

1859

Charles R. Darwin publishes "On the origin of species by means of natural selection" and establishes the theory of evolution

1866

Gregor Mendel publishes "*Experiments in plant hybridization*". This paper established what eventually became formalized as the Mendelian laws of inheritance.

A brief history

1866

Gregor Mendel publishes "*Experiments in plant hybridization*". This paper established what eventually became formalized as the Mendelian laws of inheritance.

A brief history

1900

Independently of one another, **Hugo de Vries** (1848-1935), **Erich von Tschermak-Seysenegg** (1871-1962) and **Carl Correns** (1864-1933) rediscover Mendel's published, but long neglected, paper outlining the basic laws of inheritance.

Hugo de Vries

Erich v. Tschermack

1902

1910

Theodor Boveri and **Walter Sutton** propose that chromosomes bear heritary factors in accordance with Mendelian laws.

(1877-1916)

Theodor Boveri (1862-1915)

A brief history

Thomas H. Morgan establishes the chromosomal theory of inheritance. He also discovered the recombination of homologous chromosomes during meiosis.

Thomas Hunt Morgan (1866-1945)

Oswald T. Avery (1877-1955), **Maclyn McCarty** (1911-2005) and **Colin MacLeod** (1909-1972) identify deoxyribonucleic acid (DNA) as the "transforming principle".

1944

1950

A brief history

Erwin Chargaff discovers regularity in proportions of DNA bases. In all organisms he studied, the amount of adenine (A) equaled that of thymine (T), and guanine (G) equaled cytosine (C).

Erwin Chargaff (1905-2002)

1953

James Watson and Francis Crick discover the double helical structure of the DNA and that this structure meets the unique requirements for a substance that encodes genetic information.

<section-header><section-header><text>

1960

Discovery of messenger RNA (mRNA) by **Sydney Brenner** (1927-), **Francis Crick** (1916-2004), **Francois Jacob** (1920-) and **Jacques Monod** (1910-1976).

Kary B. Mullis (1944-) invents and helps to develop the polymerase chain reaction (PCR)

