2014 Workshop on Genomics

Part 1:
Short read genomics: Remapping
Instructors:
. Konrad Paszkiewicz k.h.paszkiewicz@exeter.ac.uk
Objectives:

By the end of the workshop you will be expected to:

«  Understand how short reads are generated

» Interpret FASTQ quality metrics

«  Remove poor quality data

«  Trim adaptor/contaminant sequences from FASTQ data

«  Count the number of reads before and after trimming and quality control

« Align reads to a reference sequence to form a SAM file (Sequence Alignment/Map file) using BWA
«  Convert the SAM file to BAM format (Binary Alignment/Map format)

« ldentify and select high quality SNPs and Indels using SAMtools

« Identify missing or truncated genes with respect to the reference genome

« Identify SNPs which overlap with known coding regions

Background:

«  This course assumes that you have successfully completed the Unix and Perl workshop or have
equivalent knowledge.



1.1 Introduction

Welcome to the Short Read Genomics workshop. Generating reams of data in Biology is easy these
days. In little more than a fortnight we can generate more data than the entire human genome project
generated in over a decade of work. Making biological sense out of that data, understanding its
limitations and how the analysis algorithms work is now the major challenge for researchers. The aim
of this workshop is to take you through an example project. On the way you will learn how to evaluate
the quality of data as provided by a sequencing facility, how to align the data against a known and
annotated reference genome and how to perform a de-novo assembly. In addition you will also learn
how to compare results between different samples.

This workshop is broken into 5 parts. You should feel free to take as long as you like on each part. It is
much more important that you have a thorough understanding of each part, rather than try to race
through the entire workshop.

The six parts are:

1. Introduction to Illumina sequencing-by-synthesis

2. Remapping a strain of E.coli to a reference sequence

3. Assembly of unmapped reads

4. Complete de-novo assembly of all reads

5. Repeating parts 3-5 on two other strains and comparing them

For this first workshop we will assume little background knowledge, save a basic familiarity with the
Linux operating system and the Amazon cloud. We will cover the basics of how genomic DNA libraries
are generated and sequenced, and the principles behind short read paired-end sequencing. We will look
at why data can vary in quality, why adaptor sequences need to be filtered out and how to quality
control data.

In the second part we will set up and start your Amazon EC2 instance. This will be familiar to those of
you who have completed the Unix and Perl workshop.

In the third part we will take the plunge and align the filtered reads to a reference genome, call variants
and compare them against the published genome to identify missing, truncated or altered genes. This
will involve the use of a publicly available set of bacterial E.coli Illumina reads and reference genome.
In parts 4 and 5 we will look at how one can identify novel sequences which are not present in the
reference genome. In part 6, you will be asked to repeat the steps in workshops 1, 2 and 3 on 2 other
data sets and to compare the results.

Aword on notation. If you see something like this:
cd ~/genomics_tutorial/reference sequence

It means, type the highlighted text into your terminal.



1.2 Principles of Illumina-based sequencing:

There are several second generation (i.e. non-Sanger) sequencers currently on the market. These
include the Life 5500 (formerly known as the ABI SOLID), the Roche 454 GS FLX and 454 Junior, lon
Torrent, and the lllumina HiSeq and MiSeq systems. All of these systems rely on making hundreds of
thousands of clonal copies of a fragment of DNA and sequencing the ensemble of fragments using
DNA polymerase or in the case of the SOLID via ligation. This is simply because the detectors
(basically souped-up digital cameras), cannot detect fluorescence (lllumina, SOLID, 454) or pH
changes (lon Torrent) from a single molecule.

The 'third-generation' Pacific Biosciences SMRT (Single Molecule Real Time) sequencer, is able to
detect fluorescence from a single molecule of DNA. However, the machine weighs 2 tons, produces
1/10000"™ of the data of an Illumina run and has a 5-10% error rate. Despite these issues, the system is
capable of producing reads up to 25kb from a single DNA molecule. As such the data produced by this
system is useful for sequencing entire genes or closing gaps in existing assemblies.

We will only look at the Illumina sequencing pipeline here, but the basic principles apply to all other
sequencers. If you would like further details on other platforms then | recommend reading Mardis ER.

Next-generation DNA sequencing methods. Annual Reviews Genomics Hum Genet 2008; 9 :387-402 Other papers are
listed at http://biosciences.ex.ac.uk/facilities/sequencing/usefulresources/

A typical sequencing run would begin with the user supplying 1-10 ug of genomic DNA to a facility
along with quality control information in the form of an Agilent Bioanalyser trace or gel image and
quantification information. The following flowchart illustrates the basic workflow.
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http://biosciences.ex.ac.uk/facilities/sequencing/usefulresources/

1.3 DNA Library preparation

For most sequencing applications, paired-end libraries are generated. Genomic DNA is sheared into
300-500bp fragments (usually via sonication) and size-selected accordingly. Ends are repaired and an
overhanging adenine base is added, after which olignucleutide adaptors are ligated. In many cases the
adaptors contain unique DNA sequences of 6-8bp which can be used to identify the sample if they are
'multiplexed’ together for sequencing. This type of sequencing is used extensively when sequencing
small genomes such as those of bacteria because it lowers the overall per-genome cost.
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High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunit
Nicholas J. Loman, Chrystala Constantinidou, Jacqueline Z. M. Chan, Mihail Halachev, Martin Sergeant, Charles W.
Penn, Esther R. Robinson & Mark J. Pallen Nature Reviews Microbiology 10, 599-606 (September 2012)



http://www.nature.com/nrmicro/journal/v10/n9/full/nrmicro2850.html

1.4 Sequencing
(adapted from Margulis, E.R., reference below)

Once sufficient libraries have been prepared, the task is to amplify single strands of DNA to form
monoclonal clusters. The single molecule amplification step for the Illumina HiSeq 2000/2500 or
MiSeq starts with an Illumina-specific adapter library and takes place on the oligo-derivatized surface
of a flow cell, and is either performed on the instrument itself or by an automated device called a cBot
Cluster Station. The flow cell is either a 2 or 8-channel sealed glass microfabricated device that allows
bridge amplification of fragments on its surface, and uses DNA polymerase to produce multiple DNA
copies, or clusters, that each represent the single molecule that initiated the cluster amplification.

Separate or multiple libraries can be added to each of the eight channels, or the same library can be
used in all eight, or combinations thereof. Each cluster contains approximately one million copies of
the original fragment, which is sufficient for reporting incorporated bases at the required signal
intensity for detection during sequencing. The Illumina system utilizes a sequencing- by-synthesis
approach in which all four nucleotides are added simultaneously to the flow cell channels, along with
DNA polymerase, for incorporation into the oligo-primed cluster fragments (see figure below for
details). Specifically, the nucleotides carry a base-unique fluorescent label and the 3 -OH group is
chemically blocked such that each incorporation is a unique event. An imaging step follows each base
incorporation step, during which each flow cell lane is imaged in three 100-tile segments by the
instrument optics at a cluster density of 600,000-800,000 per mm?. After each imaging step, the 3'
blocking group is chemically removed to prepare each strand for the next incorporation by DNA
polymerase. This series of steps continues for a specific number of cycles, as determined by user-
defined instrument settings, which permits discrete read lengths of 40-300 bases. A base-calling
algorithm assigns sequences and associated quality values to each read and a quality checking pipeline
evaluates the Illumina data from each run.

The figure on the following page summarises the process:
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The lllumina sequencing-by-synthesis approach: Cluster strands created by bridge amplification are primed and all four fluorescently
labeled, 3 -OH blocked nucleotides are added to the flow cell with DNA polymerase. The cluster strands are extended by one
nucleotide. Following the incorporation step, the unused nucleotides and DNA polymerase molecules are washed away, a scan buffer is
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chemicals that effect cleavage of the fluorescent labels and the 3 -OH blocking groups are added to the flow cell, which prepares the
cluster strands for another round of fluorescent nucleotide incorporation.

Next-Generation DNA Sequencing Methods Mardis, E.R. Annu. Rev. Genomics Hum. Genet. 2008. 9:387-402



Base-calling:

Base-calling involves evaluating the raw intensity values for each fluorophore and comparing them to
determine which base is actually present at a given position during a cycle. To call bases on the
Illumina platform, the positions of clusters need to be identified during the first few cycles. This is
because they are formed in random positions on the flowcell as the annealing process is stochastic. This
IS in contrast to the 454 system where the position of each cluster is defined by steel plate with pico-
litre sized holes in which the reaction takes place.

If there are too many clusters the edges of the clusters will begin to merge and the image analysis
algorithms will not be able to distinguish one cluster from another (remember, the software is dealing
with upwards of half a million clusters per square millimeter — that's a lot of dots!).
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The above figure illustrates the principles of base-calling from cycles 1 to 9. If we focus on the
highlighted cluster, one can observe that the colour (wavelength) of light observed at each cycle
changes along with the brightness (intensity). This is due to the incorporation of complementary
ddNTPs containing fluorophores. So at cycle 1 we have a T base, at 2 a G base and so on. If the colour
or intensity is ambiguous the sequencer will mark it as an N. Other clusters are also visible in the
images; these will represent different monoclonal clusters with different sequences.

The base calling algorithms turn the raw intensity values into T,G,C,A or N base calls. There are a
variety of methods to do this and the one mentioned here is by no means the only one available, but it is
often used as the default method on the Illumina systems. Known as the 'Chastity filter" it will only call
a base if the intensity divided by the sum of the highest and second highest intensity is less than a given
threshold (usually 0.6). Otherwise the base is marked with an N. In addition the standard Illumina
pipeline will reject an entire read if two or more of these failures occur in the first 4 bases of a read (it
uses these cycles to determine the boundary of a cluster).

Note that these processes are carried out at the sequencing facility and you will not need to
perform any of these tasks under normal circumstances. They are explained here as useful
background information.

CHASTITY formula:
IA
_ IA

I+,




1.5  What are paired-end reads and why are they necessary?

Paired-end sequencing is a remarkably simple and powerful modification to the standard sequencing
protocol. It is nearly always worth obtaining paired-end reads if performing genomic sequencing.
Typically sequencers of any type are only able to sequence a portion of DNA (e.g. 100bp in the case of
Illumina HiSeq) before the fidelity of the enzyme and de-phasing of clusters (see later) increase the
error rate beyond tolerable levels. As a result, on the lllumina system, a fragment which is 500bp long
will only have the first 100bp sequenced.

If the size selection is tight enough and you know that nearly all the fragments are close to 500bp long,
you can repeat the sequencing reaction from the other end of the fragment. This will yield two reads for
each DNA fragment separated by a known distance I.e:

Single-end read
Read 1 9

100bp

Insert size

; Paired-end read

Read 1 Read 2
100bp 100bp

The added information gained by knowing the distance between the two reads can be invaluable for
spanning repetitive regions. In the figure below, the light coloured regions indicate repetitive sections
of DNA. If a read contains only repetitive DNA, an alignment algorithm will be able to map the read to
many locations in a reference genome. However, with paired-end reads, there is a greater chance that at
least one of the two reads will map to a unique region of DNA. In this way one of the reads can be used
to anchor the the other read in the pair and help resolve the repetitive region. Paired-end reads are often
used when performing de-novo genome sequencing (i.e. when a reference is not available to align
against) because they enable contiguous regions of DNA to be ordered, or when characterizing variants
such as large insertions or deletions.

Other forms of paired-end sequencing with much larger distances (e.g. 10kb) are possible with so
called 'mate-pair’ libraries. These are usually used in specific projects to help order contigs in de-novo
sequencing projects. We will not cover them here, but the principles behind them are similar.
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1.6 Inherent sources of error

No measurement is without a certain degree of error. This is true in sequencing. As such there is a finite
probability that a base will not be called correctly. There are several possible sources:

Frequency cross-talk and normalisation errors:

When reading an A base, a small amount of C will also be measured due to frequency overlap and vice-
versa. Similarly with G and T bases. Additionally, from the figure below, it should be clear that the
extent to which the dyes fluoresce differs. As such it is necessary to normalize the intensities. This
normalisation process can also introduce errors.

A C

Frequency response curve for Aand C dyes
(Intensity y-axis and frequency on the x-axis)

Phasing/Pre-phasing:

This occurs when a strand of DNA lags or leads the other DNA strands within a cluster. This introduces
additional background noise into the signal and reduces the intensity of the true base. E.g. below we
have a cluster with 7 strands of DNA (very small, but this is just an example). Five strands are on a C-
base, whilst 1 is lagging behind (called phasing) on a G base and the remaining strand is running
ahead of the pack (confusingly called pre-phasing) on an A base. As such the C signal will be reduced
and A and G boosted for the rest of the sequencing run. Too much phasing or pre-phasing (i.e. > 15-
20%) usually causes problems for the base calling algorithm and result in clusters being filtered out.

Prephasing




Other issues:

. Biases introduced by sample preparation — your sequencing is only as good as your
experimental design and DNA extraction. Also, remember that your sample will be put through several
cycles of PCR before sequencing. This also introduces a potential source of bias.

. High AT or GC content sequences — this reduces the complexity of the sequence and can
result in higher error rates
. Homopolymeric sequences — long stretches of a single base can make it difficult to determine

phasing and pre-phasing rates. This can introduce errors in determining the precise length of a
hompolymeric stretch of sequence. This much more of a problem on the 454 and lon Torrent than
Illumina platforms but still worth bearing in mind. Especially if you encounter indels which have been
called in homopolymeric tracts.

. Some motifs can cause loops and other steric clashes

See Nakamura et al, Sequence-specific error profile of Illumina sequencers Nuc. Acid Res. first published online May 16,
2011 doi:10.1093/nar/gkr344

1.7 Quality scores

To account for the possible errors and provide an estimate of confidence in a given base-call, the
Illumina sequencing pipeline assigns a quality score to each base called. Most quality scores are
calculated using the Phred scale. Each base call has an associated base call quality which estimates
chance that the base call is incorrect.

Q10 =1in 10 chance of incorrect base call
Q20 =1 in 100 chance of incorrect base call
Q30 =1in 1000 chance of incorrect base call
Q40 =1in 10,000 chance of incorrect base call

For most 454, SOLID and Illumina runs you should see quality scores between Q20 and Q40. Note that
these as only estimates of base-quality based on calibration runs performed by the manufacturer against
a sample of known sequence with (typically) a GC content of 50%. Extreme GC bias and/or particular
motifs or homopolymers can cause the quality scores to become unreliable.

Accurate base qualities are an essential part in ensuring variant calls are correct. As a rough and
ready rule we generally assume that with Illumina data anything less than Q20 should be filtered out.

Reads containing adaptors

Some reads will contain adaptor sequences after sequencing, usually at the end of the read. This is
usually because of short sample DNA fragments, which result in the polymerase reading into the
adaptor region. Occasionally this can also happen because of mis-priming. It is important to remove or
trim sequences containing these reads as the adaptor sequences can prevent reads mapping to a
reference sequence and will adversely affect de-novo assembly.



2014 Workshop on Genomics

Part 2:
Short read genomics: Remapping
Instructors:
. Konrad Paszkiewicz k.h.paszkiewicz@exeter.ac.uk
Objectives:

By the end of the workshop you will be expected to:

e Interpret FASTQ quality metrics

«  Remove poor quality data

«  Trim adaptor/contaminant sequences from FASTQ data

«  Count the number of reads before and after trimming and quality control

« Align reads to a reference sequence to form a SAM file (Sequence AlignMent file) using BWA
«  Convert the SAM file to BAM format (Binary AlignMent format)

« Identify and select high quality SNPs and Indels using SAMtools

« Identify missing or truncated genes with respect to the reference genome

« Identify SNPs which overlap with known coding regions

13



2.1Introduction
You’ll need to be within your Amazon instance to use the workshop resources here.

In this section of the workshop we will be analysing a (hypothetical) strain of E. coli which is involved
in urinary tract infections and causes internal hemorrhaging. The strain we start with is treatable with
standard antibiotics. We want to obtain a list of single nucleotide polymorphisms (SNPs),
insertions/deletions (Indels) and any genes which have been deleted.

In later sections you will repeat this analysis on your own using two other strains which have
developed resistance. The final section will ask you to compare the results from all three datasets.

2.2 Quality control

In this section of the workshop we will be learning about evaluating the quality of an Illumina
sequencing run. The process described here can be used with any FASTQ formatted file from any
platform (e.g 454, lllumina, lon Torrent, PacBio etc).

2nd (and 3rd) generation sequencers produce vast quantities of data. A single Illumina HiSeq lane will
produce over 10Gb of data. However, the error rates of these platforms are 10-100x higher than
Sanger sequencing. They also have very different error profiles. Unlike Sanger sequencing, where the
most reliable sequences tend to be in the middle, NGS platforms tend to be most reliable near the
beginning of each read.

Quality control usually involves:

. Calculating the number of reads before quality control

. Calculating GC content, identifying over-represented sequences
. Remove or trim reads containing adaptor sequences

. Remove or trim reads containing low quality bases

. Calculating the number of reads after quality control

. Rechecking GC content, identifying over-represented sequences

Quality control is necessary because:

. CPU time required for alignment and assembly is reduced
. Data storage requirements are reduced
. Reduce potential for bias in variant calling and/or de-novo assembly

Quality scores:

Most quality scores are calculated using the Phred scale (Ewing B, Green P: Basecalling of automated
sequencer traces using phred. I1. Error probabilities. Genome Research 8:186-194 (1998)). Each base call has an
associated base call quality which estimates chance that the base call is incorrect.

Q10 =1in 10 chance of incorrect base call
Q20 =1 in 100 chance of incorrect base call
Q30 =1in 1000 chance of incorrect base call
Q40 =1in 10,000 chance of incorrect base call
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For most 454, SoLID and Illumina runs you should see quality scores between Q20 and Q40.

Note that these as only estimates of base-quality based on calibration runs performed by the
manufacturer against a sample of known sequence with (typically) a GC content of 50%. Extreme

GC biases and/or particular motifs or homopolymers can cause the quality scores to become
unreliable. Accurate base qualities are an essential part in ensuring variant calls are correct. As a rough
and ready rule we generally assume that with Illumina data anything less than Q20 is not useful data
and should be excluded.
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FASTQ format:

AFASTQ entry consists of 4 lines

@D3P26HQ1:110:dBehlacxx:8:11081:1116:2122 1:N:0:
AGGTGTCTCCTACAACCAAAGCTACAACAGAGCAATGGGCTATCTGGTGGOATTTAAAGGGGTGAAAATGCATCCCCCTTAAAATNAAAGTGGTTTT
+

ADDADCFHHHDHGHIII<GIICH4FGCIHIEGFHGHGIIIGDHFDFG?DEHH>FGIG=ERGGADDDCCCCC@A>ABB>BEBC : A=A#, 228 (4>:77B

1. A header line beginning with '@' containing information about the name of the sequencer, and
the position at which the originating cluster was located and whether it passed purity filters.

2. The DNA sequence of the read

3. A header line or line beginning with just '+'

4. Quality scores for each base encoded in ASCII format

Typical FASTQ formatted file:

To reduce storage requirements, the FASTQ quality scores are stored as single characters and converted
to numbers by obtaining the ASCII quality score and subtracting either 33 or 64. For example, the
above FASTQ file is Sanger formatted and the character ‘!” has an ASCII value of 33. Therefore the
corresponding base would have a Phred quality score of 33-33=QO0 (i.e. totally unreliable). On the
other hand a base with a quality score denoted by ‘@’ which has an ASCII value of 64 would have a
Phred quality score of 64-33=Q31 (i.e. less than 1/1000 chance of being incorrect).

Just to confuse matters, there are several different methods of encoding quality scores in the ASCII
format.

Range Offset Type Range

Sanger standard

33-126 33 PHRED Oto 93
Solexa/early llumina

59-126 64 Solexa -5 to 62
Hllumina 1.3+

64-126 64 PHRED 0O to 62

Note that the latest Illumina CASAVA 1.8 pipeline (released June 2011), outputs in fastg-sanger rather
than Illumina 1.3+. Thus Illumina 1.3+ and other Illumina scoring metrics are unlikely to be
encountered if you are using lllumina sequencing data generated after July 2011.

