false positive rate.



Segmentation method for contiguous regions

Example : Polll ChIP

Rela

Significant windows using the FWER
corrected p-value

But, which window?



We use multiple windows

* Small windows detect small punctuate regions.

* Longer windows can detect regions of moderate enrichment
over long spans.

* In practice we scan different windows, finding significant ones
in each scan.

* In practice, it helps to use some prior information in picking
the windows although globally it might be ok.



Applying Scripture to a variety of ChIP-Seq data

200, 500 & 1000 bp windows 100 bp windows



Application of scripture to mouse chromatin state maps

Typical signature of an expressed gene

K4me3

Identifed
* ~1500 lincRNAs

..sn.m._ Nomcodin
* Noncoding
I * Robustly expressed
lincRNA

Mitch Guttman



Can we identify enriched regions across different data types!?

H3K4me3 l Short modification ‘/

H3K36me3
Long modification \/

Using chromatin signatures we discovered hundreds of putative genes.
What is their structure?

RNA-Seq

11“_

I 54 5 5
I 71 7 7

Discontinuous data: RNA-Seq to find gene
structures for this gene-like regions




Enabler: Drop in cost of sequening
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Scripture for RNA-Seq:
Extending segmentation to discontiguous regions



The transcript reconstruction problem as a segmentation problem

RNA (1000 b) —_——— =

AAAAAAA

Genome
(100000 bp)

100s bp  10s kb

Challenges:

Genes exist at many different expression levels, spanning several orders of
magnitude.

Reads originate from both mature mRNA (exons) and immature mRNA
(introns) and it can be problematic to distinguish between them.

Reads are short and genes can have many isoforms making it challenging to
determine which isoform produced each read.



Scripture: A statistical genome-guided transcriptome reconstruction

H3K4me3

H3K36me3

— wm PR JA.____M_A__.JM

Statistical segmentation of chromatin modifications uses continuity of
segments to increase power for interval detection

RNA-Seq

If we know the connectivity of fragments, we can increase our power to detect
transcripts



Longer (76) reads provide increased number of junction reads

- n = ' i 1. N
intron

M

Exon junction spanning reads provide the connectivity information.



The power of spliced alignments

Protein coding gene with 2 isoforms
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Statistical reconstruction of the transcriptome

Step 1: Align Reads to the genome allowing gaps flanked by splice sites
genome

Step 2: Build an oriented connectivity graph using every spliced alignment
and orienting edges using the flanking splicing motifs

The “connectivity graph” connects all bases that are directly connected within the
transcriptome



Statistical reconstruction of the transcriptome

Step 3: Identify “segments” across the graph

v\t - —

Step 4: Find significant segments

M
" -




Can we identify enriched regions across different data types!?

H3K4me3 l Short modification ‘/

H3K36me3
Long modification ‘/
RNA-Seq
=
T — Discontinuous data ‘/

Are we really sure reconstructions are complete?



RNA-Seq data is incomplete for comprehensive annotation

v
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Library construction can help provide more information. More on this later



Applying scripture: Annotating the mouse transcriptome



Reconstructing the mouse transcriptome (45M paired reads)

SCRIPTURE
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Sensitivity across expression levels

Full-length Partial
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Even at low expression (20t percentile), we have:
average coverage of transcript is ~95% and 60% have full coverage



Sensitivity at low expression levels improves with depth

Fraction fully reconstructed by coverage quantile

8x increased depth

0.8 4
0.7 -
06 -
05 +
04 -~
03 -
0.2 -
0.1 +

Fraction of transcripts fully reconstructed

0 L 2 LJ L s v Ll L L L) L] L L} L} Ll L L Ll Ll L] Ll L

0.0 02 04 06 0.8 1.0
120 360 848 1392 3160 168592

Coverage percentile
Mean coverage

As coverage increases we are able to fully reconstruct a larger percentage of
known protein-coding genes



Novel variation in protein-coding genes

_ ES cells
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Novel variation in protein-coding genes

Novel 5’ Start Sites
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Novel variation in protein-coding genes

Novel 5’ Start Sites

RNA-Seq
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Novel variation in protein-coding genes

Novel 5’ Start Sites
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What about novel genes?