1983

Homo sapiens sequenced

2001

				Ge	nome L	ist										
+ S www.ncbi.nlm	nih.gov/genome/br	owse/														C Reader
🖽 🎹 Apple Yahoo! 🕻	oogle Maps YouTu	be Wikipedia News 🔻 Po	pular T BioMed Central Go	ogle Sch	olar IS	Web ofabases	Home	Salzburge	er G…rsit	ät Basel	dict.cc	Gerh	dictiona	iry LEO D	eutschWö	terbuch
e-tierversuche	1	he Origins of Genome Archited	ture: Am genom	e evoluti	on - Go	ogle-Suche		Ense	mbl Gen	ome Brow	ser			(Genome List	
VCBI Resources 🕑 How	To 🖸															Sign in to N
nome												-	-	-		
Gend	• •												Start			
Overview [9348]	organism rotes (2391) Pro	Search by o karyotes [16577] Viruses	(3501) Clear						s	tatuses	MAIL OC	omplete	C. Craff		wnload Rep	orts from FTP
First Previous	Sho	wn: 1 - 100 out of 856 items	Next	Last					3	latuses.		ompiete	Scand	ads or contrg	S SKA or I	d selected records
Organism/Name	BioProject	Group	SubGroup	Size	GC%	Assembly	Chrs	Organelles	Plasmids	WGS	Scaffolds	Gene	Protein	Release	Modify	Status
		Animals \$	All Animals \$	(Mb)										Date	Date	
Ablabesmyia aspera	PRJNA174383	Animals	Insects		•	180		-	•		1.00		1.0		-	No data
Acanthascus dawsoni	PRJNA20001	Animals	Other Animals	-	-	-	-	-	•	-		-	-	-	-	No data
Acanthemblemaria maria	PRJNA175737	Animals	Fishes			•	•	-	-	-			•	-	-	No data
Acanthocheilonema viteae	PRJNA33239	Animals	Roundworms		•			-	-			•		-		SRA or Traces
Acromyrmex echinatior	PRJNA62733	Animals	Insects	288.52	33.70	Aech_3.9		-		AEVX01	4339	14843	14049	2011/04/14	2011/08/22	Scaffolds or contigs
Acropora digitifera	PRJDA67425	Animals	Other Animals	364.99	39.00	Adig_1.0	-	-		BACK01	-	-	-	2011/07/28	2011/07/28	Scaffolds or contigs
Acyrthosiphon pisum	PRJNA29489 PRJNA13657	Animals	Insects	512.1	29.80	Acyr_2.0	•	1		ABLF02	23925	13	13	2008/04/01	2008/12/11	Scaffolds or contigs
Adineta ricciae	PRJNA37817	Animals	Other Animals	-	-	-	-		-	-	-	•	-	-	-	No data
Aedes aegypti	PRJNA19731 PRJNA12434	Animals	Insects	1310.11	38.30	AaegL1	952	100	2	AAGE02	4522	16684	16785	2005/02/11	2011/07/05	Scaffolds or contigs
Aedes aegypti	PRJNA12433	Animals	Insects	•	-				-	-		-	1.72	-	-	No data
Ailuropoda melanoleuca	PRJNA38683	Animals	Mammals	2245.37	41.60	AilMel_1.0				ACTA01	81466	22586	17538	2009/12/12	2009/12/15	Scaffolds or contigs
Alluropoda melanoleuca	PRJNA48353	Animals	Mammals	•	•	AllMel_1.0	•	-		ACTA01	81466	0		-	•	Scatfolds or contigs
Alluropoda melanoleuca	PRJNA168141	Animais	Mammais		-	3 .		-	•	-				-	-	SRA or Traces
Alatina alata Alatina moseri	PRJNA167165 PRJNA41627	Animals	Other Animals	- 1544.16	43.30	ALAMOS 01				AHZO01				- 2012/05/01	- 2012/05/01	Scaffolds or
																contigs
Alligator mississippiensis	PRJNA159843	Animals	Reptiles	2129.7	44.40	allMis0.2		-	-	AKHW01	14644	-		2012/07/24	2012/07/24	Scaffolds or contigs
Allocentrotus fragilis	PRJNA20317	Animals	Other Animals		•	358	200		•				100			SRA or Traces
Amazona vittata	PRJNA171587	Animals	Birds	•	-	-	-	-	•	-		-	-	-	-	No data
Amazona vittata	PRJEB225	Animals	Birds	•	-	1417	-	121	- 2	-	-	-		-	-	No data
Amphimedon queenslandica	PRJNA39517	Animals	Other Animals	144.86	35.80	v1.0	-	-	•	ACUQ01	13398	-	•	2010/05/19	2010/08/09	Scaffolds or contigs
Amphimedon	PRJNA66531	Animals	Other Animals	166.7	37.50	v1.0	1953	1		ACUQ01	13398	10815	9827	2007/02/01	2007/02/23	Scaffolds or
queenslandica																conuga

Genome Size Evolution

Walter Salzburger

Genome Size Evolution

species	genome size (MB)	gene number
Saccharomyces cerevisiae	12.05	6213
Plasmodium falciparum	22.85	5268
Trypanosoma spp.	39.20	10000
Aspergillus nidulans	30.07	9541
Dictyostelium doscoideum	34	9000
Arabidopsis thaliana	125	25498
Oryza sativa	466	60256
Lotus japonicus	472	26000

Lynch (2006)

Genome Size Evolution

species	genome size (MB)	gene number
Caenorhabditis elegans	100.26	21200
Drosophila melanogaster	137	16000
Ciona intestinalis	156	16000
Anopheles gambiae	278	13683
Fugu rubripes	365	38000
Gallus gallus	1050	21500
Mus musculus	2500	24000
Homo sapiens	2900	24000

Lynch (2006)

Chromosomal Rearrangements
Recombination
 occurs by the crossing-over of homologous chromosomes during meiosis
…leads to the exchange of DNA between a pair of chromosomes
 As a consequence, two previously unlinked genes may become linked or vice versa
may lead to rearrangements