2.2.1 Quality control — evaluating the quality of Illumina data

The first task when one receives sequencing data is to evaluate its quality and determine whether all the
cash you have handed over was well-spent! To do this we will use the FastQC toolKkit
(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/). FastQC offers a graphical visualisation of QC
metrics, but does not have the ability to filter data.
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Task 1:

In your instance, from your home directory change into the genomics_tutorial/strainl directory. E.g.:

cd genomics_tutorial/strainl

Note that the FASTQ files are contained within a sub-directory called illumina_reads. Change into this
directory by typing:

cd illumina reads

@& & ubuntu@ip-10-212-185-189: ~/genomics_tutorial/strain1fillumina_reads

File Edit View Search Terminal Help

buntu@ip-10-212-185-189:~% 1s

onfigure_freenx.sh Desktop genomics_tutorial 1install perl_tutorial_materials
buntu@ip-10-212-185-189:~% cd genomics_tutorial/
buntu@ip-16-212-185-189:~/genomics_tutorial$ 1s

reference_sequence strainl strain2 strain3
buntu@ip-10-212-185-189:~/genomics_tutorial$ cd straini/
buntu@ip-108-212-185-189:~/genomics_tutorial/strainls 1s

illumina_reads

buntu@ip-10-212-185-189:~/genomics_tutorial/strainl$ cd illumina_reads/
buntu@ip-10-212-185-189:~/genomics_tutorial/strainl/illumina_reads$ 1ls
trainl_readl.fastq strainl_read2.fastq
buntu@ip-10-212-185-189:~/genomics_tutorial/strainl/illumina_reads$

Note that this is a paired-end run. As such there are two files, one for read 1 (strainl_read1l.fastq) and
the other for the reverse read 2 (strainl_read2.fastq). Reads from the same pair can be identified
because they have the same header. Many programs require that the read 1 and read 2 files have the
reads in the same order. To view the first few reads we can use the 'more' command:

more strainl readl.fastq

@CPOOO243.1-6332150-1
ctgccgcaggecgctgegecattcaacttggaagatcataat
+
CCCC#CCIB2CCCCE=BB#CCCAC7@CSB: C2CAIC=CCC
@CP000243.1-6332148-1
cctgccaaatttgecgecccatatttaagtatecccttaacg
+
IBAICC(9ABBCBB#CCBC8?BC##)@#CCCB6#BCDBCY
@CP000243.1-6332146-1
attgagaatggcgcaagtaacaatatccagacccgacatg
+

CCCCICBBCC#C7C=C#C3CCBBC; CCICC9=BCCAA#C<
@CP00O243.1-6332144-1
ccggcgatatcccaggcaaaatcctcccagetccagecgce
-

C=CCCCCICCCBCAB; CCCAC=CCC#CCCCCAC>; <#%7C

Press 'q' to exit more. We can do the same for read 2 and confirm that the headers are the same.

more strainl read?2.fastq
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@CP00O243.1-6332150-2
accgtagaaggcgacaaggcttctatcgaagtcccggcetc
+
F>=B4AFBIF>E?B@AH:B???A8F@#*5DCI&#B4?27C?
@CPO0O243.1-6332148-2
cctacaatctgtcaacagaatgtgaaaacgtcaatacagc
+

H>E?CFI@8BB? '@?+AC/-BHBCH5@FD>#BBF (=B&EF
@CPO0O243.1-6332146-2
gcgccaaagtggcagaaaaactgaatcaggtttgcgctaa
+

BGHBA ' AAHB=B#E=9BH3 ; C(>@7+5B@6@EC>B>FBH<A
@CP000243.1-6332144-2
tccgcgagcataccaccatcgttaagcactatcgegatct
+

HG8B5BEI ?A=8CHDBHB>C : H214>887?H<8/H>EB=4

Again, press ‘g’ to exit more.
Now, let's start the fastqc program. Type:

This should open the fastqc program. Load the strainl_readl.fastq file in the
genomics_tutorial/strainl/illumina_reads directory.

ip-10-28-1-40: ~/g ics_tutorial/strainl/illumina_reads e Q FastQC
File Edit View Search Terminal Help

| Eile Help

ubuntu@ip-10-28-1-40:~/genomics_tutorial/strainl/illumina_reads$ ls A
strainl readl.fastq strainl read2.fastq
ubuntu@ip-10-28-1-40:~/genomics_tutorial/strainl/illumina_reads$ fastqc

‘New Folder“ elete. Fil Vigename Flle‘

[/hume/ubuntu/genom\cs_lulonallstram 1fillumina_reads ‘ v ‘

|Folders j |Eiles |

|
[straml_readl.fastq l

it astq
[t |strainl_read2 fastq

(<

Selection:

Filter:
[Bequence Files [~

| @ cancel || ok ‘

After a few minutes the program should finish analysing the FASTQ file.

The fastqc program performs a number of tests which determines whether or a green tick (pass),
exclamation mark (warning) or red cross (fail) is displayed. However it is important to realise that
fastqc has no knowledge of what your library is or should look like. All of its tests are based on a

18



completely random library with 50% GC content. Therefore if you have a sample which does not
match these assumptions, it may and ‘fail’ the library. For example, if you have a high AT or high GC
organism it may fail the per sequence GC content. If you have any barcodes or low complexity libraries
(e.g. small RNA libraries) they may also fail some of the sequence complexity tests.

The bottom line is that you need to be aware of what your library is and whether what fastqc is
reporting makes sense for that type of library.

< FastQC BEE

File Help

| strainl_readl.fastg |

@ Semenes . Basic seqtl,lllence stats
|Measure [[walue
@ Per base sequence guality Filename stra-inl_readi'féstq
. File type Conventional base calls

@ Per sequence quality scores \Encoding Sanger [ llumina 1.9

\Total Sequences 3247450

Per base sequence content i

Sequence length 40

@ Per base GC content Yo GC 50

@ Per sequence GC content

@ Per base M content

@ Sequence Length Distribution

@ Sequence Duplication Lewvels

@ Overrepresented sequences

@ Kmer Content

In this case we have an E.coli library so a percentage GC content of 50% is consistent with our
expectations.

Quiality scores:

This is one of the most important metrics. If the quality scores are poor, either the wrong FASTQ
encoding has been guessed by fastqc (see the title of the chart), or the data itself is poor quality. This
view shows an overview of the range of quality values across all bases at each position in the FastQ
file. Generally anything with a median quality score greater than Q20 is regarded as acceptable,
anything above Q30 is regarded as 'good'. For more details, see the help documentation in fastqc.
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° FastQC) =) B 1

File Help

1

strainl_readl fastq

strainl_read2.fastq

S— ! ;
@ Basic Statistics Quality scores across all bases (Sanger f lllumina 1.8 encoding)
@ Per base sequence quality

@ Per sequence quality scores

@ Per hase sequence content 3

@ Per base GC content

| Per sequence GC content

@ Per base M content

22
@ Sequence Length Distribution|
20

@ Sequence Duplication Levels |18

@ Overrepresented sequences

@ Kmer Content 12

1 232 456 7 8 % 1518 30-34 45-49 60-64 75-79 1ol
Position in read (bp)

Per base sequence content:

For a completely randomly generated library with a GC content of 50% one expects that at any given
position within a read there will be a 25% chance of finding an A,C,T or G base. Here we can see that
our library satisfies these criteria, although there appears to be some minor bias at the beginning of the
read. This may be due to PCR duplicates during amplification or during library preparation. It is
unlikely that one will ever see a perfectly uniform distribution. See
http://biosciences.exeter.ac.uk/facilities/sequencing/dataguide/qualitycontrol/ for examples of good vs
bad runs as well as the fastqc help for more details.
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2 FastQG SNENESY

File Help

strainl_readl fastq
@ Basic Statistics Sequence content across all bases
" 100
Per base sequence quality w%T
@ Per sequence quality scores |gg 0
ECTY
@ Per base sequence content %G
=1v]
@ Per base GC content
70

C) Pear sequence GC content

@ Per base N content &0

@ Sequence Length Distribution
50

@ Sequence Duplication Levels

40
@ Overrepresented sequences

@ Krmer Content 20
20 i

10

1L 22 4 5 8 7 2 9 1519 20-24 45-49 80-64 75-79 £1s]
Position in read (bp}

Sequence duplication levels:

In a library that covers a whole genome uniformly most sequences will occur only once in the final set.
A low level of duplication may indicate a very high level of coverage of the target sequence, but a high
level of duplication is more likely to indicate some kind of enrichment bias (e.g. PCR over-
amplification).

This module counts the degree of duplication for every sequence in the set and creates a plot showing
the relative number of sequences with different degrees of duplication.

straini_read1.fFastq

@ Basic Statistics Sequence Duplication Level »= 0.94%
@ Perbase sequence quality 177 %Ouplicate relative o unique
@ Per sequence quality scores g
@ Perbase sequence content
@ Perbase GC content

@ Per sequence GC content 70
@ Perbase N content a0

@ Sequence Length Distribution
1]

an

@ Seguence Duplication Levels

@ Overrepresented sequences 40

@ Kmer Content 30
20
10
1]

1 2 3 4 5 =] T =] 9 10+
Sequence Duplication Level
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Task 2:

Do the same for read 2 as we have for read 1. Open fastqc and the read 2 file. Look
at the various plots and metrics which are generated. How similar are they?

Note that the number of reads reported in both files is identical. This is because if one read fails to pass
the Illumina chastity filter, its partner is automatically excluded too.

Overall, both read 1 and read 2 can be regarded as 'good' data-sets.

2.2.2 Quality control — filtering of Illumina data

In this section we will be actually be filtering the data to ensure any low quality reads are removed and
that any sequences containing adaptor sequences are either trimmed or removed altogether. To do this
we will use the fastg-mcf program from the ea-utils package (available at http://code.google.com/p/ea-
utils/). This package is remarkably fast and ensures that after filtering both read 1 and read 2 files are in
the correct order.

Note: Typically when submitting raw Illumina data to NCBI or EBI you would submit unfiltered data,
so don't delete your original fastq files!

Make sure you are in the ~/genomics_tutorial/strain1/illumina_reads directory. We will execute the
fastq-mcf program which performs both adaptor sequence trimming and low quality bases. To remove
adaptor sequences, we need to supply the adaptor sequences to the program. A list of the most common
gadaptors used is given in the file ~/software/ea-utils/adaptors.fasta:

ubuntu@linux:~% more ~fsoftwarefea-utils/adaptors.fasta
=Nextera_enrichment

CTGTCTCTTATACACATCT

=TruSeq_Read1

AGATCGCAAGAGCACACGTCTGAACTCCAGTCA

=TruSeq_Read?2

AGATCGCAAGAGCGTCGTGTAGGGAAAGAGTGT
>Nextera_mate_pair_Readl
CTGTCTCTTATACACATCT
>Nextera_mate_pair_Read2
AGATGTGTATAAGAGACAG

=PolyA
AAAAAAAAAAAAAAAAAAAAAAAAAAA

Task 3:
To run the fastg-mcf program, type the following (all on one line):

fastg-mcf ~/software/ea-utils/adaptors.fasta strainl_readl.fastq strainl read2.fastqg -0

strainl readl.filtered.fastq -0 strainl read?2.filtered.fastq -C 1000000 -q 20 -p 10 -u -x

After a few minutes the filtering should be complete and you should see something similar to:
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ubuntu@ip-18-239-138-237:~/genomics_tutorial/strainl/illumina_reads$ fastqg-mcf ~/software
fea-utilsfadaptors.fasta strainl_readl.fastq strainl_read2.fastq -o strainl_readl.filtere
d.fastg -o strainl_read2.filtered.fastq -C 1000080 -q 20 -p 10 -u -x 0.01

Scale used: 2.2

Filtering Illumina reads on purity field

Phred: 33

Threshold used: 2581 out of 1000000

2
Total reads: 3247450
Too short after clip: @
Trimmed 708987 reads (strainl_readl.fastq) by an average of 1.22 bases on quality < 20
Trimmed 1037979 reads (strainil_read2.fastq) by an average of 1.36 bases on quality < 20
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Note that read 1 has few reads trimmed than read 2. This is generally true as read 2 tends to be of
slightly lower quality than read 1.

The filtered reads should be present in files strainl_readl.filtered.fastq and strainl_read2.filtered.fastq

Task 4:

Check the quality scores and sequence distribution in the fastgc program for the two filtered
fastq files. You should notice very little change (since comparatively few reads were filtered).

Note that although in this case filtering did very little, most runs are not as ‘clean’ as this so you may
find your filtering removes many more reads in the real-world.

Task 5:
We can perform a quick check (although this by no means guarantees) that the sequences in read

1 and read 2 are in the same order by checking the ends of the two files and making sure that the
headers are the same.

tail strainl read?2.filtered.fastg

lbuntu@ip-10-28-24-212:~/genomics tutorial/strainl/illumina reads$ tail strainl readl.filtered.fastq
F
3BABBBBBBABABBABABABBAABBABBBBBBABBGHHHG
dBENM 2011 0526 022:5:9999:5600:40/1
ITCCGGCTTTATCCCCTGATTCTGTGGATAACCGTATTACC
F
JEDDDEDEDDDDEDDDDEDDDDDEEDDEEDEDDDEBBAAA
9BENM 2011 0526 022:6:10000:423:40/1
JACGCCATTCTGCGTCAGAGCAGACTCAATCTTGTCAATA
F
)CCDDCCDCDDCCDDDDCCDDCCDDCCCCDCCCDCHHAHH
lbuntu@ip-10-28-24-212:~/genomics tutorial/strainl/illumina reads$ tail strainl read2.filtered.fastq
[
“GGGGFGGGFFFFGGFFFGFFGGFFGFGGFGFGGF ; <<<<
8BENM 2011 0526 022:5:9999:500:40/2
IGTCTGCAAGTTCGAATTACCAACAAAGCACTGCTGTTTT
F
[JIJIJIIIIIIIIIIIIIIIIIIIIIIIIIIIII87888
dBENM 2011 0526 022:6:10000:423:40/2
ITGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGG
F
ZCbCCCDDbCCCDCCDCCDCCCDCCCCDCCDDCCCDBBBAB
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Task 6:

Check the number of reads in each filtered file. They should be the same. To do this use the grep
command to search for the number of times the header appears. E.g:

grep -c "@CP000243" strainl readl.filtered.fastq

Do the same for the strainl_read?2.filtered.fastq file.
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2.3 Aligning lllumina data to a reference sequence

Now that we have checked the quality of our raw data, we can begin to align the reads against a
reference sequence. In this way we can compare how the reference sequence and the strain we have
sequenced compare.

To do this we will be using a program called BWA (Burrows Wheeler Aligner Li H. and Durbin R. (2009)
Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25:1754-60. ) . This uses an
algorithm called (unsurprisingly) Burrows Wheeler to rapidly map reads to the reference genome. BWA
also allows for a certain number of mismatches to account for variants which may be present in strain 1
vs the reference genome. Unlike other alignment packages such as Bowtie (version 1) BWA allows for
insertions or deletions as well.

By mapping reads against a reference, what we mean is that we want to go from a FASTQ file listing
lots of reads, to another type of file (which we'll describe later) which lists the reads AND where/if it
maps against the reference genome. The figure below illustrates what we are trying to achieve here.
Along the top in grey is the reference sequence. The coloured sequences below that indicates individual
sequences and how they map to the reference. If there is a real variant in a bacterial genome we would
expect that (nearly) all the reads would contain the variant at the relevant position rather than the same
base as the reference genome. Remember that error rates for any single read on second generation
platforms tend to be around 0.5-1%. Therefore a 100bp read is likely to contain at least one error.

Let's look at 2 potential SNPs which are in fact artefacts.

1. Sequencing error:

The region highlighted in green on the right shows that most reads agree with the reference sequence
(i.e. C-base). However, 2 reads near the bottom show an A-base. In this situation we can safely assume
that the A-bases are due to a sequencing error rather than a genuine variant.

2. PCR duplication:

The highlighted region red on the left shows where there appears to be a variant (either due to

sequencing of a diploid genome or non-clonal samples). A C-base is present in the reference and half
the reads, whilst an A-base is present in the other reads.
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Is this a genuine difference or a sequencing or sample prep error? What do you think? If this was a real
sample, would you expect all the reads containing an A to start at the same location?

The answer is no. This 'SNP" is in fact due to PCR duplication. l.e. the same fragment of DNA has been
replicated many times more than the average and happens to contain an error. We can filter out such
reads during after alignment to the reference (see later).

2.3.1: Indexing a reference genome:

Before we can start aligning reads to a reference genome, the genome sequence needs to be indexed.
This means sorting the genome into easily searched chunks.

Task 7: Generating an index file from the reference sequence
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Change directory to the reference_sequence directory:

enomics tutorial/reference sequence

&= & ubuntu@ip-10-212-185-189: ~/genomics_tutorial/reference_sequence

File Edit View Search Terminal Help

ubuntu@ip-10-212-185-189:~/genomics_tutorial/reference_sequence$ ls
Ecoli _UTI8%9.fna Ecoli UTI89.gff
ubuntu@ip-10-212-185-189:~fgenomics_tutorial/reference_sequence$ I

In this directory we have 2 files. Ecoli_UTI89.fna is a FASTA file which contains the reference genome
sequence. The Ecoli_UTI89.gff file contains the annotation for this genome. We will use this later.

First, let's looks at the bwa command itself. Type:

This should yield something like:

: bwa (alignment via Burrows-Wheeler transformation)
: 8.7.5a-r405
: Heng Li <lh3@sanger.ac.uk=>

bwa <command> [options]

: index index sequences in the FASTA format
mem BWA-MEM algorithm
fastmap identify super-maximal exact matches
pemerge merge overlapping paired ends (EXPERIMENTAL)
aln gapped/ungapped alignment
samse generate alignment (single ended)

sampe generate alignment (paired ended)
bwasw BWA-SW for long queries

fazpac convert FASTA to PAC format

pac2bwt generate BWT from PAC

pac2bwtgen alternative algorithm for generating BWT
bwtupdate update .bwt to the new format

bwt2sa generate SA from BWT and Occ

ote: To use BWA, you need to first index the genome with “bwa index'. There are
three alignment algorithms in BWA: "mem', "bwasw' and aln/samse/sampe'. If
you are not sure which to use, try "bwa mem' first. Please "man ./bwa.1' for
for the manual.

BWA is actually a suite of programs which all perform different functions. We are only going to use
two during this workshop: bwa index, and bwa mem.
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If we type:

We can see more options for the bwa index command:

bwa index [-a bwtsw|is] [-c] <in.fasta=>

-a STR BWT construction algorithm: bwtsw or is [auto]
-p STR prefix of the index [same as fasta name]
-6 index files named as <in.fasta=.64.* instead of <in.fasta>.*

“-a bwtsw' does not work for short genomes, while "-a is' and
“-a div' do not work not for long genomes. Please choose "-a'
according to the length of the genome.

By default bwa index will use the IS algorithm to produce the index. This works well for most
genomes, but for very large ones (e.g. vertebrate) you may need to use bwtsw. For bacterial genomes
the default algorithm will work fine.

Now we will create a reference index for the genome using BWA:

bwa index Ecoli UTI89.fha

ubuntu@ip-10-212-185-189:~/genomics_tutorial/reference_sequence$ bwa index bwa index Ecoli_UTI89.fna
[bwa_index] fail to open file 'bwa' : No such file or directory
ubuntu@ip-10-212-185-189:~/genomics_tutorial/reference_sequence$ bwa index Ecoli_UTIB89.fna
[bwa_1index] Pack FASTA... 8.06 sec
[bwa_1index] Construct BWT for the packed sequence...
[bwa_index] 4.50 seconds elapse.
[bwa_index] Update BWT... 0.05 sec
[bwa_index] Pack forward-only FASTA... 0.04 sec
[bwa_index] Construct SA from BWT and Occ... 0.95 sec
[main] Version: 0.7.5a-r405
[main] CMD: bwa index Ecoli_UTI89.fna
i Real time: 7.156 sec; CPU: 5.612 sec
ip-10-212-185-189:~/genomics tutorial/reference seguence

If you now list the directory contents using the 'Is' command, you will notice that the BWA index
program has created a set of new files. These are the index files BWA needs.

2.3.2: Aligning reads to the indexed reference sequence:

Now we can begin to align read 1 and read 2 to the reference genome. First of all change back into the
~/genomics_tutorial/strainl/ directory.

enomics_tutorial/strainl/

Now let's create a directory to store our alignment (just to be tidy):

mkdir remapping to reference
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And now lets change into that directory:

cd remapping to reference

ubuntu@ip-16-212-185-189:~/genomics_tutorialfstraini$ 1s
illumina_reads

ubuntu@ip-10-212-185-189:~/genomics_tutorial/straini$ mkdir remapping_to_reference

ubuntu@ip-16-212-185-189:~/genomics_tutorialfstraini$ 1s

illumina_reads remapping_to_reference
ubuntu@ip-16-212-185-189:~/genomics_tutorialfstrainl$ cd remapping_to_reference/
ubuntu@ip-16-212-185-189:~/genomics_tutorial/strainl/remapping_to_reference$ ls
ubuntu@ip-16-212-185-189:~/genomics_tutorial/strainl/remapping_to_reference$ I
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We can now explore the alignment options BWA mem has to offer. Type:

bwa mem

Usage: bwa mem [options] <idxbase> <inl.fq> [in2.fq]
lgorithm options:

-t INT number of threads [1]

-k INT minimum seed length [19]

-w INT band width for banded alignment [160]

-d INT off-diagonal X-dropoff [108]

-r FLOAT look for internal seeds inside a seed longer than {-k} * FLOAT [1.5]
-c INT skip seeds with more than INT occurrences [10088]

-5 skip mate rescue

-P skip pairing; mate rescue performed unless -5 also in use

-A INT score for a sequence match [1]

-B INT penalty for a mismatch [4]

-0 INT gap open penalty [6]

-E INT gap extension penalty; a gap of size k cost {-0} + {-E}*k [1]
-L INT penalty for clipping [5]

-U INT penalty for an unpaired read pair [17]

Input/output options:

-p first query file consists of interleaved paired-end sequences
-R STR read group header line such as '@RG\tID:foo\tSM:bar' [null]

-v INT verbose level: 1=error, 2=warning, 3=message, 4+=debugging [3]

-T INT minimum score to output [3@]

-a output all alignments for SE or unpaired PE

-C append FASTA/FASTQ comment to SAM output

-M mark shorter split hits as secondary (for Picard/GATK compatibility)

Mote: Please read the man page for detailed description of the command line and options.

We can see that we need to provide BWA with a FASTQ file containing the raw reads (denoted by
<inl.fg>) to align to a reference file (unhelpfully this is listed as <idxbase>). There are also a number
of options. The most important are the maximum number of differences in the seed (-Kk i.e. the first 19
bp of the sequence vs the reference), the number of processors the program should use (-t — our
machine has 8 processors). As standard bwa mem will output the results to the screen (so-called
standard-out) so in order to store the output in a file we will need to redirect it using the “>’ operator.

N.B. Typically the BWA mem algorithm is most effective for longer reads than we are using in this tutorial
(i.e. >70bp), however for simplicity we want to show you how BWA mem works in practice despite having
shorter reads. This is because most lllumina reads being produced are at least 100bp. If you do have shorter
read data (i.e. <70bp) you should use BWA aln rather than BWA mem. See
http://bitsandbugs.org/2013/11/20/validation-of-bwa-mem/ for more details.

Note that our reference sequence is in ~/genomics_tutorial/reference_sequence/Ecoli_UTI89.fna

Ouir filtered reads for read 1 are in
~/genomics_tutorial/strainl/illumina_reads/strainl_readl.filtered.fastq
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Our filtered reads for read 2 are in
~/genomics_tutorial/strainl/illumina_reads/strainl_read2.filtered.fastq

So to align read 1 using 8 processors and output to file alignment.sam type (all on one line):

Task 8: Aligning reads to the reference genome

bwa mem -t 8 /home/ubuntu/genomics_tutorial/reference_sequence/Ecoli_UTI89.fna|
home/ubuntu/genomics_tutorial/strainl/illumina_reads/strainl _readl.filtered.fastq
home/ubuntu/genomics tutorial/strainl/illumina reads/strainl read?2.filtered.fastg
alignment.sam

This will take around 5 minutes.

::main_mem] read 441774 sequences (17523121 bp)...