Class |: Overlapping ncRNA

Gene 2

E Overlapping ncRNA E

Gene 1

Class 2: Large Intergenic ncRNA (lincRNA)

; Gene 2
* lincRNA J
Class 3: Novel protein-coding genes
—— -
Novel

Protein Coding



Class |: Overlapping ncRNA

Overlapping ncRNA ES cells
Chr1 Overlapping ncRNA ADAM23
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Overlapping ncRNAs: Assessing their evolutionary conservation

GTTCCAATTTGGCTTG AATTT use ACACATA TGTC AGAAA TCT CA
. . G T . . G T .
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Overlapping ncRNAs show little evolutionary conservation



What about novel genes?

Class |: Overlapping ncRNA

Gene 2

E Overlapping ncRNA E

Gene 1

Class 2: Large Intergenic ncRNA (lincRNA)

; Gene 2
* lincRNA J
Class 3: Novel protein-coding genes
—— -
Novel

Protein Coding



Class 2: Intergenic ncRNA (lincRNA)
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lincRNAs: How do we know they are non-coding!?

ORF Length CSF (ORF Conservation)

104 = = = = = = = — = — /:f
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-6000 —4000 -2000 0 2000 4000 6000
Protein-coding capacity (Longest possible ORF) Protein-coding capacity (CSF score)

>95% do not encode proteins



lincRNAs: Assessing their evolutionary conservation
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What about novel coding genes?

Class I: Overlapping ncRNA

Gene 2

E Overlapping ncRNA E

Gene 1

Class 2: Large Intergenic ncRNA (lincRNA)

; Gene 2
* lincRNA J
Class 3: Novel protein-coding genes
— "
Novel
Protein Coding

~40 novel protein-coding genes



If there is no reference genome!
Genome independent methods



RNA 1 RNA 2
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Assembly approach

1) Extract all substring of length k from reads

ACAGC  TCCTG  GTCTC
CACAG TTCECET  GGTCT
CCACA CTTCC TGGTC  TGTTG
CCCAC  GCTTC  CTGGT  TTGTT
GEECA CEGETT GETGG  ETTGT
geecece  GCGCT  TGCTG — TCTTG
Eccee AcEcE  ETGET CETETT
ACCcGE CAcEc [ccTGcC  TCTCT

ACCGCCCACAGCGCTTCCTGCTGGTCTCTTGTTG

AGCGE [CETCETT  GGTCG
CAGCG  CCTCT  TGGTC
TCAGE  TCCTC  TTGGT
CTCAG TTEET GTTGG
CCTCA  CTTCC  TGTTG
gecTe GCTTC  TTGTT  CGTAG
GCCCT CGCTT CTTGT  TCGTA
CGEEC GEGET TETTG  GTCGT

- k-mers

CGEECTCAGEGETTCETCTTGTTCCTCGTAG - Reads



Assembly approach

3) Collapse graph

But this challenging already with DNA and RNA has many different challenges



The Trinity approach: Localize

Decompose all reads into overlapping Kmers (25-mers)

Identify seed kmer as most abundant Kmer, ignoring low-complexity kmers.

Extend kmer at 3’ end, guided by coverage.

GATTACA
9

Briah Haas



The Trinity approach: Localize

GATTACA
9

Briah Haas



The Trinity approach: Localize

.
.
.
.
::::
¢ et
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GATTACA /
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S
S
* "
.
. .
.
S
o
S

Report contig: ....AAGATTACAGA....

Remove assembled kmers from catalog, then repeat the entire process.

Briah Haas



Trinity approach: Assemble

RNA-Seq
reads

Group similar contigs

key: localize the assembly problem



Pros and cons of each approach

* Transcript assembly methods are the obvious choice for
organisms without a reference sequence.

* Genome-guided approaches are ideal for annotating high-
quality genomes and expanding the catalog of expressed
transcripts and comparing transcriptomes of different cell
types or conditions.

* Hybrid approaches for lesser quality or transcriptomes that
underwent major rearrangements, such as in cancer cell.

* More than 1000 fold variability in expression leves makes
assembly a harder problem for transcriptome assembly
compared with regular genome assembly.

* Genome guided methods are very sensitive to alignment
artifacts.