Chromosomal Rearrangements

Chromosomal fusion: human chromosome 2

Transposable Elements
TEs
 Transposable elements (TEs) are discrete DNA sequences that move from one location to another within the genome
 TEs were discovered by Barbara McClintock (1902-1992) in the 1940s and 1950s. She received the Nobel Prize in 1983.
 TEs are found in nearly all species and constitute a large fraction of some genomes, including the human genome
TEs can generate variation in the host genome

Transposable	Elements
	"retrotransposons"
LTRs	These transposable genetic elements are characterized by flanking long terminal repeats . LTRs are similar to retroviruses and contain a group specific antigen (<i>gag</i>).
LINEs	Long interspersed nuclear elements are autonomous retrotransposons. LINEs have two open reading frames (ORFs); ORF2 encodes for a reverse transcriptase (rvt)
SINEs	Short interspersed nuclear elements are non-autonomous retrotransposons that exploit the enzymatic retrotransposition machinery of LINEs

Transposable Elements

	yeast	slime mold	C. elegans	Arabidopsis	human
LTRs	3.1	4.4	0.1	6.4	7.9
SINES, LINES	0	3.7	0.4	0.7	31.2
DNA transposons	0	1.5	5.3	6.8	2.8
total	3.1	9.6	6.5	14	44.8

in % of genomes

Kidwell (2005)

Other 'features'
gene deserts
 are long regions of more than 500 kb in length that are devoid of protein coding sequences (Venter et al. 2001)
25% of the human genome are organized in gene deserts
Gene deserts are primarily found in mammalian genomes
 Some gene deserts are conserved over long evolutionary times. Some gene deserts have been deleted in mouse without any noticeable effect.

Natural Selection		Sexual Selection
	fitness	competitors
sexual selection	individual fitness	other members of the same sex
natural selection	fitness of the genotype	other individuals in the same population

Natural Selection...

 ... "is the process by which the forms of organisms in a population that are **best adapted** to the environment **increase** in frequency relative to less well-adapted forms over a number of generations" (Ridley 1996)

Sexual Selection...

 …"is the selection on mating behavior, either through competition among members of one sex (usually males) for access to members of the other sex or through choice by members of one sex (usually females) for certain members of the other sex" (Ridley 1996)

Natural Selection	Sexual Selection	
operates if the follow	ing conditions are met:	
reproduction	organisms must reproduce to form new generations	J5)
heredity	offspring resemble parents (" like must produce like ")	& Hoekstra 200
trait variation	individuals in natural populations vary in (adaptive) traits	004; Stearns 8
variation in fitness	individuals in natural populations vary in the number of their offspring that survive to reproduce (' lifetime reproductive success ')	(Ridley 2

Natural Variation

 Natural populations show variation at all levels, from gross morphology to DNA sequences. Selection can only operate, if heritable variation exists.

Natural Variation

- Natural populations show variation at all levels, from gross morphology to DNA sequences. Selection can only operate, if heritable variation exists.
- Natural variation is generated by two processes:

"reshuffling" of genetic material by introducing or breaking up physical linkage generation of new genetic variation by "mistakes" during

the copying of a DNA strand

Coding	Sequence	Evolution
--------	----------	------------------

phenotype	<i>mc1r</i> alignment position								
	52	205	313	325	478	633	699	720	819
dark (1371)	Т	С	G	Т	Т	С	С	Т	С
				-					
dark (1373)			Т						
	•								
dark (1384)	•	•	Т		•				
	С			С	С	Т	Α		
dark (1412)	•								
	С	Т		С	С	Т	Α		
light (1387)	С			С	С	Т	Α	G	Т
	С			С	С	Т	Α	G	Т
light (1403)	С			С	С	Т	Α		
	С	•		С	С	Т	Α		

Regulatory Evolution

transcriptome comparison in cichlids

total number of reads	647'219	647'816
average read length	349	344
total number of bases	226 millions	223 millions
total number of contigs	49'311	46'298
contigs > 500 bp	19'408	17'164
average contig size [bp]	956	950
N50 contig size [bp]	1'016	1'003
largest contig size [bp]	8'335	7'430

M Roesti, A Hendry, W Salzburger & D Berner (2012) Molecular Ecology