::mem_pestat] # candidate unique pairs for (FF, FR, RF, RR): (@, 121991, 1, 0)
::mem_pestat] skip orientation FF as there are not enough pairs

::mem_pestat] analyzing insert size distribution for orientation FR...
::mem_pestat] (25, 50, 75) percentile: (421, 448, 475)

::mem_pestat] low and high boundaries for computing mean and std.dev: (313, 583)
::mem_pestat] mean and std.dev: (448.17, 39.89)

::mem_pestat] low and high boundaries for proper pairs: (259, 637)

::mem_pestat] skip orientation RF as there are not enough pairs

::mem_pestat] skip orientation RR as there are not enough pairs

::worker2@2] performed mate-SW for 10541 reads

::worker2@3] performed mate-SW for 10770 reads

::worker2@1l] performed mate-SW for 10463 reads

::worker2@6] performed mate-SW for 10687 reads

::worker2@®] performed mate-SW for 10467 reads

::worker2@4] performed mate-SW for 10608 reads

::worker2@7] performed mate-SW for 18722 reads

::worker2@s] performed mate-SW for 10540 reads
[main] Version: 0.7.5a-r405
[main] CMD: bwa mem -t 8 /home/ubuntu/genomics_tutorial/reference_sequence/Ecoli_uTI89.fna /home/ubuntu/genomics_tutorial/strainl/illumina_readd
/strainl_readi.filtered.fastq fhome/ubuntu/genomics_tutorial/strainil/illumina_reads/straini_read2.filtered.fastq
[main] Real time: 293.744 sec; CPU: 267.529 sec
ubuntu@ip-10-233-31-155:~/genomics tutorial/straini/remapping to reference
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2.4: Viewing the alignment

Once complete you can list the contents of the directory using the Is command, and you should see a
new file called alignment.sam

ubuntu@ip—10—33—13?—138:~jgenbmic5_tutnrialﬁ5trainljremapping_to_referenceS 1s
alignment.sam

ubuntu@ip-10-33-137-138:~fgenomics_tutorial/strainl/remapping_to_reference$

The raw alignment is stored in what is called SAM format (Simple AlignMent format). It is in plain
text format and you can view it if you wish using the 'less' command. (e.g. less alignment.sam). Do not
try to open the whole file in a text editor as you will likely run out of memory!

SRR292678.2 141 . L} ] * . -] [} GCAGGGGAGCGTGTGAGGCGATTCGCTGGTGGATTAAGGACGGTGGCAGAGACTGCCGTATCCGCTCAAATAACTGTTATGGTCAGGTAT HHHHHHHGHHHHHDHHHHHHGHHHHHFHH|

FHGFHHHHHHHHEGCFGGFFAFDFGGGG=. 5 ; C@=?CEEGD4C ' >?AA449E : AA?=>, 7>

SRR292678.3 83 CP00O243.1 544352 560 96M = 543972 -47@ GAACTGGGCTATACCGTAGATAAAGAAGAGCATGTTGTAGGTCTGAATTGCATAGCTTCAGCAATTTACGATGATGTCGGTAGCGTTGTT EDCEEE?EDEEGEGEGEFGEG

?GFGGBGDFFEGGGDGF F XT:A:U NM:i:4 SM:1:25 AM:1:25 X0:i:1 X1:1:0 XM:1:4 X0:1:0 XG:1:0 MD:Z:38C2C35A5T6

SRR292678.3 163 CP000243.1 543972 50 96M = 544352 470 GTCAATTAGGCTGGTGGCATATAGGATTAGGTGTCTTTAACGTCGGGGCGGCGTACATCCATAACCGCGATGTCCTCTCCGTCGCCGGGC HHHHHHHHHEHHFHFGGHFHB

GFEGDGGGIEAECEHFFEHHHCH=A" ; @4FEF DFG<=FD  XT:A:U NM:i:4 SM:1:25 AM:1:25 X@:i:1 X1:i:0 XM:i:4 X0:1:0 XG:1:0 MD:Z:4G5T35T2A40

SRR292678.4 99 CPO00243.1 4240368 60 96M = 4240754 476 AGGATGGTTATTTTAAACCCGAGCAGCGTCAGGCGCTGTTTGAACGCATTCATGCCAGCGGAGCGCAAATCGTCACCGTTGCGATGGGAT HHHHHHHHHHE FHFHHHHHHH

B D @ EDFH?E El Bl EHE XT:A:U NM:i:1 SM:i:37 AM:1:37 X@:1i:1 X1:i:0 XM:i:1 X0:1:0 XG:i:0 MD:Z:89G0

SRR292678.4 147 CP000243.1 4240754 60 96M = 4240368 -476 AAAGCATTCAAATTTTTAATGCTTTATTTGCCATTTCTCCTGAATTACGAAAACATTCGCAACACTCGATGTACCCATAACGATAACCGG EESBCCDEDFCBEBFHFFEC=

DDEA?FHFGFF ; EFCEAE@QCAE ; F>ABDDDA2D : D?FCFDAE8BIHFEFHH<FHHHHEHFGFFDFGGGI ~ XT:A:U NM:i:1 SM:i:37 AM:i:37 X@:i:1 X1:1:0 XM:i:1 X0:i:0 XG:i:0 MD:Z:86A3 E

SRR292678.5 99 CP000243.1 2340587 29 1S89M = 2340985 488 TCAGCTTTTTGCCGACTACAAACTGCTACCACCGTTCCGCCAGCTCGACCGTAACAGCTACGCCCTGACAGAAGCCGAGCGCAATGCCAG HGHGCHHHEHEE FHHGHHHHG|

GHFHHHHBHGGGGEHFGFFFFH; EBEFFFHFFHSFEABEGAFBF2@: >A?CCADGEFF>EEECA:8B?@  XT:A:M NM:i:7 SM:i:29 AM:1:29 XM:i:7 X0:1:0 XG:i:0 MD:Z:18G5T19T2T8T5620C5 F

SRR292678.5 147 CP000243.1 2340985 29 96M = 2340587 -488 CGAGCTGATTAACGATAGTGAAGCCCTGTTTGAATAAGGAAAGAGCATGGACAAGGAATTACCGTGGCTGGCGGATAACGCCCAACTGGA FF/EFAA>. :BA=GCE8/EEH.
DCC .GIEEGGBFHHHFFE DCCDD7/CBA/. XT:A:U NM:i:2 SM:i:29 AM:i:29 X@:i:1 X1:1:0 XM:i:2 X0:i:0 XG:i:0 MD:Z:6A10T72

Each alignment line has 11 mandatory fields for essential alignment information such as mapping
position, and variable number of optional fields for flexible or aligner specific information. For further
details as to what each field means see http://samtools.sourceforge.net/SAM1.pdf
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Task 9: Convert SAM to BAM file

Before we can visualise the alignment however, we need to convert the SAM file to a BAM (Binary

AlignMent format) which can be read by most software analysis packages. To do this we will use
another suite of programs called samtools. Type:

samtools view

Usage: samtools view [options] <in.bam>|<in.sam> [regionl [...]]

Options:
-b  output BAM
-h  print header for the SAM output
-H print header only (no alignments)
-S  input is SAM
-u  uncompressed BAM output (force -b)
-1 fast compression (force -b)
-x  output FLAG in HEX (samtools-C specific)
-X  output FLAG in string (samtools-C specific)
-c  print only the count of matching records
-L FILE output alignments overlapping the input BED FILE [null]
-t FILE list of reference names and lengths (force -S) [null]
-T FILE reference sequence file (force -S) [null]
-0 FILE output file name [stdout]
-R FILE list of read groups to be outputted [null]
-fINT required flag, O for unset [0]
-F INT filtering flag, O for unset [0]
-g INT minimum mapping quality [0]
-l STR only output reads in library STR [null]
-r STR only output reads in read group STR [null]
-s FLOAT fraction of templates to subsample; integer part as seed [-1]
-?  longer help

We can see that we need to provide samtools view with a reference genome in FASTA format file (-T),

the -b and -S flags to say that the output should be in BAM format and the input in SAM, plus the

alignment file.
Note that our reference sequence is in ~/genomics_tutorial/reference_sequence/Ecoli_UTI89.fna
Type (all on one line):

samtools view -bS -T

~/genomics_tutorial/reference sequence/Ecoli UTI89.fna alignment.sam >
alignment.bam

This should take around 5 minutes.
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Listing the contents of the directory shows us that alignment.bam is now present as well as
alignment.sam.

ubuntu@ip-10-168-53-230:~/genomics_tutorialfstrainl/remapping_to_reference$ 1s

alignment.bam alignment.sam
ubuntu@ip-10-168-53-230:~/genomics tutorial/strainl/remapping to reference$

Task 10: Remove suspected PCR duplicates

When using paired-end reads, samtools can do a reasonably good job of removing potential PCR
duplicates (see the first part of this workshop if you are unsure what this means).

Again, samtools has a great little command to do this:

On the command-line type:

samtools rmdup alignment.bam alignments.rmdup.bam

This will take around 3-4 minutes. Again, once complete, list the directory.

ubuntu@ip-10-168-53-230:~/genomics_tutorial/strainl/remapping_to_reference$ samtoo
1s rmdup alignment.bam alignments.rmdup.bam

[bam_rmdup_core] processing reference CPOAO243.1...

[bam_rmdup_core] 0 f 13 = 0.0800 in library ' '
ubuntu@ip-10-168-53-230:~/genomics_tutorial/strainl/remapping_to_reference$ 1s
alignment.bam alignment.sam alignments.rmdup.bam
ubuntu@ip-10-168-53-230:~/genomics tutorial/strainl/remapping to reference$s

Task 11: Sort BAM file

Once this is complete we then need to sort the BAM file so that the reads are stored in the order they
appear along the chromosomes (don't ask me why this isn't done automatically....). We can do this using
the samtools sort command.

samtools sort alignment.rmdup.bam alignment.rmdup.

This will take another 5 minutes or so. Once complete, list the directory contents (again using the Is
command). Note that the output file is called alignment.sorted, but actually the program appends .bam
to the end of the file (see below).

JDUNTU 3 U ~/gend = d J
s sort alignment.rmdup.bam alignment.rmdup.sorted
[bam_sort_core] merging from 2 files...

buntu@ip-10-168-53-230:~/genomics_tutorialfstrainl/remapping_to_reference$ ls
blignment.bam alignment.rmdup.bam alignment.rmdup.sorted.bam alignment.sam
buntu@ip-10-168-53-230:~/genomics_tutorial/strainil/remapping_to_reference$ I

35



Task 13: Index the BAM file

Most programs used to view BAM formatted data require an index file to locate the reads mapping to a
particular location quickly. We'll use the samtools index command to do this.

Type:

samtools index alignment.rmdup.sorted.bam

ubuntu@ip-108-33-137-138:~/genomics_tutorial/strainl/remapping_to_reference$ samtools index alignment.rmdup.sorted.bam
ubuntu@ip-108-33-137-138:~/genomics_tutorial/strainl/remapping_to_reference$ 1s

alignment.bam alignment.rmdup.bam alignment.rmdup.sorted.bam alignment.rmdup.sorted.bam.bai alignment.sam
ubuntu@ip-16-33-137-138:~/genomics_tutorial/strainl/remapping_to_reference$

We should obtain a .bai file (known as a BAM-index file).

Task 13: Obtain mapping statistics

Finally we can obtain some summary statistics.

samtools flagstat alignment.rmdup.sorted.bam > mappingstats.txt

This should only take a few seconds. Once complete view the mappingstats.txt file using a text-editor
(e.g. gedit or nano) or the 'more’ command.

buntu@ip-10-168-53-230:~/genomics_tutorial/strainlfremapping_to_reference$ more m
pppilngstats. txt
5494900 + 0 in total (QC-passed reads + QC-failed reads)
P + 0 duplicates
mapped (94.07%:-nan%)
paired in sequencing
read1i

read2
properly paired (92.88%:-nan%)
with itself and mate mapped
singletons (1.19%:-nan%)
different chr

So here we can see we have 6494900 reads in total, none of which failed QC. 94.07% of reads mapped
to the reference genome and 92.88% mapped with the expected 500-600bp distance between them.
1.19% reads could not have their read-pair mapped. Some of these will be reads which span the circular
chromosome (aligners do not tend to handle circular chromosomes).

0 reads have mapped to a different chromosome than their pair. If there were any such reads they would
likely due to repetitive sequences (e.g. phage insertion sites) or an insertion of plasmid or phage DNA
into the main chromosome. If you were dealing with a eukaryotic organism this could be evidence of
gene fusion or inter-chnromosomal re-arrangements which are known to occur in cancer.
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Task 14: Cleanup

We have a number of leftover intermediate files which we can now remove to save space.

Type (all on one line):

rm alignment.bam alignment.sam alignment.rmdup.bam

You should just have the alignment.rmdup.sorted.bam, the index file and the mappingstats.txt file left
after this.

ubuntu@ip-10-33-13?-138:~jgenomics:tutorialfstrainlfremapping:to:references 1s
alignment.rmdup.sorted.bam alignment.rmdup.sorted.bam.bal mappingstats.txt

ubuntu@ip-10-33-137-138:~/genomics_tutorial/strainl/remapping_to_references

Well done! You have now mapped, filtered and sorted your first whole genome data-set!
Let's take a look at it!
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Task 15: Load the Integrative Genomics Viewer

Within your amazon instance (make sure you don't accidentally load firefox on your desktop PC), load
the Firefox web browser by double clicking the icon on the desktop. Go to
http://www.broadinstitute.org/software/igv/download

You may find that you need to register to access the download page. Please do so if you need to.

Once you have registered you should reach the downloads page (similar to the screenshot below). Click
on the 'Launch with 2GB' option. If Firefox asks you whether or not to Open or Save the file, click on
'‘Open'. For larger genomes you may need to use the 10Gb version (though you'll need a machine with
at least this much RAM).

m Integrative
]gV Genomics
Viewer

+ Hosted Genomes
+FAQ

HIGV User Guide
EIFile Formats
HFRelease Notes

+ Credits

Search website

L]

Broad Home
Cancer Program

EEBROAD

INSTITUTE
© 2013 Broad Institute

Home » Downloads

Downloads

Integrative Genomics Viewer (Version 2.3)

Mac Users: Apple has pushed out an update that blocks all but the latest versions of Java. See this article for details. To run

IGV, you need the |atest version of Java.

Java: IGV 2.3 requires Java 6 or greater. To use the launch buttons below on MacOS Java 7 is required.

Chrome: Chrome does not launch java webstart files by default. Instead. the launch buttons below will download a “jnlp” file.

This should appear in the lower left comer of the browser. Double-click the downloaded file to run.

Windows users: To run with maore than 1.2 GB you must install 64-bit Java. This is often not installed by default even with
the latest Windows 7 machines with many GB of memoary. In general trying to launch with more memory than your 0S/Java
combination supports will result in the obscure error "could not create virtual machine”.

Launch with 750 MB Launch with 1.2 GB Launch with 2 GB Launch with 10 GB

Maximum usable memory Maximum usable memory For large memory 64-bit
for Windows OS with 32-bit | for 32-bit MacOS. java machines.
Java.

Early Access Version
Nightly Build Lafest development build.

Archived Versions

After a minute or so the IGV viewer should appear:
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] L L L L L L L L L L I I |
f
""""""""" (PP ARTY S RRDUVIN 7Y SO IV O IAVR I ST DRI T IA Y F VI | RPN TR
i
[197M of 735M |

NOTE alternatlvely, launch IGV by typing igv.sh in a separate terminal window.
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Task 16: Import the E.coli UTI189 reference genome to IGV

By default IGV does not contain our reference genome. We'll need to import it.
Click on 'Genomes ->Create genome file...'

Enter the following details into and click on 'Save'.

File Genomes View Tracks Regions Tools GenomeSpace Help

Human hgl8 ~ | |an v Go| £ @& [ = 2 =] eS|
h I
- X
FLI-] N
Unique identifier |UT189 | B Y N W ey
Descriptive name |E. Coli UT189 | N
FASTA file |fhomefubuntufgenom\cs_tutorialfreference_sequencefEco\i_UTIBQ.fna | Bro...
Optional
Cytoband file | | Bro...
Gene file |}homefubuntu,’genom\cs_tutorialfreference_sequencefEco\i_UTISQ.gf‘f | Bro...
Alias file | | Bro...
‘ OK || Cancel |
I i
RefSeq genes 1
bt ak Lmumdﬂl..‘..ﬂ._..n__; ..J..J.J.L...u..uum.......l.l abbnsdbdoad dal o b luum...l.llhll..him.. |
-

Il Il [[206M of 259M

IGV will ask where it can save the genome file. Your home directory will be fine. Click 'Save' again.

" 1oV I
File view Tracks Help
|E.cu|i uTige ‘-| All ‘v | |co| £ @ =] =
CP000243.1 -
CP000244.1 |-~
|all
o CPOO0Z
Gene I' ii II I. III I III I 'I' i II II II.I l II I I III I IIII I lII I =

=[]

284M of 687M

Note that the genome has now been imported. Two chromosomes are listed.
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Task 17: Load the BAM file

Load the alignment.rmdup.sorted.bam file. Note that IGV requires the .bai index file to also be in the

same directory.

File Genomes ¥iew Tracks Regions Tools GenomeSpace Help

Ecoli UTI89 v [|an - Go| % @& [ = 0 EIR e =+

CPO00243 1

CPO002|

S

@ sSelect Files

Look In: ||j remapping_to_reference |V| E

D alignment.rmdup.sorted.bam ‘

Tullal

[ alignment.rmdup.sorted.bam.bai
[y mappingstats.txt

File Name: [alignment.rmdup.sorted.bam |

Files of Type: |AII Files |v‘

Once loaded your screen should look similar to the following. Note that you can load BAM files if you

wish to compare different samples or the results of different mapping programs.

(=] 52 E[E=)

File View Tracks Help

E.coli UTIS9 ‘v”ﬂll ‘v” |Go b 2] | =

CPODD24E.1

D

aME
DaTa, FILE
DaTs TYPE

alignment calmd. rmdup. bam €.
ge

[r] [l

alignment. calmd. rmdup. bam

Gene Li PERRTAOL T Lt s ki b e b ol b L el s il I

[v [

260M of 687M

B [[«]
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Note that at the moment, you cannot see any reads. We first need to select a chromosome and zoom in.
To save memory, IGV will only display reads at a certain magnification (you can alter this in the View
-> Preferences -> Alignments menu).

Select the CP000243.1 chromosome.

2] GV EEIE
File View Tracks Help
E.coli UTIB9 |chpuno243.1 |-“cp000243.1 ‘Go = @9 [ = 2 IR =l
w 5,054 kb
yy
w = kb 1000 kb 2,000 kb 3,000 kb 4,000 kb 5,000
Y | | | | I | | | | =
= oo -
alignment. calmel rmdup.bam C. (D=6 =
o=
alignment. calmd. rmdup.bam
Zoorm in to see alignments.,
=
o T e —————— e m—————— e e———
2 Lthrl  CPOOD243. Lfsr CPOO0243.LwecF  CPO00Z43 LhrpA  CFO0D243.Lirp2  CPO00243.LdsdC  CPOO0Z431:vsk  CPOOD243.Lbfr  CPODDZ43.1lkup  CPOD0D243.LwtfF
274M of 687M i

Either use the the +/- keys to zoom in or use the zoom bar at the top right of the screen. At the bottom
you can see a representation of the genes that have been annotated for the reference strain.

The following is a snapshot of the genome at position 25171850-2543949 — a 25kb window on the
genome.
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& GV BIEIE

File View Tracks Help

E.coli UTIS9 |v||CP000243.1 |v‘|CP000243‘1:2.517‘185'2‘543‘.049 ‘Go £ < & O = 9 I=NRNARRRN! ERNRRANAL
1]
wyl 25kb
w E E 2,520 kb 2,530 kb 2,540 kb
§§§ | | | | | =
slignment. calrmd rendup. bam © e =
e
| | i I
[
| 11 |
| | |
| | | | =
| | |
| |
| I
| | | | |
I | |
| | | |
| 11 | | o
I | |
| 111 | | | | I |
| | | 11
| | |
|
| | |
| | I |
[ |
| | I
| | |
N | | | |
| T |
| | | |
I | T |
| | |
| | | | '~
. i . i . it K
P -1 11T T ————r= T =
43.Lielan CP 000243, Lyvibl CPO00243.1inuoM  CPO00243.1:nuck CPO00243.1inucG CPO00243. 1inucE CPO00243. 1inucs, CP 000243, 1w fbR
CP000243.1:2,518,824 253M of 470M il

The gray graph at the top of the figure indicates the coverage of the genome by the grey reads below.
The more reads mapping to a certain location, the higher the peak on the graph. You'll see a coloured
line of blue, green or red in this coverage plot if there are any SNPs (single-nucleotide polymorphisms)
present (there are none in the plot below). If there are any regions in the genome which are not covered
by the reads, you will see these as gaps in the coverage graph. Sometimes these gaps are caused by
repetitive regions, others are caused by genuine insertions/deletions in your new strain with respect to
the reference.

Above the coverage graph is a representation of each read as it is mapped to the genome. Any areas of
mismatch either due to inconsistent distances between paired-end reads or due to mutations are

highlighted by a colour. If there is a consistent column of colour, this is indicative of a SNP or Indel.
The brighter the colour, the higher the base-calling quality is estimated to be.

2.5: SNPs and Indels

The following 3 tasks are open-ended. Please take your time with these. Read the examples on the
following page if you get stuck.

Task 18: Read about the alignment display format

Visit http://www.broadinstitute.org/software/igv/AlignmentData
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Task 19: Manually Identify a region without reads mapping

What is this region? Is there a gene close-by? What sort of genes seem to result in areas of low/zero
coverage? Why do you think this is? (think about repetitive sequences, what does BWA do if a read
maps to multiple locations?)

Task 20: Identify SNPs and Indels manually

Zoom into the region at the start of chromosome CP000243.1. Can you find any SNPs? Which genes
(if any) are they in? How reliable do they look? (Hint — look at the number of reads mapping, their
orientation and how bright the base-calls are).

Zoom in to maximum magnification at the site of the SNP. Can you determine whether a SNP results in
a synonymous (i.e. silent) or non-synonymous change in the amino acid? Can you use PDB
(http://www.rcsh.org/pdb/home/home.do) or other resources to determine whether or not this occurs in
a catalytic site or other functionally crucial region? (Note this may not always be possible).

What effect do you think this would have on the cell?
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Example: Identifying SNPs manually

To help you there is an example pasted below for position 15,450-15,540bp on chromosome
CP000243.1.