RNA-Seq transcript reconstruction software

Assembly Genome

Guided

Oasis (velvet)  Cufflinks

Trans-ABySS Scripture

Trinity




Differences between Cufflinks and Scripture

e Scripture was designed with annotation in mind. It reports all
possible transcripts that are significantly expressed given the
aligned data (Maximum sensitivity).

e Cuffllinks was designed with quantification in mind. It limits
reported isoforms to the minimal number that explains the
data (Maximum precision).



Maximum sensitivity vs. maximal precision

Branch point 1
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Branch point 2
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Differences between Cufflinks and Scripture - Example

Annotation

Scripture

Cufflinks

Alignments

sl H HH ¢ ¢ —KN—H— RN HH—H<—— ¢ =
Ehbp1
I —HH 4 HE i .
T4SCRPTR.chr19.462
I —HH i .
T4SCRPTR.chr19.461
I —HH 4 —HE— << .
T4SCRPTR.chr19.460
I —HH 4 HE H—EHH<—K1 .
T4SCRPTR.chr19.467
I —HH 4 HE H—EHH<—K1 .
T4SCRPTR.chr19.466
I —HH 4 HE -EH—EHH<—K .
T4SCRPTR.chr19.464
I —HH 4 HE -EH—EHH<—K .
T4SCRPTR.chr19.465
I —HH 4 HE << .
T4SCRPTR.chr19.463
< . HE Hik 1 3 < .
T4.146007 T4.146007
H——a11 I i L ] —H
T4.146009 T4.146009 T4.146025 T4.146009
. HE il H EHEE 1 .
T4.146007 T4.146007
- HE—a—<—<—<—18
T4.146007
. il B w W W a e (™ ) . Y Y a_w i i
nimine--H 1—iH ummi A ] ][]
[T T i T [ U ([T (1T T o il
[T I|:||||||| I T Lo [TTHLTHTETTOT DI TTCIRITIOONT III 1% !II - [[]11]]
WIRHE R O TR TR T B il
mmm=HInr " I:I i LT TTT e TCHLL LI CTEE DO T T[T I. iH— ]|
- HHHI A R il
-t ||||||| i HH— m
T 1yl T w1 T
[T & i A |||||||||||||||||||||||||||||lI 'I| i I II ] |
I HH (T | n-a—Aamn all



Comparing reconstructions

Total Genes fully Mean isoforms Mean
Memory reconstructed per fragments
reconstruction per known

annotation

Cufflinks 10 1.4G 5,994 1.2 1.4
Scripture 16 35G 6,221 1.6 1.3
Trans- Abyss 650 120 G* 3,330 4.7 2.6

Number of
fragments
predicted

159,856

61,922

3,117,238

Many of the bogus locus and isoforms are due to alignment artifacts
Garber et al, Nature Methods 2011



Why so many isoforms

Annotation ————t—————t— 4ttt —

Reconstructions

TITITFIITZ

i

Every such splicing event or alighment
artifact doubles the number of isoforms
reported

Longer reads (already possible) will reduce the uncertainty and possibilities



Reconstruction comparison

Percent of annotated Refseq genes fully
reconstructed per expression quantile

B Scripture
O Cufflinks
- O transAbyss

0.6

0.5

04

0.3
I
I

0.1

0.0

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Too much of a good thing is not handled well by most reconstruction methods



Alignment revisited — spliced alignment is still work in
progress



Exon-first aligners are faster but at cost

/7
Hseudogene

Alignment artifacts can also decrease sensitivity



Missing spliced reads for highly expressed genes
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Can more sensitive alignments overcome this problem?

* Use gapped aligners (e.g. BLAT) to map reads
— Align all reads with BLAT

— Filter hits and build candidate junction “database” from BLAT hits (Scripture
light).

— Use a short read aligner (Bowtie) to map reads against the connectivity graph
inferred transcriptome

— Map transcriptome alignments back the genome

Reads




Many junctions can be rescued
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ScriptAlign: Can increase alignment across junctions

25,000,000

20,000,000

15,000,000
¥ TopHat

10,000,000 - M ScriptAlign

5,000,000 -

O_

Spliced Reads

“Map first” reconstruction approaches directly benefit with mapping improvements
We even get more uniquely aligned reads (not just spliced reads)



Alignment strategies for reconstruction

* Use all the information you have.