The first thing to note is that only discrepancies with respect to the reference are shown. If a read is
entirely the same as its reference, it will appear entirely grey. Blue and red blocks indicate the presence
of an "abnormal’ distance between paired-end reads. Note that unless this is consistent across most of
the reads at a given position, it is not significant.

2] IGV/ SISk
File View Tracks Help
E.coli UTIB9 |v||CP000243.1 |v|‘CP000243.1:15‘445—15.544 |Gq 5 « @3 A o= 2 Elrrrerrrieern
uy 100 bp
w E E 15,450 bp 15,450 bp 15,470 bp 15,420 bp 15,490 bp 15,500 bp 15,510 bp 15,520 bp 15,530 bp 15,540 bp
PEEE | | | | | ! | | | | | | | | | ! | | | —|
Faagal i
alignment. calmd. rmdup bam © [2-C3 =
ge [ ]
Il
ici
ici
< i =
ici .|
ici
ici
I
ici
ici | |
Ici
i
- ici
[alignment.calmd.rmdup.bam| ici
ici
ici
ici
Ici
i
ici
icl L |
ici
ici
iri
ici
ici |
ici B

Sequence - CCGTTGCTCTTACTCGGATTCST GCCGT G CAGC CCTCCGTCTGGCCAGTTCGGATGT G CCTCACAGAGGTCTTTTCTCGTTACCAGCGCC
< E |8 E ¥ AT F M AW

CPO00245. L gef

4

CP000243.1:15,513 34bH of 938M jif

Here we have a G->C SNP. This changes the codon from CAG->GAG (remember this gene is on the
reverse strand as indicated by the arrows) and results in a GIn->Thu mutation in the final protein
product. As this is a cell-killing gene, this could be a very important change. Note that there is a single
T base listed in one of the reads towards the bottom of the screen. Based on the frequency of C-bases
vs T-bases at this position we can say that the T-base is likely to be a sequencing error and ignore it.

One additional check is that the SNPs occur on both read 1 and read 2. We can check this by looking at
the direction of the grey reads. We can see that approximately half of the bases reporting the G->C
mutation occur in read 1 (forward arrow), and half in read 2 (reverse arrow). This adds confidence to
the base-call as it reduces the likelihood of this SNP being the result of a PCR duplication error.

Note that sequencing errors in Illumina data are quite common (look at the odd bases showing up in the
screen above. We rely on depth of sequencing to average out these errors. This is why people often
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mention that a minimum median coverage of 20-30x across the genome is required for accurate SNP-
calling with lllumina data. This is not necessarily true for simple organisms such as prokaryotes, but for
diploid and polyploid organisms it becomes important because each position may have one, two or
many alleles changed.
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Example: Identifying Indels manually
To help you there is an example pasted below for position 11,200-11,250bp on chromosome
CP000243.1.

£ 1GV/ EIENES
File View Tracks Help
E.coli UTIB9 ‘v||CP000243.1 |v||CP000243‘1:11‘203—11.252 |GQ T - @g) | =2 =R RN |
u 50 bp
wE = 11,210 bp 11,220 bp 11230 bp 11,240 bp 11,250 bp
=EE | | 1 | 1 1 —
o g
= 0 6 =7
alignment. calmd. rrdup.bam € [D=C1 =
s
Loy
e
Py
by =
by
Py
Ly
Pl
[ |
g | |
Py
Py
I
[
[
I
[
I
I
[
I
[
I
I
[
I |
[ -
Sequence - TTCTCCGGC GCTGCCAGTTGCGGCGGTGTCGCTCGGGATGT CJa
E €] A Q 7 G
Gene
CPOO0243 1:yasih’
|

CP000243.1:11, 206 433M l{lf 853M i |

Much the same guidelines apply for indels as they do for SNPs. Here we have an A->G SNP which is
preceded by the insertion of a C base in our sample compared to the reference. Again, we can see how
much confidence we have that the insertion is real by the brightness of the colours and by ensuring that
the indel is found on both read 1 and read 2.

The insertion is signified by the presence of a purple bar. Hover your mouse over it to get more details.
We can hover our mouse over the reference sequence to get details of the gene. We can see that it is a
cytochrome C chaperone. Given that this indel changes the reading frame of the protein it could have

very significant effects.

One can research the effect the effect of a SNP or Indel may have by finding the relevant gene at
http://www.uniprot.org (or google 'yaaW uniprot' in this case).

It should be clear from this quick exercise that trying to work out where SNPs and Indels are manually

is a fairly tedious process if there are many mutations. As such, the next section will look at how to
obtain spread-sheet friendly summary details of these.
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Recap: SNP/Indel identification

1. Only changes from the reference sequence are displayed in IGV

2. Genuine SNPs/Indels should be present on reads in both the forward and

reverse direction (otherwise it could be a PCR artifact)

3. Genuine SNPs/Indels should be supported by a good (i.e. 20-30x) depth of
coverage (so that we’re sure it’s not just noise).

4, Very important mutations (e.g. ones relied upon in a paper) should be
confirmed via PCR/Sanger sequencing.

2.6: Automated analyses

Viewing alignments is useful when convincing yourself or others that a particular mutation is real
rather than artefactual and for getting a feel for short read sequencing datasets. However, if we want to
quickly and easily find variants we need to be able to generate lists of variants, in which gene they
occur (if any) and what effect they have. We also need to know which (if any) genes are missing (i.e.
have zero coverage).

2.6.1: Automated variant calling

To call variants we can use a number of packages (e.g. VarScan, GATK, FreeBayes). However here, we
will show you how to use the bcftools package which comes with samtools. Note, that this is a
simplified method because we only have a single sample. Towards the end of this tutorial we will look
at how to call SNPs when we have multiple samples. By calling SNPs in multiple samples at the same
time we can leverage data across different samples (e.g. one sample may have low coverage in a
particular region which would normally prevent variant calling, but by looking at the sample in the
context of the other samples we can increase our statistical power enabling us to call variants).

First we need to generate a pileup file which contains only locations with the variants and pass this to
bcftools.

Task 21: Identify SNPs and Indels using automated variant callers

Make sure you are in the ~/genomics_tutorial/strainl/remapping_to_reference directory. Type the
following:

samtools mpileup

You should see a screen similar to the following
Usage: samtools mpileup [options] in1.bam [in2.bam [...]]

Input options:
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-6 assume the quality is in the Illumina-1.3+ encoding

-A count anomalous read pairs

-B disable BAQ computation

-b FILE  list of input BAM files [null]

-C INT  parameter for adjusting mapQ); 0 to disable [0]

-d INT  max per-BAM depth to avoid excessive memory usage [250]
-E extended BAQ for higher sensitivity but lower specificity
-fFILE  faidx indexed reference sequence file [null]

-G FILE  exclude read groups listed in FILE [null]

-l FILE list of positions (chr pos) or regions (BED) [null]

-M INT  cap mapping quality at INT [60]

-r STR  region in which pileup is generated [null]

-R ignore RG tags

-g INT  skip alignments with mapQ smaller than INT [0]

-Q INT  skip bases with baseQ/BAQ smaller than INT [13]

Output options:
-D output per-sample DP in BCF (require -g/-u)
-0 generate BCF output (genotype likelihoods)
-0 output base positions on reads (disabled by -g/-u)
-S output mapping quality (disabled by -g/-u)
-S output per-sample strand bias P-value in BCF (require -g/-u)
-U generate uncompress BCF output

SNP/INDEL genotype likelihoods options (effective with "-g' or "-u’):

- INT  Phred-scaled gap extension seq error probability [20]

-F FLOAT  minimum fraction of gapped reads for candidates [0.002]
-h INT  coefficient for homopolymer errors [100]

-1 do not perform indel calling

-LINT  max per-sample depth for INDEL calling [250]

-m INT  minimum gapped reads for indel candidates [1]

-0 INT  Phred-scaled gap open sequencing error probability [40]
-PSTR  comma separated list of platforms for indels [all]

Notes: Assuming diploid individuals.

If you are running this on your own datasets, please make sure you set the -d parameter if you have
high coverage (i.e. > 200x mean coverage) per sample.

As the samtools mpileup command outputs an unfriendly output, we will pass it directly to the bcftools
view command using the linux pipe (['). Type the following (don’t forget the — after the —bvcg):

samtools mpileup -uf ~/genomics_tutorial/reference_sequence/Ecoli_UTI189.fnha

alignment.rmdup.sorted.bam | bcftools view -bvcg - > var.raw.bcf
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This may take 15 minutes or so and will generate a BCF (Binary Call Format) file containing the raw
unfiltered variant calls in a binary format.

This is not readable by humans, so let's use the bcftools view command and use the linux pipe ('|') with
the with the vcfutils.pl varFilter command. We can see what the options are for this program by typing
in:

vcfutils.pl varFilter

Usage: vcfutils.pl varFilter [options] <in.vcf>

Options: -Q INT  minimum RMS mapping quality for SNPs [10]
-d INT minimum read depth [2]
-D INT maximum read depth [10000000]
-a INT  minimum number of alternate bases [2]
-w INT  SNP within INT bp around a gap to be filtered [3]
-W INT window size for filtering adjacent gaps [10]
-1 FLOAT min P-value for strand bias (given PV4) [0.0001]
-2 FLOAT min P-value for baseQ bias [1e-100]
-3 FLOAT min P-value for mapQ bias [0]
-4 FLOAT min P-value for end distance bias [0.0001]
-e FLOAT min P-value for HWE (plus F<0) [0.0001]
-p print filtered variants

Note: Some of the filters rely on annotations generated by SAMtools/BCFtools.

We will use the -d option to limit variant calls to those positions where there are at least 10 reads. Type:

bcftools view var.raw.bcf | vefutils.pl varFilter -d 10 > var.flt.vcf

Once complete, view the file using the 'more' command. You should see something similar to: (lines
beginning with # are just comment lines explaining the output)

#CHROM POS 0] REF ALT QUAL FILTER INFO FORMAT alignment.calmd.rmdup.bam

CP00O243.1 10739 ATTT ACTTT 214 S INDEL;DP=32;VDB=0.0803;AF1=1;AC1=2;DP4=0,0,8,11;M0=51;FQ=-91.5 GT:PL:GQ 1/1:255,57,0:99
CPO0O243.1 11229 T TC 214 3 INDEL ;DP=34;VDB=0.1028;AF1=1;AC1=2;DP4=0,0,14,11;MQ=44;FQ=-110 GT:PL:GQ 1/1:255,75,0:99
CPO0O243.1 15495 G ¢ 222 5 DP=50;VDB=0.1028;AF1=1;AC1=2;DP4=0,0,25,17;MQ=52;FQ=-150 GT:PL:GQ 1/1:255,123,0:99
CPO0O243.1 35301 G A 222 5 DP=47;VDB=0.0948;AF1=1;AC1=2;DP4=0,0, 14,26;MQ=51; FQ=-147 GT:PL:GQ 1/1:255,120,0:99
CPO0O243.1 126378 . T A 222 - DP=47;VDB=0.1028;AF1=1;AC1=2;DP4=0,0,18,20;M0=54;FQ=-141 GT:PL:GQ 1/1:255,114,0:99
CP00O243.1 131200 . C CA 214 . INDEL ;DP=58;VDB=0.1028;AF1=1;AC1=2;DP4=0,0,19,15;MQ=54;FQ=-137 GT:PL:GQ 1/1:255,102,0:99
CPO0OO243.1 210716 . G C 211 “ DP=45;VDB=0.1028;AF1=1;AC1=2;DP4=0,0,19,19;MQ=47;FQ=-141 GT:PL:GQ 1/1:244,114,0:99
CPO0O243.1 314746 . A T 222 s DP=34;VDB=0.0948;AF1=1;AC1=2;DP4=0,0,12,14;MQ=53;FQ=-105 GT:PL:GQ 1/1:255,78,0:99
CP0O0O243.1 326644 . G C 222 5 DP=43;VDB=0.0803;AF1=1;AC1=2;DP4=0,0,18,19;MQ=47;FQ=-138 GT:PL:GQ 1/1:255,111,0:99
CP00O243.1 336724 . A G 218 & DP=49;VDB=0.1028;AF1=1;AC1=2;DP4=0,0,20,19;MQ=45;FQ=-144 GT:PL:GQ 1/1:251,117,0:99
CPO0O243.1 444808 . G A 153 g DP=32;VDB=0.0624;AF1=1;AC1=2;DP4=0,0,12,10;MQ=44;FQ=-93 GT:PL:GQ 1/1:186,66,0:99
CPO0O243.1 444809 . C A 138 § DP=33;VDB=0.08603;AF1=1;AC1=2;DP4=0,0,12,10;MQ=41;FQ=-93 GT:PL:GQ 1/1:171,66,0:99

You can see the chromosome, position, reference and alternate allele as well as a quality score for the
SNP. This a VCF file (Variant Call File). This is a standard developed for the 1000 genomes project.
The full specification is given at
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-
version-41
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The lines starting DP and INDEL contain various details concerning the variants. For haploid
organisms, most of these details are not necessary.

Variant qualities:

Typically one should only accept variant calls over a certain quality threshold. Typically a threshold of
60 is used (i.e. a 1 in 1000000 chance of a mis-called variant). Here you can see that all these variants
would pass these thresholds. However, for future reference, we can use the Linux ‘awk' command to
filter the data on the quality column (i.e. column 6, which in the awk command is denoted by $6):

awk '($6>=60)" var.flt.vcf > out.snps.vcf4

Again viewing the final output file out.snps.vcf4 using a text-editor or the 'more' command should
yield:

#CHROM POS 0] REF ALT QUAL FILTER INFO FORMAT alignment.calmd.rmdup.bam

CP00O243.1 10739 ATTT ACTTT 214 S INDEL;DP=32;VDB=0.0803;AF1=1;AC1=2;DP4=0,0,8,11;M0=51;FQ=-91.5 GT:PL:GQ 1/1:255,57,0:99
CPO0O243.1 11229 T TC 214 3 INDEL ;DP=34;VDB=0.1028;AF1=1;AC1=2;DP4=0,0,14,11;MQ=44;FQ=-110 GT:PL:GQ 1/1:255,75,0:99
CPO0O243.1 15495 G g 222 5 DP=50;VDB=0.1028;AF1=1;AC1=2;DP4=0,0,25,17;MQ=52;FQ=-150 GT:PL:GQ 1/1:255,123,0:99
CPO0O243.1 35301 G A 222 5 DP=47;VDB=0.0948;AF1=1;AC1=2;DP4=0,0, 14,26;MQ=51; FQ=-147 GT:PL:GQ 1/1:255,120,0:99
CPO0O243.1 126378 . T A 222 - DP=47;VDB=0.1028;AF1=1;AC1=2;DP4=0,0,18,20;M0=54;FQ=-141 GT:PL:GQ 1/1:255,114,0:99
CP00O243.1 131200 . C CA 214 . INDEL ;DP=58;VDB=0.1028;AF1=1;AC1=2;DP4=0,0,19,15;MQ=54;FQ=-137 GT:PL:GQ 1/1:255,102,0:99
CPO0OO243.1 210716 . G C 211 “ DP=45;VDB=0.1028;AF1=1;AC1=2;DP4=0,0,19,19;MQ=47;FQ=-141 GT:PL:GQ 1/1:244,114,0:99
CPO0O243.1 314746 . A T 222 s DP=34;VDB=0.0948;AF1=1;AC1=2;DP4=0,0,12,14;MQ=53;FQ=-105 GT:PL:GQ 1/1:255,78,0:99
CP0O0O243.1 326644 . G C 222 5 DP=43;VDB=0.0803;AF1=1;AC1=2;DP4=0,0,18,19;MQ=47;FQ=-138 GT:PL:GQ 1/1:255,111,0:99
CP00O243.1 336724 . A G 218 & DP=49;VDB=0.1028;AF1=1;AC1=2;DP4=0,0,20,19;MQ=45;FQ=-144 GT:PL:GQ 1/1:251,117,0:99
CPO0O243.1 444808 . G A 153 g DP=32;VDB=0.0624;AF1=1;AC1=2;DP4=0,0,12,10;MQ=44;FQ=-93 GT:PL:GQ 1/1:186,66,0:99
CP0O243.1 444809 . C A 138 § DP=33;VDB=0.08603;AF1=1;AC1=2;DP4=0,0,12,10;MQ=41;FQ=-93 GT:PL:GQ 1/1:171,66,0:99

This forms our definitive list of variants for this sample.

Task 22: Compare the variants found using this method to those you found in
section 2.5

Can you see any variants which may have been missed? Often variants within a few bp of indels are
filtered out as they could be spurious SNPs thrown up by a poor alignment. This is especially the case
if you use non-gapped aligners such as Bowtie.

(Hint — check out the SNP/Indel combination in the example in section 3.5 again)

2.6.2: Quickly locating genes which are missing compared to the
reference

We can use a command from the BEDTools package (http://code.google.com/p/bedtools/) to identify
annotated genes which are not covered by reads across their full length.

Type the following one one line:

coverageBed -abam alignment.rmdup.sorted.bam -b

~/genomics_tutorial/reference sequence/Ecoli UTI189.gff > gene coverage.txt
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This should only take a minute or so. Once complete we can view the file in LibreOffice spreadsheet.

Launch 'LibreOffice Calc' from the Applications->Office menu.

Untitled 1 - Libreoffice Calc (on ip-10-28-24-212/ec2'internal) HE@E
File Edit View Qlgfzlil Format Tools Data Window Help X
vl % PageBreak bt &0 - Bk 64 %koBER IO YT FEv i
. - - Cells... Ctri++ o i e T e =3
i Ileeratlon — ; P AEEEE A % % el | [ P | EH - B - - | | |
S | Rows
IAl 7] columns
Egheet... b [ e [ F [ @ CE I R T B

3 Sheet From File...

3 Link to External Data...

4 3£ special Character...

5 Formatting Mark .

5] : -

: 21 Hyperlink

8 Function... Ctri+F2

3 Function List

10

11 Names 3

12 [l comment

13 =

14 Picture v

i: i Movie and Sound

17 Object v

18 @& Chart...

15 ] Floating Frame

20 = |

21

Click 'Insert' and then select 'Sheet From File...". Select the gene_coverage.txt file in the
~/genomics_tutorial/strainl/remapping_to_reference directory.

When the program asks you which delimters to use, select 'Tab'. Make sure the others are deselected.

You may need to right click on the column labels for column | and select 'Column width'. Reduce this

to 5.
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File Edit \iew Insert Format Tools Data Window Help

;F.ﬂv:@w 5

CRERR

X E-

Ale B

WE4%xeBER O LT Fva

|L|be|at|onSans |10 EAa4a | EEERE A % %ol | [E PR |G - E -Gl | F O
1111048576 fio X = [ID=CP000243 1:torAilocus_tag=UTIB9_C1061
B C D E [F[G[H — [ \ [5) P [ Q [
1 Genbank gene 1047539 1050085 0 0 Format cells i 1
2 Genhank CDS 1047539 1050082 0 0 Column Width 1 1
3 Genbank misc_feature | 1047566 1050046 0 0 L 1
4 Genbank misc_feature | 1047698 1049575 0 o ojif ‘o OBtimal Column Width... 1
5 Genbank gene 2096593 2098170 0 0 et Columns 1
6 Genbank |CDS 2096593 2008167 0 0 - 1
7 Genbank misc_feature | 2096503 2008155 0 0 [§{ Delete Columns 1
8 Genbank misc_feature | 2096920 2098128 0 0 i7 Delete Contents... 1
9 Genbank gene 3142897 3146448 0 0 1
Genbank |CDS 3142900 3146448 0 0 Hide b 1
Genhank misc_feature | 3142900 3146442 0 0 Show 1
Genhank misc_feature | 3143011 3146439 0 0 b 1
Genbank gene 4194207 4194638 0 0 § Cut ] 1
Genbank |CDS 4194207 4194635 0 0 | Copy 1
Genbank misc_feature = 4194219 4194635 0 0 - 1
Genbank gene 129246 131909 0 0 | Baste b 1
Genbank |CDS 129246 131906 0 0 Paste Special... | 1
Genbank misc_feature | 129246/ 131906 0 0 F 1 1

Column M represents the coverage of the particular GFF entry. A value of 1 is fully covered by reads.
Less than one indicates regions with no reads mapping. Let's sort on column M in ascending order so
that anything missing with missing chunks shows up at the top. Select all columns and click on Data-

>Sort...

unuuiea 1 - LIDFeUTTICE Laic (0N IP-1U-£0-L8-L1Z.eCZ.anternal)

e |Libemtion Sans

F Edit View Insert Format Tools Data Window Help
e - B @@ S KEH- 56
Fljie rla4dA =

@l ld A %eE@m@E] @

Yo

d 'Iwﬂ
2 EFEIF-E-a-F |
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0
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0
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0
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0

ID=CP000243.¥

0

0
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0
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0
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1
1!
1
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0

0

B

0

0

0

ID=CP000243.»

0
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Sort by

Then by
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|- undefined -
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0
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0
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0
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File Edit View Insert Format Tools Data Window Help

B EER s HERITS KEE- 26 AL EAXOBER|O §[find HAval

EaﬂluberationSans :_]IIO j&ﬂﬁ\@@ 5] 1:@]‘“!355?5@@@\'@'@"@.

1 vl fo X = IIocus_tag:UTI89_P001;trans|_table=11;product=hypothetical protein;protein_id=ABE10577.1;db_xref=G1:91075697;exon_number=1
‘AIBICIDIEIFIGIH Joe o Ko s o M|
CP000244.1 Genbank start_codon 1 3 0 0 Oflocus tag=UTI89 P001:trans!| table=11:product=hypothetical protein:protein id=ABE10577.1} 1 2 3 0.6666667

2 |CP000244.1 Genbank CDS 1 588 0 0 Olocus_tag=UTI89 P001:transl_table=11;product=hypothetical protein;protein_id=ABE10577.1% 477 587 588 0.9982993
3 |CP000244.1 Genbank gene 1 591 0 O Olocus_tag=UTI89 P001 480 590 591 0.9983079
4 [CP000243.1 Genbank gene 1047539 1050085 O O 0ID=CP000243.1:torA:locus_tag=UTI89_C1061 3226/ 2547 2547 1
5 |[CP000243.1 Genbank CDS 1047539 1050082 O 0 0ID=CP000243.1:torA:unknown_transcript_1:Parent=CP000243.1:torA:locus_tag=UTI89_C106» 3226 2544 2544 1
6 |CP000243.1 Genbank misc_feature = 1047566 1050046 0 0 0ID=CP000243.1:torA:unknown_transcript_2:Parent=CP000243.1:torA:locus_tag=UTI89_C106» 3156 2481 2481 1)
7 |CP000243.1 Genbank misc_feature = 1047698 1049575 0 0 0ID=CP000243.1:torA:unknown_transcript_3;Parent=CP000243.1:torA:locus_tag=UTI89_C106» 2354 1878 1878 1
8 |CP000243.1 Genbank gene 2096593 2098170 0 0 0/iD=CP000243.1:ybtE:locus_tag=UTI89_C2187 1981 1578 1578 1
9 |CP000243.1 Genbank CDS 2096593 2098167 0 0 0ID=CP000243.1:ybtE unknown_transcript_1;Parent=CP000243.1:ybtE:locus_tag=UTI89_C21» 1978 1575 1575 1

10 [CP000243.1 Genbank misc_feature 2096593 2098155 0 0 0ID=CP000243.1:ybtE:unknown_transcript_2;Parent=CP000243.1:ybtE:locus_tag=UTI89_C21» 1962 1563 1563 1

11 |CP000243.1 Genbank misc_feature 2096929 2098128 0 0 0ID=CP000243.1:ybtE:unknown_transcript_3:Parent=CP000243.1:ybtE:locus_tag=UTI89_C21» 1532 1200 1200 1

12 lcPnnn24z 1 /Genhank nena 2142807 214R44R N N NIN=CPNNN?4R 1'recReInciis tan=l ITIRG (2221 44nR  3RR? 3RRD 1

There appear to be very few missing regions. In fact there is only one missing base near the origin of
replication for this bacteria. Because the aligner doesn't know that the genome is circular (and thus to
allow reads to span the beginning and end of the chromosome), the very first base is missing from the

alignment. It is however more than likely to be present in the reads.
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2.6.3: Evaluating the impact of variants

So, aside from a few variants we've discovered, this strain of E. coli does not seem to have lost
anything and seems very closely related to the reference genome. So lets take a closer look at the
variants. We'd like to obtain a list of genes in which these variants occur and whether they result in
amino acid changes.

To do this we'll use the SnpEff program (http://snpeff.sourceforge.net/index.html) in conjunction with
the filtered VCF file we’ve created.

The relevant database has already been installed. However, if we try to run the pipeline now, we will
get an error stating that the chromosome name cannot be found. This is because the chromosome ID in
our version of the E. coli annotation is different from that in the SnpEff database.

This is a common problem — there are several standards for chromosome 1Ds.

Try running the pipeline using:

java -Xmx4g -jar ~/software/snpEff/snpEff.jar -v

Escherichia coli UTI89 uid58541 out.snps.vcf4 > snp

The output indicates that the chromosome names should be ‘NC 007946’ and ‘NC_007941°. As these
chromosome names are not found an error is detected.

START codon errors : 751 ( 14.55% )
STOP codon warnings : 8 ( 9.00% )
" Total Errors : 751 ( 14.55% )
f# Cds L
Exons : 5162
Exons with sequence : 5162
Exons without sequence |
# Avg. exons per transcript : 1.00
WARNING : No mitochondrion chromosome found
it Mumber of chromosomes : 2
# Chromosomes names [sizes] : 'JOKLIEEY' [5065741] 'NC_087941' [114230]
PO:00:05.538 Predicting variants

ERRORS: Some errors were detected
Error type Number of errors
ERROR_CHROMOSOME_NOT_FOUND 12

Creating summary file: snpEff_summary.html
Creating genes file: snpEff_genes.txt
done.

Logging
Checking for updates...
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If we look at the out.snps.cvf4 file we can see that we have a different chromosome ID to what is in the
snpEff database:

more out.snps.vcf4

[#CHROM POS 1D REF QUAL FILTER INFO FORMAT alignment.rmdup.sorted.bam
CPOEO243.1 10738 . GC 174 . INDEL;IS=13,0.541667;DP=24;Q5=0.000
=1;AC1=2;DP4=0,0,5,5;MQ=56;FQ=-64.5 GT:PL:GQ 1/1:215,30,0:57

CPDOO243.1 11230 o G GA 214 o INDEL;IS=1,0.052632;DP=19;Q5=0.0000

1;AC1=2;DP4=0,0,9,8;MQ=56;FQ=-85.5 GT:PL:GQ 1/1:255,51,0:99

CPEEO243.1 15495 . G d 222 . DP=44;(Q5=0.000000,0.972101,0.027899
4;MQ=59;FQ=-135 GT:PL:GQ 1/1:255,108,0:99

CPEEO243.1 35301 . G A 222 . DP=41;(5=0.000000,1.008000,0.000000

So, what we need to do is change the CP000243.1 chromosome ID to the NC_007946 ID snpEff
expects. We’ll also need to change the plasmid ID CP000244.1 to NC _007941.

Fortunately in Unix this is easy to do. We can just use the ‘sed’ command. First we’ll make a copy of
the original out.snps.vcf4 file as we’ll need it later.

Type:

out.snps.vcf4 out.snps.vcd.renamed

sed -i *s/CP000243.1/NC_007946/g’ out.snps.vcfd4.renamed

and

sed -i *s/CP000244.1/NC _007941/g’ out.snps.vcf4.renamed
The —i flag tells sed to alter the file in-place rather than output the changes to the screen.

Look again at the out.snps.vcf4.renamed file and you should see that the changes have been made.
Obviously in real-life you need to make sure that these errors really are due to a naming convention
issue and not because you are using the wrong reference sequence!

HICHROM  POS i) REF ALT QUAL FILTER INFO FORMAT alignment.rmdup.sorted.bam
C_007946 10738 . G GC 174 . INDEL;I5=13,0.541667;DP=24;Q5=0.00000(
1;AC1=2;DP4=0,0,5,5;MQ=56; FQ=-64.5 GT:PL:GQ 1/1:215,30,0:57

11230 . G GA 214 . INDEL;IS=1,0.852632;DP=19;(Q5=0.000000
GT:PL:GQ 1/1:255,51,0:99
i 15495 . G C 222 . DP=44;(Q5=0.000000,0.972101,0.027899,0
;MQ=59;FQ=-135 GT:PL:GQ 1/1:255,108,0:99
C 007946 35301 . G A

222 . DP=41;Q5=0.000000,1.000000,0.000000,0
We can now re-run snpEff.

java -Xmx4g -jar ~/software/snpEff/snpEff.jar -v

Escherichia coli UTI189 uid58541 out.snps.vcf4.renamed > snp.eff.vcf

That should complete quite quickly.
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.538 done
.589 Building interval forest
.085 done.
.086 Genome stats :
name : 'Escherichia_coli_UTI89 uid58541'
# Genome version : 'Escherichia_coli_UTI89 uid58541'
# Has protein coding info : true
¥ Genes T 5272
# Protein coding genes : 5162
# Transcripts : 5162
# Avg. transcripts per gene : 0.98
# Protein coding transcripts : 5162
Length errors :
STOP codons in CDS errors :
START codon errors : 75
STOP codon warnings :
Total Errors : 75
# Cds 1 5162
# Exons : 5162
# Exons with sequence : 5162
# Exons without sequence : 8
# Avg. exons per transcript : 1.00
# WARNING : No mitochondrion chromosome found
# Number of chromosomes H
# Chromosomes names [sizes] : 'NC_007946' [5065741] "NC_007941"' [114230]
:00:05.464 Predicting variants
:00:05.576 Creating summary file: snpEff_summary.html
:00:06.781 Creating genes file: snpEff_genes.txt
:00:10.067 done.
:00:10.0670 Logging
:00:11.077 Checking for updates...
ubuntu@ip-10-168-53-230:~/genomics_tutorial/strainl/remapping_to_reference$ ls
alignment.rmdup.sorted.bam mappingstats.txt snpEff_genes.txt snp.eff.vcf var.raw.bcf
alignment.rmdup.sorted.bam.bai out.snps.vcf4 snpEff_summary.html wvar.flt.vcf

You can see that snpEff has created some new files. snpEff_genes.txt, snpEff_summary.html and
snp.eff.vcf.

We can view the summary information in a web-browser:

firefox snpEff summary.html

Take a look at this to see what kind of information you can extract. Would this be useful for your
projects? How many mutations were found? Of what type? What do the high/low/moderate
classifications of impact correspond to?

Look at the snpEff website to see whether your species of interest is included in the list of databases
(http://snpeff.sourceforge.net/download.html#databases). If you have a GFF file and a FASTA file they
can be imported even if they are not on the list

(http://snpeff.sourceforge.net/SnpEff _manual.html#databases).
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Then we can look at the detailed gene-by-gene information snpEff has provided us with. Load up the
snpEff_genes.txt file in LibreOffice Calc (you’ll need to use Insert-> Sheet from file).

|_f| | 4 ||Eiii ubuntu | genomics_tutorial | strain1 M remapplng_tn_reference\

Places Name ~ Size Modified
Q, search (& alignment.rmdup.sorted.bam 330.6 MB Yesterday at 21:05
@ Recently Used alignment.rmdup.sorted.bam.bai 15.4KB  Yesterdayat 21:26
(& ubunktu || mappingstats.txt 389 bytes Yesterday at 21:35
& Desktop L] out.snps.vcf4 3.6 KB 13:29
£ File system L] snp.eff.vef 11.8KB  13:32

i+| snpEFf_summary.html 42.4KB  13:32

L] var.flt.vef 4.5KB 13:05

(& var.raw.bcf 1.6 KB 12:40

Make sure you only select the ‘tab’ as the delimiter:

@ Text Import - [snpEFf_genes.txt]

Import
= OK
Character set |Unicode (UTF-8) =
- Cancel

Language |Default - English (USA) =

From row 1 : Help
Separator options

() Fixed width

@® Separated by

& Tab [] Other

[] semicolon

[1 Merge delimiters Text delimiter " lw
Other options

57



Untitled 1 - LibreOFffice Calc

File Edit View Inse

B-eE®  Zeav@ L DO-4% ¢ @hi.EF +9 8

Liberation Sans *||[10 | 8 4 _é l% = Lﬂ %Yo OER oo E E‘ © E © % © E

Al ~| fe@ 2 = [#Thefollowing tableis formatted as tab separated values. &

B8 [ ¢ ] D [ E [ F [ 4 [ H [ =

[# The following table is formatted as tab separated values | J ‘

2 [#Geneld engName  BioType Bases affected (DOWNSTREAM) Total score (DOWNSTREAM) Length (DOWNSTREAM) Bases affected (EXON) Total score (EXON) |Length.

3 |UTI89_C0001 thrl 0 o 5000 0 0

4_|UTI89_CoD02 thra 0 0 5000 0 0

5_|UTI9_Co003 thrB 0 0 5000 0 0

6 |UTIB9_CO004 thiC 0 0 5000 0 0

7_|UTI89_CODOS yaax 0 0 5000 0 0

8 |UTI29 CO006 UTI89 C0006 0 0 5000 0| 0|

5 |UTI89_CO007 yaaA 0 0 5000 0 0

10_|UTI89_CoD08 yaal 0 0 5000 0 0

11 |UTI89 C0009 talg 0 0 5000 0| 0|

12 |UTI89_C0010 mogA 0 0 5000 0 0

13 _|UTIB9 COD1L yaaH 0 0 5000 0 0

14 |UTI89 C0012 yaaWw 0 0 5000 2 0|

15 |UTI89_Co014 yaal 2 0 5000 0 0

16 |UTI89 C0015 UTI89_C0015 0 o 5000 0 0

17_|UTI89_COD16 dnak 1 0 5000 0 0

18 |UTI89_C0017 dna) 0 0 5000 0 0

19 |UTI89 C0018 gef 0 o 5000 1 0

20 |UTI89 C0019 UTI29 C0019 0 0 5000 0| 0|

21 |UTI89_C0020 uTI89_C0020 0 0 5000 0 0

22 |UTie9 Co021 UTI89 _C0021 0 o 5000 0 0

23 |UTI89 C0022 nhaA 0 0 5000 0| 0|

24 |UTI89_C0023 nhaR 0 0 5000 0 0

25 |UTig9 C0024 UTI89_C0024 0 o 5000 0 0

26 |UTIB9_C0025 psT 0 0 5000 0 0 L

70" T\ Sheetl 2 ¢Sheet {sheet2 {sheets £l | ¢ ) ° - sonn ° D
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Delete the top row “#The following table is formatted as tab separated values”. Then sort as follows:

™ sort

Sort Criteria| Options
sort by

) Ascending
\Count (SYNONYMOUS_CODING) il

® Descending
Then by

) Ascending
\Count (NON_SYNONYMOUS_CODING) N

@® Descending

Then by

[Count (FRAME_SHIFT) -

@® Ascending

Descending

. oK | Cancel || Help | Reset |
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What are the genes with non-synonymous mutations involved with?

Finally, we can look at the snp.eff.vcf file. Compare this with the file we put into snpEff
(out.snps.vcf4.renamed). What extra information has snpEff added?

Determine the effect of variants using an alternative quick and dirty script

Later on in the tutorial we will need to compare the SNPs between samples. Although SnpEff is
very good with single samples, it does not lend itself well to dealing with multiple samples. To
overcome this, we have commandeered a script written by David Studholme and Konrad
Paszkiewicz. This provides limited information on the effect of a given SNP, but the output is a
bit easier to deal with when we have large numbers of samples.

Type (all on one line):

/usr/local/scripts/snp_comparator.pl 10
~/genomics_tutorial/reference_sequence/Ecoli_UTI189.fna

~/genomics_tutorial/reference_sequence/Ecoli_UTI189.gff out.snps.vcf4 >
snp report.txt

This program takes the information from the reference sequence and annotation, and the VCF snp files
and determines whether the variant occurs within a gene, and if so the effect of each mutation.

Once complete, view the snp_report.txt file using the more command:

SlE]
File Edit View Search Terminal Help

E# Table of SNP and Indel occurences between thes Note that any comma-s values (e.g. A,C indicate potential heterozygosity and/or sample heterogeneity
Chrom Pos Ref out.snps.vcf4  Gene description Status

CP000243.1 10739 ATTT ACTTT UTI89 (0012 putative oxidoreductase , Indel

CPOOO243.1 11229 T TC UTI89 (0012 putative oxidoreductase UTI89 C0013 positive regulator for sigma 32 heat shock promoters ,Indel

CP000243.1 126378 T A UTI89 (0122 hypothetical protein ,non-silent agt -> agA;

CP000243.1 131200 C CA UTI89 (0127 pyruvate dehydrogenase E1 component ,Indel

CPOOO243.1 15495 G C UTI89 (0018 ,non-silent cag -> Gag;

CP000243.1 210716 G C UTI89 (0199 DNA polymerase III alpha subunit ,non-silent gcc -> Ccc;

CP00O243.1 314746 A T UTI89 (0304 putative ferredoxin ,non-silent tgt -> Agt;

CP000243.1 326644 G C UTI89 (@317 putative LysR-like transcriptional regulator ,non-silent tgt -> tCt;

CP000243.1 336724 A G UTI89 (0323 2%2C5-diketo-D-gluconic acid reductase A ,non-silent cag -> cGg;

CP000243.1 35301 G A UTI89 C0e37 Carbamoyl-phosphate synthase large chain ,non-silent gcg -> Acg;

CPOOO243.1 444808 G A UTI89 (0431 protein-export membrane protein SecF ,silent ttg -> ttA;

CPO0O243.1 444809 C A UTI8Y (0431 protein-export membrane protein SecF ,non-silent cag -> Aag;

Later on we will see how we can use this program to compare results between different strains.
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Task 24: Check each variant in IGV
N.B. If a variant doesn't seem to match what the snp_report file says, check the reverse reading frames.

Task 25: Check each non-synonymous SNP and Indel for a possible link to
haemorrhaging phenotypes (often known as EHEC)

Use the web for this. Search UniProt (http://www.uniprot.org) or other databases for evidence that any
of these proteins may be linked to the outbreak.

That concludes the first part of the course. You have successfully, QC'd, filtered, remapped and
analysed a whole bacterial genome! Well done!

In the next installment we will be looking at how to extract and assemble unmapped reads. This will

enable us to look at material which may be present in the strain of interest but not in the reference
sequence.
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2014 Workshop on Genomics

Part 3.
Short read genomics: Assembly of
unmapped reads

Instructors:

. Konrad Paszkiewicz k.h.paszkiewicz@exeter.ac.uk

Objectives:

By the end of the workshop you will be expected to be able to:

«  Extract reads which do not map to the reference sequence

« Assemble these reads de novo using Velvet

«  Generate summary statistics for the assembly

« ldentify potential genes within the assembly

«  Search for matches within the Swissprot database via BLAST and against the Pfam database
«  Visualize the taxonomic distribution of BLAST hits

«  Perform gene prediction and annotation using RAST
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3.1 Introduction

In this section of the workshop we will continue the analysis of a strain of E. coli which is involved in
urinary tract infections. In the previous section we cleaned our data, checked QC metrics, mapped our
data and obtained a list of variants and an overview of any missing regions.

Now, we will examine those reads which did not map to the reference genome. We want to know what
these sequences represent. Are they novel genes, plasmids or just contamination?

To do this we will extract unmapped reads, evaluate their quality, prepare them for de novo assembly,

assemble them using Velvet, generate assembly statistics and then produce some annotation via Pfam,
BLAST and RAST.

3.2 Extraction and QC of unmapped reads

Task 1: Extract the unmapped reads

First of all make sure you are in the ~/genomics_tutorial/strainl directory (hint: use the cd command).
Then create a directory called denovo_assembly in which we will do our de novo assembly and
analysis.

mkdir denovo assembly/

Then move to that directory:

cd denovo_assembly/

Now we will use the bam2fastq program (http://www.hudsonalpha.org/gsl/software/bam2fastq.php) to
extract from the BAM file just those reads which did NOT map to the reference genome. The
bam2fastq program has a number of options, most of which are self-explanatory. Type (all on one line):

bam2fastq --no-aligned -o unaligned\#.fastq
./[remapping to reference/alignment.rmdup.sorted.bam

The --no-aligned option means only extract reads which did not align. The -0 unaligned\# means dump
read 1 into a file called unaligned_1.fastq and read 2 into a file unaligned_2.fastg. Below we can see
that the program has successfully created the two files.

ubuntu@ip-10-168-53-230:~/genomics_tutorial/strainl/denovo_assembly$ bam2fastq --no-
aligned -o unaligned\#.fastq ../remapping_to_reference/alignment.rmdup.sorted.bam
This looks like paired data from lane @.

Output will be in unaligned_1.fastq and unaligned_2.fastq

6494900 sequences in the BAM file

385214 sequences exported

WARNING: 77266 reads could not be matched to a mate and were not exported
ubuntu@ip-10-168-53-230:~/genomics tutorial/strainl/denovo assembly$

Note that some reads were singletons (i.e. one read mapped to the reference, but the other did not).
These will not be included in this analysis.
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Task 2: Check that the number of entries in both fastq files is the same (hint! Using
grep). Also check that the last few entries in the read 1 and read 2 files have the
same header (i.e. that they have been correctly paired).

Task 3: Evaluate QC of unmapped reads

Use the fastgc program to look at the statistics and QC for the unaligned_1.fastq
and unaligned_2.fastq files.

Do these look reasonably good? Remember, some reads will fail to map to the reference because they
are poor quality, so the average scores will be lower than the initial fastqc report we did in the
remapping workshop. The aim here is to see if it looks as though there are reads of reasonable quality
which did not map.

Assuming these reads look ok, we will proceed with preparing them for de novo assembly.

3.3 De novo assembly

We will be using the Velvet (http://www.ebi.ac.uk/~zerbino/velvet/) assembler to stitch together the
unmapped reads. This will enable us to obtain large enough contigs to determine which genes, plasmids
or contaminant material is present (if any!).
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Task 3: Learn more about de novo assemblers

To understand more about de-novo assemblers, read the technical note at:
http://res.illumina.com/documents/products/technotes/technote denovo assembly ecoli.pdf
N.B. You will also learn more in the next section so don 't worry if'it doesn t all make sense immediately.

Task 4: Generate the Velvet hash table

Velvet requires a hash table which stores all of the k-mer and paired-end information prior to trying to
assemble the data. Note that velvet ignores quality scores, so whether you pass it a FASTA or a
FASTQ file doesn't matter. However, it will automatically convert all N bases to A (this is because to
save memory it can only represent 4 bases internally). It pays to remove sequences containing Ns at the
initial filtering stage to avoid introducing ambiguities.

velveth assembly/ 31 -fastq -shortPaired -separate unaligned 1.fasto

buntu@ip-10-168-53-230:~/genomics_tutorial/strainl/denovo_assembly
ned_1.fastq unaligned_2.fastqg

.000001] Reading FastQ file unaligned_1.fastq;

.008125] Reading Fast( file unaligned 2.fastq;

.708833] 307948 sequences found in total in the paired sequence files
.708886] Done

.701014] Reading read set file assembly//Sequences;

.7568782] 307948 sequences found

.086043] Done

.086110] 307948 sequences in total.

.086203] Writing into roadmap file assembly//Roadmaps...

.222899] Inputting sequences...

.222979] Inputting sequence 0 [/ 307948

.220293] === Sequences loaded in 2.008558 s

.220409] Done inputting sequences

.220432] Destroying splay table

.367367] Splay table destroyed

i}
i}
i}
i}
i}
1
1
1
1
1
3
3
3
3

This will perform a de novo assembly using a k-mer length of 31 and put the results into the assembly/
directory. Note that if you have a large number of reads or longer reads, you may well need to increase
the kmer length to reduce memory requirements. This will have the effect of excluding reads shorter
than the k-mer size (e.g. selecting a k-mer length of 41 will exclude all reads less than 39bp long).

Task 5: Perform denovo assembly

We can now perform the de novo assembly of the unmapped reads. To do this we will use the program
velvetg (stands for velvet graph). Velvetg comes with many options, and if you are performing de novo
assembly of a full complex genome you may well need to tinker with these parameters to get the best
results (see the Velvet manual for more detail). Here, we are using cov_cutoff 0 and exp_cov 0 to
indicate that we do not want Velvet to throw any data away based on coverage metrics. This is because
we are only interested in the unmapped reads and there may be variable copy numbers of inserts,
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plasmids and other genetic material of interest. Type (all on one line):

elvetg assembly/ -cov cutoff 0 —exp cov 0 —unused reads yes
ery clean yes

.997762] Removed © null nodes

.997790] Concatenation over!