— In TopHat use the —G option:

tophat —-GTF mm9.mrna.l10.31.gtf left.reads.fqg right.reads.fqg

* In GNAP use the --use-splicing option.
* Align twice:
— Align first using annotations if available

— Re-align using both transcripts and junctions found in

first run



Overview of the session

The 3 main computational challenges of sequence analysis for
counting applications:

* Read mapping: Placing short reads in the genome

* Reconstruction: Finding the regions that originate the reads

e Quantification:

* Assigning scores to regions

* Finding regions that are differentially represented
between two or more samples.



RNA-Seq quantification

* Is a given gene (or isoform) expressed!?
* Is expression gene A > gene B!

* |s expression of gene A isoform a, > gene A
isoform a,?

* Given two samples is expression of gene A in
sample | > gene A in sample 2!



Quantification: only one isoform

w
D

Short transcript Long transcript

H#reads

PKM = 10°
h 0 length x Total Reads

Reads per kilobase of exonic

sequence per million mapped reads
(Mortazavi et al Nature methods 2008)

*Fragmentation of transcripts results in length bias: longer transcripts have higher
counts

*Different experiments have different yields. Normalization is key for cross lane
comparisons

Complexity increases when multiple isoforms exist



Normalization depends on the application

* To compare within a sequence run (lane),
RPKM accounts for length bias.

* RPKM is not optimal for cross experiment
comparisons.

— Different samples may have different
compositions.



Step 2: Different RNA compositions
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Normalizing by total reads does not work well for samples with very
different RNA composition



Step2: More robust normalization

Counts for gene i in experiment j

/

1/m’

\

Geometric mean for that gene
over ALL experiments

kij

s j = median

(I

i runs through all n genes

j through all m samples

k; is the observed counts for gene i in sample j
s;Is the normalization constant

Alders and Huber, 2010



Lets do an experiment (and do a short R practice)

> s1 = ¢(100, 200, 300, 400, 10) Similar read number,
> 52 = 0(5()’ 100, 150, 200, 500) one transcript many fold changed

>norm=sum(s2)/sum(sl) Size normalization results in 2-fold
>p10t(32 s1snorm log—”xy”) changes in all transcripts

Y 9 i
>abline(a = 0,b = 1)

>g = sqrt(sl * s2t)

>sln = s1/median(sl/g); s2n = s2/median(s2/g)
>plot(s2n, s1n,Jog="xy”)

>abline(a = 0,b = 1)

~
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S o | c 3
« »
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1 2 5 10 20 50 200 500 1 5 10 50 500
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But, how to compute counts for complex gene structures?

Condition 2 T T e e e T e O e el s g
N Isoform 1
Isoform 2
Exon intersection method Transcript expression method

Three popular options:
Exon intersection model: Score constituent exons
Exon union model: Score the the “merged” transcript

Transcript expression model: Assign reads uniquely to
different isoforms. Not a trivial problem!



Quantification: read assignment method

---——— - - - - |soform 1

- — : - Isoform 2

Transcript expression method

25% (-~ -~~~ 7"

Likelihood of isoform 2

0% 259% 100% Isoform 1 Isoform 2



Quantification with multiple isoforms

h _ I
I—1I—
_ _

How do we define the gene expression?
How do we compute the expression of each isoform?



Computing gene expression

Ideal: RPKM of the
constitutive reads
(Neuma, Alexa-Seq,
Scripture)




Computing gene expression — isoform deconvolution




Computing gene expression — isoform deconvolution

ey ———— -
T -
T e — T
L] B B m—mm———m e A -
e T T B N .
L] - N

If we knew the origin of the reads we could compute each isoform’s expression.
The gene’s expression would be the sum of the expression of all its isoforms.

E = RPKM, + RPKM, + RPKM,



Paired-end sequencing is critical for “isoform deconvolution”

5 5 © O © O

l
T

Adapted from the Helicos website



Paired-end reads are easier to associate to isoforms

Isoform 1

Isoform 2

Isoform 3
Paired ends increase isoform deconvolution confidence

* P, originates from isoform 1 or 2 but not 3.
* P, and P, originate from isoform 1

Do paired-end reads also help identifying reads originating in isoform 3?