.997826] Clipping short tips off graph, drastic

.997851] Concatenation...

.997868] Renumbering nodes

.997884] Initial node count 3

.997905] Removed ® null nodes

.997927] Concatenation over!

.997948] 3 nodes left

.997969] WARNING: NO EXPECTED COVERAGE PROVIDED

.997989] Velvet will be unable to resolve any repeats

.998010] See manual for instructions on how to set the expected coverage parameter

.998033] Concatenation...

.998054] Renumbering nodes

.998874] Initial node count 3

.998095] Removed @ null nodes

.998117] Concatenation over!

.998138] Removing reference contigs with coverage < 0.000000...

.998162] Concatenation...

.998183] Renumbering nodes

.998203] Initial node count 3

.998224] Removed © null nodes

.998246] Concatenation over!

.888272] Writing contigs into assembly//contigs.fa...

.008532] Writing into stats file assembly//stats.txt...

.008778] Printing unused reads into assembly//UnusedReads.fa
inal graph has 3 nodes and n56 of 3275, max 3275, total 3337, using 20000/307948 reads

Note that velvetg runs quickly. Normally this is not the case, but because we have so few reads (and
because this example is artificial) it speeds through the assembly in seconds.

The options used with velvetg -cov_cutoff and -exp_cov were set to zero. -cov_cutoff specifies how
frequently a k-mer should appear to avoid being thrown out as noise (i.e. sequencing errors or
contamination). -exp_cov sets the expected level of coverage (i.e. how many times each k-mer should
be occur). This allows the assembler to make an educated guess as to how many copies of a sequence
are present. This is especially useful in repetitive regions. However they are only useful when assembly
single complete genomes. As we are dealing with just the unmapped reads here, it makes little sense to
try to filter based on coverage since the unmapped material may represent duplicated genes or
plasmids.

The -unused_reads flag and -very_clean flag just mean that velvetg should output any reads which
were not included in the assembly and that it should delete as many intermediate files as possible once
it has finished.

If we change to the assembly directory and list its contents we should see several files:

buntu@ip-10-168-53-230:~fgenomics_tutorial/strainl/denovo_assembly/assemblys 1s

ontigs.fa Log PreGraph stats.txt UnusedReads.fa
buntu@ip-10-168-53-230:~/genomics_tutorialfstrainil/denovo_assembly/assembly$ I
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Let's take them in turn:

1. Log

Fri Dec 27 23:26:39 2013

velvetg assembly/ -cov_cutoff @ -exp_cov @ -unused_reads yes -very_clean yes
ersion 1.2.10

Copyright 2007, 2008 Daniel Zerbino (zerbino@ebi.ac.uk)

This is free software; see the source for copying conditions. There is NO
arranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Compilation settings:
CATEGORIES = 2
MAXKMERLENGTH = 300

Final graph has 3 nodes and n50 of 3275, max 3275, total 3337, using 20000/307948 reads

This lists the version number of Velvet, as well as the some summary statistics regarding the assembly.
(read http://en.wikipedia.org/wiki/N50_statistic for more details about what N50 means). We'll come
back to this file in the next section.

2. Pregraph
This is a file generated by Velvetg when generating the k-mer graph but is normally not
required.

3. UnusedReads.fa
This is a FASTA formatted file containing the reads which could not be assembled into contigs
larger than twice the kmer length (i.e. 2 x 31=62bp). This could be because they represent
highly repetitive sequences, or because the sequences are shorter than the kmer length selected.
(Don't worry if your file looks different to the example below).

>SEQUENCE_1_length_40
CGTCTTTGGTGTACAGGACGGTCACGATGATGTGGTGCTG
>SEQUENCE_2_length_39
TGCGGGAGAGTCCCACAACACGCAGGACTCTTTTGCTTT
>SEQUENCE_3_length_39
ACCAGCACCTGTGAACAGCATTCTGTTACCATCGATGGC

>SEQUENCE_4_length_40
CGGGATAGAGATAAGCCGCCTTTAGTAGCCAAAAGGCGCT
>SEQUENCE_5_length_4e
TCAAATCCGGCAAAGAGACGATGGACGAGCTGGACGATGC
>SEQUENCE_6_length_4e
ACTTTGACCGCCTCTACATACTGATTGAGGAAACCGATAA

66


http://en.wikipedia.org/wiki/N50_statistic

4. stats.txt

ubuntu@ip-10-168-53-230:~/genomics_tutorial/strainl/denovo_assembly/assembly$ more stats.txt
1D 1gth out in long_cov shorti_cov shorti_0cov short2_cov short2_ocov long_nb shorti_nb
(5]

1 3275 2 2 0.000000 60.430840 59.890687 ©.000000 0.000000 9926 6]

2 31 1 al 0.000000 32.774154 32.774194 0.000000 0.000000 <] 125 i}

E] 31 1 1 0.000000 33.580645 33.580645 0.000000 0.000000 (5] 127 6]
buno @40 i i i b

We can see that Velvet has managed to assemble 3 contigs (node). This file is a simple tab-
delimited description of the contigs. The column names are pretty much self-explanatory. Note
however that contig lengths are given in k-mers. To obtain the length in nucleotides of each
node you simply need to add k — 1, where k is the hash length used in velveth. The in and out
columns correspond to the number of arcs on the 5’ and 3’ ends of the contig respectively. The
coverages in columns shortl cov, shortl Ocov, short2 cov, and short2 Ocov are provided in k-
mer coverage.

The relation between k-mer coverage Ck and standard (nucleotide-wise) coverage C is Ck =C
* (L —k+ 1)/L where k is your hash length, and L you read length.

5. contigs.fa

This contains the contigs as assembled by velvetg in FASTA format. It constitutes the main output file.
Note that this does not contain any annotation — Velvet only deals with assembly of DNA. Any
scaffolding information is indicated by a long (>10) series of Ns.

Task 6: Count number of unassembled reads in UnusedReads.fa and the number of
assembled contigs in contigs.fa. Does it tally with the Log file?

Hint, use the grep -c command

3.4 More denovo assembly statistics

Now that we have a de novo assembly, we can generate some basic statistics for it using a script called
fasta_summary.pl. Note that we can use this for any FASTA formatted file. Make sure you are in the
~/genomics_tutorial/strainl/denovo_assembly/assembly directory.

Task 7: Generate summary statistics

fasta_summary.pl -i contigs.fa -0 assembly_statistics -t contig -r 1

cd assembly_statistics

Is
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lbuntu@ip-10-28-24-212:~/genomics tutorial/strainl/denovo assembly/assembly$ cd assembly statistics/
lbuntu@ip-10-28-24-212:~/genomics tutorial/strainl/denovo assembly/assembly/assembly statistics$ ls
115togram blns dat sorted contigs.fa sum_ reads Vs read Len dat summed contlg lengths dat
ins.dat.png stats.txt read_Ls
Jbuntu@lp 10 28 24-212:~/genomics tutorlal/stralnl/denovo assembly/assembly/assembly statlstlcss

Note that this directory contains a file called stats.txt, but that this is a different file from that produced
by Velvet. View the *.txt files using a text-editor (e.g. gedit, nano) or the more command.

Statistics for contig lengths:
Min contig length: 61
Max contig length: 3,305
Mean contig length: 1142.33
Standard deviation of contig length: 1529.24
Median contig length: 61
N58 contig length: 3,305

Statistics for numbers of contigs:
Number of contigs: 3
Number of contigs =>=1kb:
Number of contigs in N50:

Statistics for bases in the contigs:
Number of bases in all contigs: 3,427
Number of bases in contigs >=1kb:
GC Content of contigs: 43.65 %

Simple Dinucleotide repeats:
Number of contigs with over 78% dinucleotode repeats: 0.00 % (0@ contigs)
AT: .00 % (@ contigs)
CG: .80 % (@ contigs)
AC: .00 % (@ contigs)
TG: .00 % (0 contigs)
AG: .00 %

% (@ contigs)
TC: .80 % (@ contigs)

Note that Velvet was able to assemble 3,305bp in 3 contigs with a GC content slightly lower than that
of E.coli. Typically with a real dataset you would see many contigs here with a wide variety of lengths.

You can also use gthumb to view various plots which have the extension .png. (If gthumb is not
installed, type sudo apt-get install gthumb). In this case they are not very informative, but in future
projects they can be very valuable when faced with thousands of contigs.

3.5 Analysing the de novo assembled reads

Now that we have assembled the reads and have a feel for how much (or in this case, how little) data
we have, we can set about analysing it. By analysing, we mean identifying which genes are present,
which organism they are from and whether they form part of the main chromosome or are an
independent unit (e.g. plasmid).

We are going to take a 3-prong approach. The first will simply search the nucleotide sequences of the
contigs agains the NCBI non-redundant database. This will enable us to identify the species to which a
given contig matches best (or most closely). The second will call open reading frames within the
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contigs and search those against the Swissprot database of manually curated (i.e. high quality)
annotated protein sequences. Finally, we will search the open reading frames against the Pfam database
of protein families (http://pfam.sanger.ac.uk). ). NOTE: the BLAST nt/nr databases and the Pfam
databases are not installed on the VirtualBox VM, so if you are using VirtualBox, steps that
require those databases will fail.

Why not just search the NCBI blast database? Well, remember nearly all of our biological knowledge is
based on homology — if two proteins are similar they probably share an evolutionary history and may
thus share functional characteristics. Metrics to define whether two sequences are homologous are
notoriously difficult to define accurately. If two sequences share 90% sequence identity over their
length, you can be pretty sure they are homologous. If they share 2% they probably aren't. But what if
they share 30%? This is the notorious twilight zone of 20-30% sequence identity where it is very
difficult to judge whether two proteins are homologous based on sequence alone.

To help overcome this searching more subtle signatures may help — this is where Pfam comes in. Pfam
IS a database which contains protein families identified by particular signatures or patterns in their
protein sequence. These signatures are modeled by Hidden Markov Models (HMMs) and used to
search query sequences. These can provide a high level annotation where BLAST might otherwise fail.
It also has the advantage of being much faster than BLAST.

Task 8: Obtain open reading frames

The first task is to call open reading frames within the contigs. These are designated by canonical start
and stop codons and are usually identified by searching for regions free of stop codons. We will use the
EMBOSS package program getorf to call these.

We will use codon table 11 which defines the bacterial codon usage table
(http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi) and state that the sequences we are
dealing with are not circular (they are nowhere near long enough!). We will also restrict the ORFs to
just those sequences longer than 300 nucleotides (i.e. 100 amino acids). We will store the results in file
contigs.orf.fa. Make sure you are back in the assembly/ directory.

getorf -table 11 -circular N -minsize 300 -sequence contigs.fa -outseq contigs.orf.fa

If we look at the output file we can see that it is a FASTA formatted file containing the name of the
contig on which the ORF occurs, followed by and underscore and a number (e.g. _1) to indicate the
number of the ORF on that contig. The numbers in square brackets indicate the start and end position
of the ORF on the contig (i.e. in nucleotide space). So the first ORF occurs on NODE 1 and is between
position 1073 and 1948. Whereas the fourth ORF occurs between positions 606-989 on the reverse
strand. This is a relatively short peptide and is unlikely to be a genuine peptide.

Also note that many ORFs do not start with a Methionine. This is because by default the getorf
program calls ORFs between stop codons rather than start and stop codons. Primarily this is to avoid
spurious ORFs due to Met residues within a protein sequence and to ensure untranslated regions are
captured.
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>NODE_1_length_3275_cov_60.430840_1 [3 - 557]
CDYIAHHFSTVLPPVFCRRTFQSDNTVTAKKQQCFVGNSNLQTGHDVQLLYRAYMHATTI
TLVRASPRHPMSDTEPCFMTKRSGSNTGRRAMSHPVRLTAEEDQEIRKRAAECGKTVSGF
LRAAALGKKVNSLTDDRALKEVMRLGALQKKLFIDGKRVGDREYAEVLIAIKEYHRALLS
RLMAD

>NODE_1_length_3275_cov_60.430840_2 [2988 - 3305]
RVSERGSGRAPYVSFSPYALLCRSASCPERYISVLFSTSKRVCMLFWSSAASSCSFSHMV
ACSSASSASSFSSSVRLWLFMNPDMLSAVCCCLFIFLFSPFCLSSA
>NODE_1_length_3275_cov_60.430840_3 [2904 - 2521] (REVERSE SENSE)
SRKEHVSKRQSTGRSQHRRRFSIGSAPLTSITKIDAEARGGETRQDYKDTRRFPPEAPSC
ALLFRPCHLPDTCPPFSLREAWRFLIAHAVGISVRCRSFAPSWALCTNPPFSPTAAPYPV
TIVLSPTR

>NODE_1_length_3275_cov_60.430840_4 [2302 - 1175] (REVERSE SENSE)
INRSIKSTNSYSVDKKTRSVHIQKKQRIDQMAQNPFKALNINIDKIESALTQNGVTNYSS
NVKNERETHISGTYKGIDFLIKLMPSGGNTTIGRASGQNNTYFDEIALIIKENCLYSDTK
NFEYTIPKFSDDDRANLFEFLSEEGITITEDNNNDLNCKHQYIMTTSYGDRVRAKIYKRG
SIQFQGKYLQIASWINDFMCSILNMKEVVEQKNKEFNVDIKKETIESELHSKLPKSIDKI
HEDIKKQLSSSLIMKKIDVEMEDYSTYCFSALRAIEGFIYQILNDVCNPSSSKNLGEYFT
ENKPKYIIREIHQETINGEIAEVLCECYTYWHENRHGLFHMKPGIADTKTINKLESIAII
DTDCQLKDGGVARLKL

>NODE_1_length_3275_cov_60.430840_5 [1184 - 798] (REVERSE SENSE)
VEIMKKDKKYQIEAIKNKDKTLFIVYATDIYSPSEFFSKIESDLKKKKSKGDVFFDLIIP
NGGKKDRYVYTSFNGGKFSSYTLNKVTKTDEYNDLSELSASFFKKNFDKINVNLLSKATS
FALKKGIPI

Task 9: Search open reading frames against NCBI non-redundant database

The first thing we can do with these open reading frames is to search them against the NCBI non-
redundant database of protein sequences to see what they may match.

Here we will perform a BLAST search using the non-redundant (nr) database, using the blastp program
and store the results in contigs.orf.blastp. We'll apply an e-value (expectation value)
(http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html) cutoff of 1e-06 to limit ourselves to
statistically significant hits (i.e. in this case 1 in 1 million likelihood of a hit to a database of this size by
a sequence of this length). The —num_descriptions and —num_alignments flags tell blastp to only
display the top 10 results for each hit, the —num_threads that it should use 4 CPU cores and —show_gis
that it should include general identifier (GI) numbers in the output.

Type (all on one line):

blastp -db nr -query contigs.orf.fa -out contigs.orf.blastp -evalue 1e-06 —

num threads 4 —show gis -num_descriptions 10 —num_alignments 10

This should take a few minutes. Once complete view the contigs.orf.blastp file in your favourite text-
editor (e.g. nano, gedit etc).
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Task 10: Review the BLAST format

Have a read of http://cs124.cs.ucdavis.edu/appendices/BlastResults.html

Score
Sequences producing significant alignments: (Bits) Value

gi|326340056|gb|EGD63862.1| plasmid mobilization [Escherichia co... 372 le-181
gi|198448640|ref|YP_002221413.1| plasmid mobilization [Salmonell... 372 2e-101
0i|333972753|gb|AEG39558.1| Plasmid mobilization protein [Escher... 370 8e-101
gi| 15743562 | ref |NP_277065.1| hypothetical protein pCRP3p84 [Citr... 223 le-56
gi|355469712|gb|AER93362.1| plasmid mobility protein [Escherichi... 220 6e-56
gi| 10955263 | ref |NP_052604.1| plasmid mobilization [Escherichia c... 204 Se-51
gi|354868508 |gb|EHF28925.1| hypothetical protein EUEG_B85823 [Esc... 204 7e-51
gi|168239834 |ref|ZP_0266489%92.1| plasmid mobilization [Salmonella... 203 9e-51
gi|332085423|gb|EGI98590.1| ribbon-helix-helix protein, copG fam... 202 3e-50
gi|315614549|gb|EFU95193.1| ribbon-helix-helix , copG family pro... 201 3e-50

>Q1]|326340056|gb|EGD63862.1| plasmid mobilization [Escherichia coli 0157:H7 str. 1044]
Length=212

Score = 372 bits (956), Expect = 1e-1081, Method: Compositional matrix adjust.
Identities = 179/185 (97%), Positives = 180/185 (98%), Gaps = 0/185 (0%)

CDYIAHHFSTVLPPVFCRRTFQSDNTVTAKKQQCFVGNSNLQTGHDVQLLYRAYMHAITI
CDYIAHHFSTVLPPVFCRRTFQSDNTVTAKKQQCFVGNSNLQTG DVQLLYRAYMHAITI
CDYIAHHFSTVLPPVFCRRTFQSDNTVTAKKQQCFVGNSNLOTGQDVQLLYRAYMHAITI

TLVRASPRHPMSDTEPCFMTKRSGSNTGRRAMSHPVRLTAEEDQEIRKRAAECGKTVSGF

We can see that the first ORF has a hit to a plasmid mobilization protein. It seems possible that this
single 3kb stretch of DNA sequence which has been assembled could in fact be part of or a whole
plasmid.

However, this could simply be a common protein which is shared by many plasmids and/or genomes.
Given that this protein is labelled as a 'plasmid mobilization' protein, the chances are that it shares a
considerable portion of its sequence with other plasmids. As such the protein sequence is not the best
method to search for the source of this sequence. A better way is to compare the nucleotide sequence
and use the added variation caused by synonymous and non-coding regions to identify the likely source
of this extra DNA.
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Task 11: Search contigs against NCBI non-redundant database

The following command executes a nucleotide BLAST search (blastn) of the sequences in the
contigs.fa file against the non-redundant database. Again we restrict ourselves to 10 results per hit and
an e-value cutoff of 1e-06.

blastn -db nt -query contigs.fa -out contigs.fa.blastn -evalue 1e-06 —

num alignments 10 —num descriptions 10 -show gis -num threads 4

Opening the results file should yield:

Reference: Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb
Miller (2000), "A greedy algorithm for aligning DMNA sequences”, J
Comput Biol 2000; 7(1-2):203-14.

Database: All GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS,
GSS,environmental samples or phase @, 1 or 2 HTGS sequences)
15,769,693 sequences; 40,107,367,207 total letters

Query= NODE_1_length_3275_cov_60.430840
Length=3385

Sequences producing significant alignments:

gi|188504043|gb|EU675685.1| Escherichia coli strain B86-24 seroty...
gl| 4589704 |dbj|ABO®11548.2| Escherichia coli 0157:H7 str. Sakal p...
gi| 3152962 |emb|Y¥14016.1| Escherichia coli plasmid p4821 mobA gen...
gi|150419|gb|L85392.1|NT1INMRKAN Plasmid NTP16 complete nucleotid...
gil]115394176|gb|DQ916413.1] Salmonella typhimurium plasmid pAnks...
ai flabl 60178 BSF1A3600 acmid p (36 jrati i

The plasmid encoded is in-fact Escherichia coli 0157:H7 plasmid pOSAK1/pSP70. However, note how
similar the alignments are for the first few hits. This is because plasmids are often very similar
(particularly near transposase sites). Although BLAST does by default filter out low complexity
sequence, in such a small plasmid, it may have difficulty picking out the correct plasmid. In this
example we can get a clue by looking at the amount of coverage the plasmid gets from the assembled
contigs. We find that only Escherichia coli 0157:H7 plasmid pOSAKL1 has almost full coverage, the
remainder (even though they have better scores and e-values) are not the best match from a biological
perspective.
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Task 12: Find out more about the E.coli pPOSAK1 plasmid

Makino, K. et al Complete Nucleotide Sequences of 93-kb and 3.3-kb Plasmids of an Enterohemorrhagic Escherichia coli
0157:H7 Derived from Sakai Outbreak . DNA Research 5,(1-9) 1998

Additional checks (not necessary here, but will be for other genomes!):

Task 13: Check that contigs do not appear in the reference sequence

In theory, the unmapped reads used to generate the contigs should not assemble into something which
will map against the genome. However, it is always possible (especially with more complex genomes),
than this might happen. To double check:

bl2seq -i contigs.fa -j ~/genomics_tutorial/reference_sequence/Ecoli_UTI189.fna -p

blastn -e 1e-06

Here we use bl2seq (part of the BLAST package) to compare two sequences against each other. Unlike
the previous examples where we have searched against a database of sequences, here we are doing a
simple search of the contigs against the reference genome sequencing. Running this, you should find
that no hits are found with an e-value less than 1e-06. Therefore we can say with some degree of
confidence that it is novel plasmid in this strain.

Task 14: Run open reading frames through pfam_scan

Pfam is a database of protein families. They are grouped together using a number of criteria based on
their function. For more information read http://en.wikipedia.org/wiki/Pfam. Pfam is grouped into
several databases depending on the level of curation. Pfam-A is high-quality manual curation and
consists of around 12,500 families. Pfam-B is full of automated predictions which may be informative
but should not be relied upon without additional evidence. Pfam will also search for signatures of
active-sites if you specify the correct flag.

Here we want to search the Pfam database of Hidden Markov Models to see which protein families are
contained within this contig. You'll notice that this runs considerably faster than BLAST. Here we
search using the contigs.orf.fa file against the Pfam databases in ~/software/PfamScan and output the
results to contigs.orf.pfam. We'll use 4 cpu cores for the search and state that we want to search PfamB
entries as well as active site residues.

pfam_scan.pl -fasta contigs.orf.fa -dir ~/software/PfamScan/ -outfile
contigs.orf.pfam -cpu 4 -pfamB —as

# <seq 1d> <alignment start> <alignment end> <envelope start> <envelope end> <hmm acc> <hmm name> <type> <hmm start> <hmm end> <hmm Llength> <blt scor
> <E-value> <significance> <clan> <predicted active_site_residues>

NODE_1_length_3275_cov_60.430840_1 96 129 95 131 PFO1402.16 RHH_1 Domain 39 29.8 3.4e-07 1 CLe@s57
NODE_1_length_3275_cov_66.430840_3 ] 126 4 128 PBOO5118 Pfam-B_5118 Pfam-B 182.6 1.5e-53 NA NA
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One of the hits is against Pfam-B, but one is against Pfam-A. Let's take a look at Pfam domain
PF01402 (RHH_1). Not an illuminating description, but a quick google search brings up the entry in
the Pfam database (or just go to http://pfam.sanger.ac.uk and enter the ID in the search box).

Family: RHH 1 (PF01402)

|
L
i
-] ‘

[Summary

Domain organisation

Clan

Alignments

HMM logo
This tab holds the annotation information that is stored in the Plam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Trees

Curation & model Ribbon-helix-helix protein, copG family @ZEETED )
ERSOIES The structure of this protein re eported to date and the first isolated from a plasmid, has a homodimeric ribbon-helix-helix arangement (2], The hellx.tum-helix-like structure is invoived in Wy %
nhoraciionts dimerisation and not DNA bind cled 2 2
Structures Literature references >

1. Ace 248.261.: Structural features of the plasmid pMV158-cncode pressor Copi, a protein sharing E

‘ ar G, Coll M ure of pl anscriptional repressor CopG

Jump to... ¥

enter ID/acc (5D

Definitely some form of DNA binding protein, but not much information beyond that. Check out some
of the other entries in Pfam just to get a feel for the sort of detail you can expect. The other Pfam-B
matches do not tell you much that is useful.

3.6 Analysing the results in RAST

By now you should be able to see that analysing results for de novo assembled reads of any sort can be
difficult and time-consuming. Bear in mind that we have only been faced with a single contig of 3kb.
Quite often you may find yourself dealing with hundreds, if not thousands of contigs. Some will be a
few 100kb long. Others may only be 200-300bp. How should we go about analysing these in a more
efficient manner? There are a number of options here. For eukaryotes | would suggest looking at
MAKER (http://www.yandell-lab.org/software/maker.html) to obtain at least some gene predictions (if
not gene annotations). For prokaryotes the situation is somewhat easier and we can use a web-based
service known as RAST. This is not the only service, but it is one of the most common.

RAST is a website where you upload the results of your de novo assembly and RAST will attempt to

provide annotation in commonly used GFF and Genbank formats. This can be used to load up the
annotation in Artemis or Apollo. Alternatively RAST has its own in-built viewer.
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Task 15: Log in to RAST

Make sure you are in Firefox within the Amazon instance. Go to
http://rast.nmpdr.org/ Log-in with the details RAST provided you before you
started this series of workshops. If you do not have one, you may need to wait several
days for your login to be issued by RAST. Please skip ahead and come back to this
section.

Rapid Annotation using
Subsystem Technology

Info: You have been logged out.
Info: To monitor RAST's load and view other news and statistics for RAST and the SEED, please visit “The Daily SEED."

RAST (Rapid Annotation using Subsystem Technology) is a fully-automated service for annotating bacterial and archaeal genomes. It provide

As the number of more or less complete bacterial and archaeal genome sequences is constantly rising, the need for high quality automated
we provide RAST as a free service to the community. It leverages the data and procedures established within the SEED framework to provid
quality genome sequences AND the analysis of draft genomes. The service normally makes the annotated genome available within 12-24 ho

Please note that while the SEED environment and SEED data structures {most prominently FIGfams) are used to compute the automatic anm
the SEED. Once annotation is completed, genomes can be downloaded in a variety of formats or viewed online. The genome annotation prov

To be able to contact you once the computation is finished and in case user intervention is required, we request that users register with email

If you use our service, please cite:

The RAST Server: Rapid i using Subsyste.

Aziz RK, Bartels D, Best AA, Dedongh M, Disz T, Edwards RA, Formsma K, Gerdes 5, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Ost
Vonstein V, Wilke A, Zagnitko O.

BMC Genomics, 2008, [ article |

This project has been funded in whole orin part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Inst

Login “ |

Passwaord

Task 16: Upload the assembled contigs and annotate using RAST

Click on Your jobs->Upload New Job

Rapid Annotation using
Subsystem Technology

Upload a Genome

A prokaryotic genome in one or more contigs should be uploaded in either a single FASTA format file or in a Genbank format file. Cur pipeline will use the taxonomy identifier as a handle for the genome. Therefore i
and genus, species and strain in the following upload workflow.

Please note, that only if you submit all relevant contigs (i.e. all chromosomes, if more then one, and all plasmids) that comprise the genomic infarmation of your organism of interest in one job, Features like Metabali
picture.

Confidentiality information: Data entered into the server will not be used for any purposes ar in fact integrated into the main SEED environment, it will remain on this server for 120 days or until deleted by the subm

If you use the results of this annotation in your work, plea.&e cite:

The RAST Server: Rapid Annatations using Subsyste logy.

Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, P1
A, Zagnitko O.

BMC Genomics, 2008, [ article |

File formats: You can either use FASTA or Genbank format.
@ [fin doubt about FASTA, this service allows conversion into FASTA format.
® Due to limits on identifier sizes imposed by some of the third-party bicinformatics tools that RAST uses, we limit the size of contig identifiers to 70 characters or fewer.
® [fyou use Genbank, you have the option of preserving the gene calls in the options block below. By default, genes will be recalled.

Please note: This service is intended for complete or nearly complete prokaryotic genomes. For now we are not able to reliably process sequence data of very small size, like small plasmid, phages or fragments.

File Upload
(Sequenoes File Browse...

Use this data and go to step 2

75


http://rast.nmpdr.org/

Upload the contigs.fa file obtained by the de novo assembly of unmapped reads.

Review genome data
We have analyzed your upload and have computed the following information.

Contig statistics

Statistic As uploaded After splitting into scaffolds

Sequence size 3326 3326

Mumber of contigs 1 1

GC content (%) 43.4 43.4

Shortest contig size 3326 3326

Median sequence size 3326 3326

Mean sequence size 3326.0 3326.0

Longest contig size 3326 3326

Please enter or verify the following information about this organism:

— Required information:

Taxonomy ID: 562 {leave blank if NCBI Taxanomy ID unknown)

| Look up taxonomy ID at NCBI. |

Find the taxonomy id for your organism by searching for its name in the NCBI taxonomy browser.

Taxonomy string: Bacteria; Protegbacieria; Gammaprofeobacteria; Entercbacieriales;
Enterohacteriaceae; Escherichia

Domain: ® Bacteria Archaea Virus

Genus: Escherichia

Species: coli

Strain:

Genetic Code: o 11 (Archaea, most Bacteria, most Virii, and some Mitochondria)

4 (Mycoplasmaea, Spiroplasmaea, Ureoplasmaea, and Fungal Mitochondria)

Use this data and go to step 3

We know this is an E.coli genome so we can enter 562 as the Taxonomy ID and click on 'Look up
taxonomy at NCBI'. If you're dealing with a different organism, be sure to change this number. RAST
will automatically split any scaffolds (i.e. contigs with bits missing in the middle — denoted by Ns).
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Upload a Genome

Complete Upload

By answering the following questions you will help us improve our ability to track problems in processing your genome:

— Cptional information:

Average Read Length

Sequencing Method Sanger
Coverage =8X -
MNumber of contigs 1 -

Mix of Sanger and Pyrosequencing Pyrosequencing * other

(leave blank if unknown)

Please consider the following options for the RAST annotation pipeline:

—RAST Annotation Settings:

Selectgene caller

Select FIGfam wersion for
this run

Automatically fix errors?
Fix frameshifts?

Build metabolic model?
Backfill gaps?

Turn on debug?

Setverbose level

Disable replication

RAST
Release4s

v Yes

Yes
v Yes
v Yes

Yes

Yes

Please select which type of gene calling you would iike RAST to perform. Note th:

Choose the version of FiGfams to be used fo process this genome.

The automatic annotation process may run into problems, such as gene candidat
requires deleting some gene candidates), please check this box.

If you wish for the pipeline to fix frameshifts, check this option. Otherwise frameshi
If you wish RAST to build a metabolic mode! for this genome, check this option.

If you wish for the pipeiine to blastlarge gaps for missing genes, check this option
If you wish debug statements to be printed for this job, check this box.

Set this to the wverbosity level of choice for error messages.

Even if this job is identical to a previous job, run it from scratch.

| Finish the upload |

Replicate the settings above and click on 'Finish the upload'.

Your job may take several hours to run. In the meantime, proceed to the next workshop and come

back to this later.
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Once complete, RAST should email you a message. You can then view the results or download them in
standardized formats (e.g. GFF3, Genbank, EMBL etc).

Rapid Annotation using
Subsystem Technology

The NMPDR, SEED-based, prokary

Job Detalils #41704

» Browse annotated genome in SEED Viewer

» Available downloads for this job: GFF3 | = Download Update download files

» Share this genome with selected users

» Back to the Jobs Cverview

W Genome Upload has been successfully completed.

Genome ID - Name: 562.698 - Escherichia coli
Joh: #41704
User: khp204
Date: Tue Jan 31 08:03:05 2012

Sequencing method: other

Coverage: gte
Number of contigs: unknown
Read length:

Genetic code: 11
Include into SEED: no

Preserve gene calls: no
Automatically fix errors: Yes
Fix frameshifts: na
Backfill gaps: yes

W Rapid Propagation has been successfully completed.

v;f Quality Check has been successfully completed.

For detailed explanations of the terms used in our guality report, please refer to aur wiki.

Number of features: 4
Number of warnings: 0
Number of fatal problems: 0

W Quality Revision has been successfully completed.
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If you download the results in GFF3 format and open in a text-editor you can see the annotations.
Again they are not particularly enlightening as such, but we can see that this plasmid appears to consist

of 4 proteins.

##gff-version 3

NODE_1 length 3306 cov_120.625832 FIG DS 1162 1356 . - 1
NODE_1_length_3306_cov_120.625832 FIG CDs 1313 1951 . + 2
NODE_1_length 3366 cov_120.625832 FIG DS 2186 2566 - 2
MODE 1 length 3366 cov 120.625832 FIG cDs 2563 3204 1

ID=fig|562.698.peg.1;Name=probable RMAI modulator protein
ID=fig|562.698.peg.2;Name=Plasmid mobilization protein A
ID=fig|562.698.peqg.3;Name=14.5 kDa protein
ID=fig|5f2.698.peg.4; Name=hypothetical protein

How does this compare to the original paper which describes this plasmid? We can also look at other
features of RAST such as the SEED Viewer. Here we can see each predicted gene along with
annotation and further information as to how the evidence was obtained if you click on the Feature ID.

Browse Genome: Escherichia coli (562.698)

Location | Focus | Upload List| +3
+Z .
contig  NODE 1 length 3306 cov_120.625832 (3,326 bp) - .
.
start 0
base
d
window 16,000 bp | ~ -1 4 -
Color by focus - -2 @
features
-3
<== | dmw | === 00 | 2400 | 4000 | BEO0 | 7200 | BBOO | 10400 | 12000 | 1f
T T T T T T T T T T T T T T T T
export table clear all filters
display 15 items per page
displaying 1 -4 of4
e L) J-- DT [ u-
CDS| ~ | NODE_1_length_3306_cov_12(~ | </ = = - < -
fig|562.698.peg.l |CDS NODE_1_length_3306_cov_120.625832(1356 1162 195 probable -none - show
RMAI
modulator
protein
fig|562.698.peqg.2 |CDS NODE_1_length_3306_cov_120.625832(1313 1951 639 Plasmid -none - show
mobilization
protein A
fig|562.698.peg.3 |CDS NODE_1_length_3306_cov_120.625832(2566 2186 381 14.5 kDa -none - show
protein
fig|562.698.peg4 |CDS NODE_1_length_3306_cov_120.625832(3204 2563 642 hypothetical |- none - Tor
protein

displaying 1 -4 of4

Browse the rest of the RAST server and get a feel for the possibilities the platform may offer you.

When you're ready, move on to (or back to) the de novo assembly part of the workshop!
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2014 Workshop on Genomics

Part 4
Short read genomics:
De-novo assembly

Instructors:

. Konrad Paszkiewicz k.h.paszkiewicz@exeter.ac.uk

Objectives:

By the end of the workshop you will be expected to be able to:

«  Perform QC and adaptor-trim Illumina reads

« Assemble these reads de novo using Velvet and VelvetOptimiser

«  Generate summary statistics for the assembly

« ldentify open reading frames within the assembly

«  Search for matches within the Swissprot database via BLAST and against the Pfam database
«  Visualize species distribution of potential matches
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4.1 Introduction

In this section of the workshop we will continue the analysis of a strain of E.coli which
Is involved in urinary tract infections. In the previous section we extracted those reads
which did not map to the reference genome and assembled them. However, it is often
necessary to be able to perform a de novo assembly of a genome. In this case, rather
than doing any remapping, we will start with the filtered reads we obtained in part 3 of
the workshop.

Although it is not strictly necessary for this particular example (because there appears to
be very little new material), we will run through the procedure here so that you are able
to do this in the next section.

To do this we will use a program called VelvetOptimiser to try to get the best possible
assembly for a given genome. We will then generate assembly statistics and then
produce some annotation via Pfam and BLAST.

4.2 Task 1 Preparation

Ensure you are in the ~/genomics_tutorial/strainl directory. We will move the
denovo_analysis directory into the remapping_to_reference directory so we don't end up
confusing the current de novo assembly-from-scratch, with the previous one using
unmapped reads.

mv denovo assembly/ remapping to reference/

Let's create a new directory to store this denovo-assembly-from-scratch. We'll call it
complete_denovo_assembly

mkdir complete denovo assembly/

Listing the contents of the ~/genomics_tutorial/strainl directory you should now have:

ubuntu@ip-10-28-24-176:~/genomics tutorial/strainl$ 1s

ubuntu@ip-10-28-24-176:~/genomics tutorial/strainl$

cd complete denovo assembly/
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Assembly theory

\elvet is an assembly algorithm which requires a number of parameters. The three most
important are k-mer length, expected coverage and coverage cutoff.

1. K-mer length. Rather than store all reads individually which would be unfeasible
for Illumina type datasets, Velvet converts each read to a series of kmers and stores each
kmer once, along with information about how often it occurs and which other kmers it
links to. A short k-mer length (e.g. 21) reduces the chance that data will be missed from
an assembly (e.g. due to reads being shorter than the k-mer length, but generally results
in higher memory consumption and shorter contigs).

2. Expected coverage. This is rough indication of how much sequence information
there is relative to the genome size. It is used to try to resolve repetitive regions if
paired-end information is missing or insufficient.

3. Coverage cutoff Relates to the cutoff Velvet should use to decide that a particular
k-mer is noise (i.e. error-laden or low-level contamination) and should be excluded from
the assembly.

Generally it is necessary to try a large combination of parameters to ensure that you
obtain the 'best' possible assembly for a given dataset. What 'best' actually means in the
context of genome assembly is ill-defined. For a genomic assembly you want to try to
obtain the lowest number of contigs, with the longest length, with the fewest errors.
However, although numbers of contigs and longest lengths are easy to evaluate, it is
extremely difficult to know what is or isn't an error when sequencing a genome for the
first time.

Description of k-mers:

What are they? Let's say you have a single read:

AACTAACGACGCGCATCAAAA

The set of k-mers obtained from this read with length 6 (i.e. 6-mers) would be obtained
by taking the first six bases, then moving the window along one base, taking the next 6
bases and so-on until the end of the read. E.g:
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AACTAALC | GACGCGCATCAAAA A JACTAACG |ACGCGCATCAAAA

AACTAACGACGCGCATCAAAA

MACTRAC }—.[ MTAME  ——-  CTAMEA }-——.- TAACEAC ]—n— mciacs  ——{  acuacer :'—h' CRACRCE |——' SACRORT :—': ACRCRCA :"—"': CRRLAT :'_-": [

You may well ask, “So what? How does that help”? For a single read, it really doesn't
help. However let's say that you have another read which is identical except for a single
base:

AACTAACGAL G [GCATCAAAA
ACTAACGAG T [GCATCAAAA
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Rather than represent both reads separately, we need only store the k-mers which differ
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and the number of times they occur. Note the 'bubble' like structure which occurs when a
single base-change occurs. This kind of representation of reads is called a 'k-mer graph’
(sometimes inaccurately referred to as a de-bruijn graph).

Now let's see what happens when we add in a third read. This is identical to the first read
except for a change at another location. This results in an extra dead-end being added to
the path.

[ corsom |

AACTAACGAC| 6 |CGCA|T [CAAAA
ACTAACGAC] T |CGCA|T AAAA
ACTAACGAC] G |CGCA| A ARAA
2x 2x 2x 2x 2x / 1x

mctiac e mTaME e MM e TAMGA [ oA e MGME B CGMEE B G e Ms ] e 8 eceaTe .\

1x x 3x 3x

\ \‘-'uum \ / v ,lnim_ 2x

CRACTCE } f ) [ acrosca
| — " }

The job of any k-mer based assembler is to find a path through the k-mer graph which
correctly represents the genome sequence.

Images courtesy of Mario Caccamo
Description of coverage cutoff:

In the figure above, you can see that the coverage of various k-mers varies between 1x
and 3x. The question is which parts of the graph can be trimmed/removed so that we
avoid any errors. As the graph stands, we could output three different contigs as there are
three possible paths through the graph. However, we might wish to apply a coverage
cutoff and remove the top right part of the graph because it has only 1x coverage and is
more likely to be an error than a genuine variant.

In a real graph you would have millions of kmers and thousands possible paths to deal
with. The best way to estimate the coverage cutoff in such cases is to look at the
frequency plot of contig (node) coverage, weighted by length. In the example below you
can see that contigs with a coverage below 7x or 8x occur very infrequently. As such it is
probably a good idea exclude those contigs which have coverage less than this — they are
likely to be errors.
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Description of expected coverage:

In the example below you can see a stretch of DNA with many reads mapping to it.
There are two repetitive regions Al and A2 which have identical sequence. If we try to
assemble the reads without any knowledge of the true DNA sequence, we will end up
with an assembly that is split into two or more contigs rather than one.

One contig will contain all the reads which did not fall into A1 and A2. The other will
contain reads from both Al and A2. As such the coverage of the repetitive contig will be
twice as high as that of the non-repetitive contig.

If we had 5 repeats we would expect 5x more coverage relative to the non-repetitive
contig. As such, provided we know what level of coverage we expect for a given set of
data, we can use this information to try and resolve the number of repeats we expect.

RPT A1 RPT A2

Can try to identify collapsed
repeats by increased relative

coverage
85



Task 2: Using VelvetOptimiser

\elvetOptimiser cycles Velvet through various k-mer, expected coverage and coverage
cutoff values to see which one gives the 'best' result. Best is defined by the user as either
N50 length, length of longest contig, total number of bases in contigs etc. It is
distributed with Velvet and is a 'contributed’ script (i.e. not written by the original author
of Velvet, but thought to be so useful as to be worth bundling with the Velvet release).

Type:

VelvetOptimiser.pl

Fhkkkdkkdkkhkdhkdkddkddrdrdhkdhrddrrtdrdrdddddddddrddddddrrd o doddd

VelvetOptimiser.pl Version 2.2.4

Thkkkkkkhkkhkkkkkdkkdkdkhkhkhkdkhkkhkxhkhkkhthkkhkkhkktkkkkdkkkkkhkkdkx

Number of CPUs available: 2

Current free RAM: 6.530GB

Velvet OMP compiler setting: 1

Usage: fusr/local/bin/VelvetOptimiser.pl [options] -f 'wvelveth input line'
--help This help.
--version! Print version to stdout and exit. (default '@').
--v|verbose+ Verbose logging, includes all velvet output in the logfile. (defaul
--s|hashs=1 The starting (lower) hash value (default '19').
--e|hashe=1 The end (higher) hash value (default '3@0').
--X|step=i The step in hash search.. min 2, no odd numbers (default '2').
--f|velvethfiles=s The file section of the velveth command line. (default '@').
--alamosfile! Turn on velvet's read tracking and amos file output. (default '@').
--o|velvetgoptions=s Extra velvetg options to pass through. eg. -long mult_cutoff
--t|threads=1i The maximum number of simulataneous velvet instances to run. (defau
--g|genomesize=f The approximate size of the genome to be assembled in megabases.

Only used in memory use estimation. If not specified, memory
will not occur. If memory use is estimated, the results are s

--k|optFunckmer=s The optimisation function used for k-mer choice. (default 'ns@').
--c|optFuncCov=s The optimisation function used for cov_cutoff optimisation. (defau
--m|minCovCutoff=f The minimum cov_cutoff to be used. (default '®').

You should see the options list for Velvet. Note that there are a number of options which
we need to set. The first two are the upper and lower bounds for the k-mer search. The
lower bound should never be lower than 19 as memory requirements tend to spiral, and
the upper bound should not be longer than the read length (i.e. 40) — otherwise no k-
mers can be formed at all!

The next parameter we need to feed is the -f parameter which just specifies whether the
reads are paired or unpaired and what format they are in. We can also set -t if we have a
large memory machine to do multiple assemblies at the same time to speed things up. If
we want to estimate how much memory an assembly will require, we can set the -g flag
and indicate in megabases how large we expect the genome to be. We can also set the
optimisation functions (i.e. how VelvetOptimiser decides what the 'best' assembly is),
both for k-mer size and for coverage cutoff, but we'll leave those alone for now. Feel
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free to experiment with these at a later date though!

Before we can run \elvetOptimiser.pl we need to interleave the filtered FASTQ files.
Unfortunately, unlike our previous use of velveth and velvetg, VelvetOptimiser cannot
work with separate read 1 and read 2 files. It needs to have these files interleaved (i.e in
a single file where the first read in read 1 is followed by the first read in read 2 etc) It
needs this additional step because of a software incompatibility (this may be fixed soon).