We can estimate the insert size distribution

Splice and compute insert

distance
Estimate insert size ’

empirical distribution

0.001 0.002 0.003 0.004

0.000

T T T T T T
100 200 300 400 500 600

T
700




. and use it for probabilistic read assignment

ul
Isoform 1 I

Isoform 2 I

Isoform 3 I

0 100 200 300 400 500 600 700

For methods such as MISO, Cufflinks and RSEM, it is critical to have paired-end data



RNA-Seq quantification summary

* Counts must be estimated from ambiguous
read/transcript assignment.

— Using simplified gene models (intersection)

— Probabilistic read assignment

* Counts must be normalized
— RPKM is sufficient for intra-library comparisons

— More sophisticated normalizations to account for
differences in library composition for inter-library
comparisons.



Programs to measure transcript expression

Implemented method

Alexa-seq

Gene expression using intersection model

ERANGE

Gene expression using union model

Scripture

Gene expression using intersection model

Cufflinks

Transcript deconvolution by solving the
maximum likelihood problem

MISO

Transcript deconvolution by solving the
maximum likelihood problem

RSEM

Transcript deconvolution by solving the
maximum likelihood problem




Advantages of RSEM, DESeq

AN

10

5

Infection +24h

Infection +8h
Trout

Infected fish cells

Infection +24h

Infection +8h

Brian Haas, Rays Jiang, Carsten Russ Saprolegnia



Overview of the session

The 3 main computational challenges of sequence analysis for
counting applications:

* Read mapping: Placing short reads in the genome
* Reconstruction: Finding the regions that originate the reads
* Quantification:

* Assigning scores to regions

* Finding regions that are differentially represented
between two or more samples.




The problem.

* Finding genes that have different expression between two or more
conditions.

* Find gene with isoforms expressed at different levels between two
or more conditions.

* Find differentially used slicing events
* Find alternatively used transcription start sites

* Find alternatively used 3’ UTRs



Differential gene expression using RNA-Seq

I
Condition ]| — — — — — — — — Ll
- Condition 2
Condition 1 Condition 2
@ Condition 1 mEmm Condition 1
5 —= Condition 2 > —= Condition 2
2 g
< o
n a
Expression estimate Expression estimator value

*(Normalized) read counts €< —> Hybridization intensity



Differential analysis strategies

e Use read counts

— Standard Fisher exact (no preplicates) or X’ test
(replicates)

Condition A Condition B

Gene A reads n n,

d

Rest of reads N N,

a

— Model read counts (Poisson, negative binomial)
and test whether models are distinct

— Use empirical approaces that do not rely on
parametric assumptions (more on this later



Poisson model does not work

variance

| | | | | |
6> <o 30° 40* ot q0°

mean
Adapted from Anders, 2010

Biological variance does not follow a Poisson model



Using a parametric model (DESeq, Cufflinks)

Because of overdisperssion DESeq and Cufflinks uses a Negative binomial
to model read counts

Ky s~ -’V([{g,-%v (79,8)? Ogs = Kg s+ Vg

Given observed counts for two samples in replicates

k K k k

g,51 *° .(].-S'n:' gty - - g.lm

DESeq tests the null hypothesis that all counts are sampled from the same
distribution

P (Z Kgosi + 2 Kgas s = pe)



Cufflinks differential issoform ussage

Let a gene G have n isoforms and let p,, ..., p, the estimated fraction of expression of
each isoform.

Call this a the isoform expression distribution P for G

Given two samples the differential isoform usage amounts to determine whether
H,: P, =P,or H,: P, |=P,are true.

To compare distributions Cufflinks utilizes an information content based metric of how
different two distributions are called the Jensen-Shannon divergence:

p1+-.-+pm> X HG)

m m

JS(pl,...,pm):H<

H(p) == pilogp;.
1=1

The square root of the JS distributes normal.



RNA-Seq differential expression software

Underlying model Notes

DegSeq Normal. Mean and variance Works directly from
estimated from replicates reference transcriptome
and read alignment

EdgeR Negative Bionomial Gene read counts table

DESeq Negative Bionomial Gene read counts table

Cufflinks Poissen Negative Bionomial Works directly from the
alignments

Myrna Empirical Sequence reads and

reference transcriptome



RNA-Seq for traditional gene expression analysis
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RNASeq 1s too expensive
for expression assays!