Type (all on one line):

perl ~/software/velvet/shuffleSequences_fastq.pl
~/genomics_tutorial/strainl/illumina_reads/strainl_readl.filtered.fastq

~/genomics_tutorial/strainl/illumina_reads/strainl_read?2.filtered.fastq
strainl interleaved.fasto

Now we can run VelvetOptimiser. Let's try it first with the -g flag set to 5Mb so that we
can estimate the maximum RAM Velvet will use. Type: (all on one line)

VelvetOptimiser.pl -s 19 -e 39 -f *-shortPaired -fastq strainl_interleaved.fastq’ -t 1 -
g5

Maximum number of velvetinstances to run: 1
run velvet optimiser with the following paramters:
Velveth parameter string:
-shortPaired -fastq strainl_interleaved.fastqg
Velveth start hash wvalues: 19
Velveth end hash value: 39
Velveth hash step value: 2
Velvetg minimum coverage cutoff to use: @

Read tracking for final assembly off.

i is 19

i is 21

i is 23

i is 25

i is 27

i is 29

i is 31

i is 33

i is 35

i is 37

i is 39

ile: strainl_interleaved.fastq has 6759881 reads of length 48
otal reads: 6.8 million. Avg length: 48.0

emory use estimated to be: 1.6GB for 1 threads.

ou should have enough memory to complete this job. (Though this estimate is no guarantee..)

So the results indicate that we require around 1.6Gb of RAM to do one assembly at a
time. We have a few Gb of RAM free so although we could try two threads at a time;
let's leave it at 1 thread. If the memory requirements are exceeded you may find that
your instance stops responding and you'll need to restart VelvetOptimiser with a higher
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starting kmer (e.g. 35 instead of 19).

VelvetOptimiser.pl -s 19 -e 39 -f '-shortPaired -fastq strainl interleaved.fastq' -t 1

ubuntu@ip-10-45-166-48: ~/genomics_tutorialfstrain1/complete_denovo_assembly2
File Edit View Search Terminal Help

Velveth parameter string: auto_data_21 21 -shortPaired -fastqg strainl_interleave
d.fastq

Velvetg parameter string: auto_data_21 -clean yes -exp_cov 9 -cov_cutoff 5.2522
188895872

Assembly directory: fhomej/ubuntu/genomics_tutorial/strainl/complete_denovo_assem
bly2/auto_data_21

Velvet hash value: 21

Roadmap file size: 268940253

Total number of contigs: 655

n50: 228461

length of longest contig: 622788
| [Total bases in contigs: 5151239

Mumber of contigs = 1k: 75

Total bases in contigs > 1k: 5087404

Paired Library insert stats:

Paired-end library 1 has length: 449, sample standard deviation:

Paired-end library 1 has length: 450, sample standard deviation:
Fhkkkdkhkkdhdkhkhkdkdkdkrhdhkdkdrhdkhkddhdkhkddhkddddbrdrdrhkdddkdrdhbbrd oo dd s

Assembly output files are in the following directory:
fhome fubuntu/genomics_tuterial/strainl/complete_denovo_assembly2fauto_data_21

| ubuntu@ip-10-45-166-48:~/genomics_tutorial/strainlfcomplete_denovo_assembly2$ I

Once completed after about 30 minutes you will see something similar to the above.
Here we can see that a k-mer length of 21 was found to give the highest N50 value (see
http://en.wikipedia.org/wiki/N50_statistic for details). A kmer coverage cutoff of 5.25
and expected coverage of 9 were the values which gave the largest number of base pairs
in contigs larger than 1Kkb.

In addition to the statistics, we also get a report of the estimated insert size and standard
deviation. It is important to check these (they should be around 300-600 bp) to make
sure the library prep went well.

This is a reasonable optimised assembly. It has a high N50 (228,461bp) and although
there are a total of 655 contigs, most of the genome seems to be assembled into just 75
contigs.

Check out the contents of the auto_data_21 directory. You'll see that the results are in a

file called 'contigs.fa'. The files have exactly the same format as those seen in the
previous part.
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A good check at this point is to map the original reads back to the contigs.fa file and
check that all positions are covered by reads. Amazingly it is actually possible for de-
novo assemblers to generate contigs to which the original reads will not map.
4.3Task 3: Map reads back to assembly

Here we will use BWA again to index the contigs.fa file and remap the reads. This is
almost identical to the procedure we followed in Part 3, the only difference is that
instead of aligning to the reference genome, we are aligning to the contigs.fa file.
Make sure you are in the following directory.

~/genomics_tutorial/strainl/complete_denovo_assembly/auto data 21

Let's start by indexing the contigs.fa file-management. Type:

bwa index contigs.fa

ubuntu@ip-108-168-53-230:~fgenomics_tutorial/strainlfdenovo_assembly/auto_data_ 25
$ bwa index contigs.fa

[bwa_index] Pack FASTA... 8.10 sec

[bwa_index] Construct BWT for the packed sequence...

[bwa_index] 3.39 seconds elapse.

[bwa_index] Update BWT... 8.07 sec

[bwa_index] Pack forward-only FASTA... 0.86 sec

[bwa_index] Construct SA from BWT and Occ... 1.16 sec

[main] Version: 8.7.5a-r465

[main] CMD: bwa index contigs.fa

[main] Real time: 5.273 sec; CPU: 4.796 sec
ubuntu@ip-10-168-53-230:~/genomics_tutorial/strainl/denovo_assembly/fauto_data_25
S 1ls

contigs.fa contigs.fa.ann contigs.fa.pac Graph Log Sequences
jcontigs.fa.amb contigs.fa.bwt contigs.fa.sa Graph2 PreGraph stats.txt
ubuntu@ip-10-168-53-230:~/genomics_tutorial/strainl/denovo_assembly/auto_data_2

Once complete we can start to align read 1 back to the contigs. Type (all on one line):

bwa mem -t 4 contigs.fa
~/genomics_tutorial/strainl/illumina_reads/strainl_readl.filtered.fastq
~/genomics_tutorial/strainl/illumina reads/strainl read?2.filtered.fastq > alignment.sam

Once complete we can convert the SAM file to a BAM file:

samtools view -bS -T contigs.fa alignment.sam > alignment.bam
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And then we can sort the BAM file:

samtools sort alignment.bam alignment.sorted

Once completed, we can index the BAM file:

We can then (at last!) obtain some basic summary statistics using the samtools flagstat
command:

ubuntu@ip-10-168-53-230:~/genomics_tutorial/strainl/de
5 samtools flagstat alignment.sorted.bam
6494900 + @ in total (QC-passed reads + QC-failed read
B + 0 duplicates

+ O mapped (87.93%:-nan%)

paired in sequencing
readl

read2
properly paired (83.62%:-nan%)
5496532 with itself and mate mapped
214366 + 0 singletons (3.30%:-nan%)
59216 + ® with mate mapped to a different chr
55943 + O with mate mapped to a different chr (mapQ==5)

We can see here that over 12% of reads did not map back to the contigs.

Task 4: View assembly in IGV

As in part 3, load up Firefox (make sure it is within your Amazon instance and not on
your desktop). Google for the IGV viewer and load up the 2Gb version of the viewer.
(On 32-bit windows machines you will only be able to load the 1.6Gb version).
Alternatively, load IGV by typing igv.sh in a separate terminal window.
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Click Genomes->Create .genome file. We are going to import the contigs we have
assembled as the reference. Unlike the reference genome though, we have no annotation
available. Make sure you select the contigs.fa file for the complete de novo assembly
(not the unmapped reads assembly).

File Genomes View Tracks Regions Tools GenomeSpace Help |

contigs.fa - | |All - Go fF @ ® AHE
MVEL 41 B30_R 6D IR147
TS AT den BtH3,
Unique identifier ‘StrainlAssembly ‘ S E—
Descriptive name ‘Straln 1 Assembly ‘
FASTA file "ubuntufgenom\cs_tutoria\jstramUcamplete_denovo_assembnyauto_data_zljcontigs‘fa‘ Bro...
Optional
Cytoband file ‘ ‘ Bro...
Gene file ‘ ‘ Bro...
Alias file ‘ ‘ Bro...
276M of 744M

™ [ ubuntu@ip-10-183-14... W IGV

Once saved, click on File->Load From File... select the alignment.sorted.bam file.
Again, make sure you load the file in the complete_denovo_assembly directory.
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™ select Files

Look In: |3 auto_data 25 - | ||| |3 |aa]a=
[y alignment.bam [ contigs.fa.ann [} Graph2
[y alignment.sam [} contigs.fa.bwt [ Log

B alignment.surted.baml [ contigs.fa.fai [ PreGrap
[y alignment.sorted.bam.bai [} contigs.fa.pac [} sequen
[ contigs.fa [ contigs.fa.sa [ stats.tx
[} contigs.fa.amb [} Graph

. I | [»
File Name: lalignment.sorted.bam |
Files of Type: |All Files -

Open Cancel

Once loaded, explore some of the contigs in IGV. Can you find examples of some which
have no reads mapping back to the assembly? Do you notice anything they tend to have

in common?

f-il_e ) !IG_.',W ) ﬁacl_(é Help

Strain 1 Assembly |v||NUDE712677Iength7985007cov79.5999()9 |v‘ ‘assoo_cov_g‘599909:33.407-&5‘037|Go T « @M=
=
I | u
u u 31 kb
WEH = 20 kb 50 kb 60 kb
fgg [Click and drag to zoom in.|™, A | -
g alya)
single_alignment. sortad bam C [o- a4] =
[l il | 1
|
NODE_1267_length_98500_cov_9.599909: 48, 888 | 70M of 245M i
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Annotation of de-novo assembled contigs

We will now annotate the contigs using the open source package Prokka
(http://bioinformatics.net.au/software.prokka.shtml). This uses BLAST and other tools to
generate files suitable for submission to Genbank. This is extremely useful as preparing
files for submission to NCBI can be a headache.

Prokka is actually a ‘wrapper’ for many other tools which we have already seen in this
workshop (e.g. Blast). Prokka will also perform gene prediction (as well as calling open
reading frames) and do some additional annotation using SignalP to predict signal
peptides and Infernal to predict conserved rRNA and tRNA. For full details check out
the Prokka website listed above.

Task 5: Run Prokka on the assembled contigs

The useful thing about Prokka is that it is very straightforward to execute. A single
command will start gene prediction, Blast searches, SignalP and a whole host of other
useful annotation tools. This saves us an awful lot of work compared to our previous
look at the unmapped reads.

Ensure you are in the auto_data 21 directory containing the contigs.fa file and type
(again all on one line):

prokka --outdir prokka_annotation --genus Escherichia --species coli --strain

UTI189 --kingdom Bacteria --gcode 11 --gram neg --cpus 0 contigs.fa

This will take around 30 minutes to complete. Once it has finished you can see the files
Prokka generated in the prokka_annotation directory:

PROKKA_12282013.err PROKKA_12282013.fsa PROKKA_122820813.sqn
PROKKA_12282013.faa PROKKA_12282013.gbk PROKKA_12282013.tbl
PROKKA_12282013.ffn PROKKA_12282013.gff PROKKA_12282013.txt

PROKKA_12282813.fna PROKKA _122820613.log
ubuntu@ip-10-168-53-230:~/genomics_tutorial/strainl/denovo_asse
/prokka_annotation$

In summary:

e The .faa file contains the amino acid sequence of each protein found in the
assembly

e The .ffn file contains the nucleotide level sequence for each gene
e The .fna file contains the full nucleotide sequence of the contigs
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e The .fsa file contains the full nucleotide sequence of the contigs with the full
headers including species name and codon usage table

e The annotation files in Genbank and GFF format

e The .txt file with a summary of how many features were found

e The sgn and tbl files are needed for submission to genbank

Task 6: (optional) Load the annotation into IGV (as per Task 4)

Eile Genomes View Tracks Regions Tools GenomeSpace Help

assml ~ |NODE_25_length_25838 cov_6.034987 |v| ‘DE_25_\ength_25938_<ov_eoama? co @& [ = = (= AR AR AR AR AR AR
25 kb
kb 10 kb 20 kb
| | |
—_—
[0 4951
alignment. sorted. bam Coveragy ||| ”r ‘ H
I I | 1
l rt.sorked barn || T T T
slenmer sertactam Read name = CPO00243.1-5357234-1
Location = NODE_25_length_25838 cov 6.034987:2,652
Alignment start = 2,619 (+)
Cigar = 36M45
Mapped = yes
Mapping quality = 60
Base =T
Base phred guality = 29
Pair start = NODE_25_length_25838_cov_6.034987:3057 (-)
o EEEE P is mapped — yes - 1T~ 1 3 N
PROKKA_04941 Insert size = 478 1 PROKKA_04959 PROKKA_04362 PROKKA_0D4565
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Task 6 (Optional): Run the contigs through the RAST server and import the
resulting GFF annotation into IGV

Task 7: Obtain open reading frames

As with the unmapped reads, generate open reading frames using getorf

getorf -table 11 -circular N -minsize 300 -sequence contigs.fa -outseq contigs.orf.fa

Task 8: Run open reading frames through Pfam

As with the unmapped reads we will search the open reading frames against the Pfam
HMM database of protein families. Later on we will be able to use these results to
identify Pfam domains which are unique to a particular strain.

pfam_scan.pl -fasta contigs.orf.fa -dir ~/software/PfamScan/ -outfile

contigs.orf.pfam -cpu 4 -pfamB -as

This will take around 5 hours so it is recommended that you leave this running while
continuing with the rest of the activity. If it is still running when you finish your session
for today, leave your instance running overnight, but please be sure to turn it off in the
morning!
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2014 Workshop on Genomics

Part 5
Short read genomics:
Comparison of results between
different strains

Instructors:

. Konrad Paszkiewicz k.h.paszkiewicz@exeter.ac.uk

Objectives:
In this workshop you will:

By the end of the workshop you will be expected to be able to:

« Run parts 1-3 of the workshop on 2 new datasets
«  Use pre-prepared scripts to compare SNPs and Indels between strains
«  Generate pseudo-sequences based on synonymous SNPs

«  Draw simple trees to illustrate the likely evolutionary relationship between strains

«  Compare Pfam matches between strains
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Projects!
In the previous sections you have been taken through the steps required to:

QC and filter lllumina data

Remap Illumina short-read data to a reference sequence

View the results in IGV

Identify SNPs and Indels in an automated fashion using samtools and bcftools
Determine whether SNPs result in synonymous or non-synonymous changes in the
corresponding amino acid

Extract unmapped reads

Assemble unmapped reads and obtain assembly statistics

Annotate unmapped reads using Pfam, RAST and/or BLAST

: Assemble a bacterial genome de-novo using Velvet

0.  Obtain assembly statistics

1. Annotate as per the unmapped reads (where computationally feasible).

agrODdE

Now we want you to do the same for another two strains of E.coli urinary tract infections which have
been isolated. For each strain, make a list of:

1. SNPs, Indels and their effects (from the remapping)

2. Missing genes (from the remapping)

3. Novel plasmids and/or genes (Pfam domains are the easiest way to do this via denovo assembly
of unmapped reads)

Once completed, see if you can predict what the phenotype of these bacteria might be. Then proceed to
the final part of the tutorial where we will compare the results from all of these strains.

N.B.

It is recommended that you follow the same directory naming convention we have followed here (i.e.
one for remapping to the reference, another for assembly of unmapped reads and a final one for the
denovo assembly).

You will find the data for the other two strains in the ~/genomics_tutorial/strain2 and
~/genomics_tutorial/strain3. These tasks may take you several days. However, remember that all of the
basic procedures are detailed in the previous sections — only the input FASTQ files will have changed.
Feel free to refer to these previous tasks to remind yourself of the commands and parameters. By all
means feel free to play around with different parameters if you wish, although remember that the
results may differ from those you see here.

Just to give you some guidance: You should find that strain 2 yields many more SNPs than strain 1.
Strain 2 should be missing a Beta lactamase and Strain 3 Type 11 secretory pathway and flagellar
proteins. You should also find a different plasmid. You may find that some scripts and programs run
more slowly because of these extra differences. Also, if you find the de novo assembly process causes
your NX session to end, the chances are that Velvet has caused your instance to run out of memory. If
this happens, increase the minimum k-mer size in VelvetOptimiser.
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Comparing variants between several samples and a reference genome:

Here we will use a script to compare the variants called in each sample. Ensure you are in the
~/genomics_tutorial directory

First of all, let’s make a directory to store the results of the comparison:

mkdir snp_comparison/

cd snp _comparison/

cp ~/genomics_tutorial/strainl/remapping to reference/out.snps.vcf4 ./strainl

cp ~/genomics_tutorial/strain2/remapping to reference/out.snps.vcf4 ./strain2

cp ~/genomics_tutorial/strain3/remapping to reference/out.snps.vcf4 ./strain3

Note that the last two copy commands may require modification depending on where you have saved
the variant call results.

perl /usr/local/scripts/snp_comparator.pl 10
~/genomics_tutorial/reference_sequence/Ecoli_UTI189.fna

~/genomics_tutorial/reference_sequence/Ecoli_UTI189.gff strainl strain2 strain3 >
snp_comparison.txt

Looking at the snp_comparison.txt file (either in a text editor, or in a spreadsheet):

## Table of SNP and Indel occurences between these samples. Note that any comma-separated values (e.g. A,C indicate potential heter
zygosity and/or sample heterogeneity
Chrom Pos Ref strainl strain2 strain3 Gene description Status

CPOO0243.1 1000078 C C G € UTI89 (1007 alkanesulfonate monooxygenase ,silent tcg -> tcC;

CPOO0243.1 1000196 G G A G UTI8Y C1007 alkanesulfonate monooxygenase ,non-silent gcc -> gTc;
CP000243.1 1000403 G G 3 G UTI89 C1007 alkanesulfonate monooxygenase ,non-silent tca -> tAa;
CPOOO243.1 1000438 G G 1 G UTI89 C1007 alkanesulfonate monooxygenase ,non-silent cac -> caA;

Here we can see the chromosome ID, the position in bp, the reference base and the base at each
position as well as the gene (if any) the variant occurs in as well as the effect (silent, non-silent or
indel).

Obtaining a phylogeny based on synonymous SNPs only:

How are the three strains related on the basis of these variants? We can ask a number of questions, but
if we are looking at the long-term evolutionary history of the strains we should only look at
synonymous (i.e. silent) mutations as these should not confer a significant selective advantage to any
strain. Using the data snp_comparison.txt file we can form ‘pseudo-sequences’ using the script in
lusr/local/scripts/snp2tree_fullsequence.pl. These are concatenated bases consisting of only those
positions which are silent across all strains. It is essentially the same as turning each column of each
strain in the snp_comparison.txt file into a FASTA entry.

98



perl /usr/local/scripts/snp2tree_fullsequence.pl snp_comparison.txt >

synonymous_tree.fasta

Examine the contents of the tree.fasta file. We can then treat this file as an alignment (since each base
in each sequence is at the same position on the chromosome) and pass it to a phylogeny program called
FastTree. FastTree will take an input alignment and output a Newick formatted tree
(http://en.wikipedia.org/wiki/Newick_format).

FastTree -nt -gtr < synonymous_tree.fasta > synonymous_tree.newick

Now we can visually represent this tree by using the newick2pdf program to create a visual
representation of the tree based on the synonymous_tree.newick file.

newicktopdf synonymous tree.newick

We can then view the resulting PDF file using the evince program or Adobe Acrobat.

Advanced task (optional):

Copy the snp2tree_fullsequence.pl script to this directory and modify it so that it selects positions
containing only non-silent mutations (not indels as these modify the alignment). Generate a new
alignment and compare the resulting tree against the silent mutations.

Advanced task (optional):

Try to repeat one of the analyses with the new BreSeq pipeline
(http://barricklab.org/twiki/pub/Lab/ToolsBacterial GenomeResequencing/documentation/introduction.
html). This pipeline automatically aligns your reads to a reference genome and calls SNPs along with
generation of pretty HTML files detailing the likely effects of mutations. Compare the SNP calls you get
with BreSeq with the SNPs you get using the methods used here. You will need to use the GenBank
(gbk) files in the reference_sequence directory.

This is an example of the command you may want to execute.

breseq —r /home/ubuntu/reference_sequence/Ecoli_UTI89_mainchr.gbk —r
/home/ubuntu/reference_sequence/Ecoli_UTI89 plasmid.gbk
/home/ubuntu/strainl/illumina_reads/strainl_readl.fastq
/home/ubuntu/strainl/illumina_reads/strainl_read2.fastq

As always, keep your results organized — put the breseq results in a separate directory.
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Comparing Pfam domains found in each strain:

Here we will use a script to compare the various Pfam domains found in each sample. Ensure you are
in the ~/genomics_tutorial directory

First of all, lets make a directory to store the results of the comparison:

mkdir pfam_comparison/

cd pfam _comparison/

cp
~/genomics_tutorial/strainl/complete denovo assembly/contigs.orf.pfam ./strainl

cp ~/genomics_tutorial/strain2/
complete denovo assembly/contigs.orf.pfam ./strain2

cp ~/genomics_tutorial/strain3/
complete denovo assembly/contigs.orf.pfam ./strain3

Note that the last two copy commands may require modification depending on where you have saved
the Pfam search results.

perl /usr/local/scripts/compare_pfam.pl strainl strain2 strain3 >

pfam_comparison.txt

Examining the pfam_comparison.txt file you should see something similar to:

PF02705 K_trans strain2.pfam,strainl.pfam,
PF02706 Wzz strain2.pfam,strainl.pfam,
PF02729 OTCace_N  strain2.pfam,strainl.pfam,
PF02730 AFOR_N strain2.pfam,strainl.pfam,
PF02733 Dak1 strain2.pfam,strainl.pfam,
PF02734 Dak2 strain2.pfam,strainl.pfam,
PF02737 3HCDH_N  strain2.pfam,strainl.pfam,
PF02738 Ald_Xan_dh_C2 strain2.pfam,strain1.pfam,
PF02739 5 3 exonuc_N strain2.pfam,strainl.pfam,
PF02742 Fe_dep_repr_C strainl.pfam,

PF02744 GalP_UDP_tr C strain2.pfam,strainl.pfam,

Search the Pfam database to see what some of these differences are (http://pfam.sanger.ac.uk)
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Concluding remarks:

Well done! If you have reached this far, you deserve a round of applause. You have completed some
of the most common tasks in short-read sequencing. You can use the same machine and the same
scripts to perform analysis of any short-read dataset! All you need to do is transfer the FASTQ files
to the server — you can either do this via Firefox if using the Exeter Sequencing Service (just click
on the link in the email), or if you have them on your personal desktop you can use WinSCP
(windows) , Fugu or Cyberduck (Mac OSX) or any other SFTP program.

Atutorial can be found at http://www.siteground.com/tutorials/ssh/ssh_winscp.htm
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