Standard RNA-Seq limitations

Too expensive to use in HT screens

Quantification is complex

Differential expression is biased

— The larger the transcript the more power to detect DE

Hard to map alternative 3’ or 5’ ends of genes



Our work

Human
Chimp
Gorilla
Orangutan
Rhesus macaque
r

aaaaaa

Estimate the “functional genome” by
finding what is under selection

) A A of . .
@@.¥ ar » Develop informatics
S
tools for new methods

* Develop models of
transcriptional regulation
» Develop models of
epigenetic interactions
RNA-Protein « Evolution of large non-
interactions coding RNAs

We want to ultimately understand the cell circuits of the cell



For example:Wiring of innate immune cells
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Chip-Seq + RNA-Seq to map and relate components
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Sequencing libraries allow us to map output, state and the circuit of the cell



Gene regulation comes in waves
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Stat1 expression is a combination of pre-binding and dynamic binding



Regulatory modules are established hierarchically
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What have we learn from genome state!

* A large fraction of binding exist prior to stimulus

* Immediate vs. late regulation is quite distinct:
— Early induced genes regulators are more redundant
— Late induced regulators are less redundant

— Are the early inflammation pathways evolutionary more
malleable?

* Factors act in layers, consistent with previous
reports

* However we can’t explain most expression
patterns



What is needed: Perturbing components
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An expensive proposition...

~100 genes KD * replicates = LARGE NUMBER of samples

A

10s 100s 1000s
'S 1)

microarray RNASeq

Y 3 fluidigm
Y 3 nanostring

X high cost
X limited starting material
10000s
Previous solution .
" QPER = 10005
* Fluidigm @
* Luminex 3
« NanoString & 100s
* microarray
10s

Problem: need to chose your genes
in advance and limited #genes

assayed

Sabah Kadri

Y 3 gPCR

Cost/sample



Goal: Cheap RNA-Seq for quantification

~100 genes KD * replicates = LARGE NUMBER of samples

X high cost

X limited starting material

Previous solution
« gPCR
* Fluidigm
*  Luminex
* NanoString
* microarray

Problem: need to chose your genes
in advance and limited #genes

assayed

Sabah Kadri

#Genes assayed
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Use different RNA-Seq libraries

Poly-A selected RNA
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To get libraries that cover the ends and full gene bodies

Full RNA-Seq ' '
5' RNA-Seq l

3' RNA-Seq ‘




For every library
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And can provide accurate quantification with small depth

5' RNA-seq: DCs 4hr post LPS: Downsampling
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Pearson Correlation
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Number of aligned reads

Requires just a fraction of the reads required for RNA-Seq quantification



Correlation is good with standard RNA-Seq

5'DGE vs Full length (>0 in both) 0hr:0.8384922
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Take home message: RNA-Seq approach depends on your goals

» Full RNA-Seq

— >90M stranded paired reads for accurate
annotation

— >30M stranded paired reads for accurate
quantification at the isoform level of known
transcriptome

* End Sequencing for TSS, alternative 3’ and
quantification

— 4M-8M 40bp single or 25x2 paired for
quantification and annotation (>20x cheaper)



Final considerations: The steps of Sequencing analysis

* Filter reads (fastq file) by removing adapter,
splitting barcodes.

— Evaluate overall quality, look for drop in quality at
ends. Trim reads if ends are of low quality

* Alignment to the genome
— Use transcriptome if available

— Filter out likely PCR duplicates (reads that align to the
same place in the genome

— Evaluate ribosomal contamination
— What percent of reads aligned

* Reconstruct(?)
* Quantify

— Normalize according to application



Our typical pipeline (e.g. RNA-Seq)

Upload your
sequence data (fastq)

Make report of quality metrics

!

Align to the ribosome (Bowtie)

Output ribosomal contamination
metrics report

Align remaining reads to
genome (TopHat)

——
————
——

Produce RNA-Seq report
% aligned, % intergenic, % exonic,
% UTR

Produce IGV/UCSC friendly files

Quantify transcriptome

!

Produce a table with normalized
expression values

Call differentially expressed
genes
(if multiple samples)

Report pairwise significant genes
that are differentially expressed
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