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An Introduction to 
Bayesian Phylogenetics

• Bayesian inference in general
• Markov chain Monte Carlo (MCMC)
• Bayesian phylogenetics
• Prior distributions
• Bayesian model selection
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I. Bayesian inference in general
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Joint probabilities B = Black   S = Solid
W = White  D = Dotted
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Conditional probabilities
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Bayes’ rule
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Probability of "Dotted"



Pr(B|D) =
Pr(B) Pr(D|B)

Pr(D)

=
Pr(D,B)

Pr(D,B) + Pr(D,W )
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Bayes' rule (cont.)

Pr(D) is the marginal probability of being dotted
To compute it, we marginalize over colors

It is easy to see that Pr(D) serves as a normalization 
constant, ensuring that Pr(B |D) + Pr(W |D) = 1.0
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Joint probabilities

B W

Pr(D,B)D

S Pr(S,B) Pr(S,W)

Pr(D,W)
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Marginalizing over colors

B

W

Pr(D,B)

D

S

Pr(S,B)Pr(S,W)

Pr(D,W)

Marginal probability of 
begin a dotted marble is 

the sum of all joint 
probabilities involving

dotted marbles
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Marginal probabilities

B W

Pr(D,B) + Pr(D,W)D

S Pr(S,B) + Pr(S,W)

Marginal probability
of being solid

Marginal probability
of being dotted
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Marginalizing over "dottedness"

B W

Pr(D,B)

D

S

Pr(S,B) Pr(S,W)

Pr(D,W) Marginal 
probability of 
being a white 

marble
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Bayes' rule (cont.)



Pr(✓|D) =
Pr(D|✓) Pr(✓)P
✓ Pr(D|✓) Pr(✓)
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Bayes' rule in Statistics

D refers to the "observables" (i.e. the Data)
    refers to one or more "unobservables" 

(i.e. parameters of a model, or the model itself):
– tree model (i.e. tree topology)
– substitution model (e.g. JC, F84, GTR, etc.)
– parameter of a substitution model (e.g. a branch length, 

a base frequency, transition/transversion rate ratio, etc.)
– hypothesis (i.e. a special case of a model)
– a latent variable (e.g. ancestral state)

✓



Pr(�|D) =
Pr(D|�) Pr(�)�
� Pr(D|�) Pr(�)
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Bayes’ rule in statistics

Likelihood of hypothesis θ Prior probability of hypothesis θ

Posterior probability
of hypothesis θ

Marginal probability
of the data (marginalizing 

over hypotheses)
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Simple (albeit silly) paternity example

Possibilities θ1 θ2 Row sum

Genotypes AA Aa ---

Prior 1/2 1/2 1

Likelihood 1 1/2 ---

Prior X 
Likelihood 1/2 1/4 3/4

Posterior 2/3 1/3 1

θ1 and θ2 are assumed to be the only possible fathers, child has genotype Aa, 
mother has genotype aa, so child must have received allele A from the true 
father. Note: the data in this case is the child’s genotype (Aa)



The prior can be your friend
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Suppose the test for a rare disease is 99% accurate. 

Pr(+|disease) = 0.99
Pr(+|healthy) = 0.01

datum hypothesis
(Note that we do not need to 

consider the case of a 
negative test result.)

It is very tempting to (mis)interpret the likelihood as a 
posterior probability and conclude “There is a 99% chance 
that I have the disease.” 

Suppose further I test positive for the disease. 
How worried should I be?



Pr(disease|+) =
Pr(+|disease)

�
1
2

�

Pr(+|disease)
�

1
2

�
+ Pr(+|healthy)

�
1
2

�

=
(0.99)

�
1
2

�

(0.99)
�

1
2

�
+ (0.01)

�
1
2

� = 0.99

The prior can be your friend
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The posterior probability is 0.99 only if the prior 
probability of having the disease is 0.5:

Pr(disease|+) =
(0.99)

�
1

1000000

�

(0.99)
�

1
1000000

�
+ (0.01)

�
999999
1000000

�

⇡ 0.0001

If, however, the prior odds against having the disease are a 
million to 1, then the posterior probability is much more 
reassuring:



An important caveat

19

This (rare disease) example involves a tiny amount of 
data (one observation) and an extremely informative 
prior, and gives the impression that maximum likelihood 
(ML) inference is not very reliable.

However, in phylogenetics, we often have lots of data and 
use much less informative priors, so in phylogenetics 
ML inference is generally very reliable.
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Discrete vs. Continuous

• So far, we've been dealing with discrete hypotheses 
(e.g. either this father or that father, have disease or 
don’t have disease)

• In phylogenetics, substitution models represent an 
infinite number of hypotheses (each combination of 
parameter values is in some sense a separate 
hypothesis)

• How do we use Bayes' rule when our hypotheses 
form a continuum?



f(✓|D) =
f(D|✓)f(✓)R
f(D|✓)f(✓)d✓
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Bayes’ rule: continuous case

Likelihood

Marginal probability
of the data

Posterior probability
density

Prior probability
density
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If you had to guess...

0.0 ∞

1 meter 

Not knowing anything 
about my archery abilities,
draw a curve representing
your view of the chances of 
my arrow landing a distance
d from the center of the target
(if it helps, I'm standing 50
meters away from the target)

d
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Case 1: assume I have talent

0.0

1 meter

20.0 40.0 60.0 80.0
distance in centimeters from target center

An informative prior
(low variance) that
says most of my 
arrows will fall within
10 cm of the center
(thanks for your
confidence!)
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Case 2: assume I have a talent for missing the target! 

0.0

1 meter

20.0 40.0 60.0

distance in cm from target center

Also an informative prior,
but one that says most of 
my arrows will fall within
a narrow range just
outside the entire target!
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Case 3: assume I have no talent

0.0

1 meter

20.0 40.0 60.0 80.0
distance in cm from target center

This is a vague prior:
its high variance reflects
nearly total ignorance
of my abilities, saying 
that my arrows could 
land nearly anywhere!
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A matter of scale

∞

Notice that I haven't provided a scale for
the vertical axis.

What exactly does the height of this
curve mean?

For example, does the height of the dotted
line represent the probability that my 
arrow lands 60 cm from the center 
of the target?

0.0 20.0 40.0 60.0

No.
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Probabilities are associated with intervals

Probabilities are attached to intervals
(i.e. ranges of values), not individual values

The probability of any given point (e.g. 
d = 60.0) is zero!

However, we can ask about the probability 
that d falls in a particular range 
e.g. 50.0 < d < 65.0

0.0 20.0 40.0 60.0
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Probabilities vs. probability densities

Probability density function
Note: the height of this curve does not represent a 
probability (if it did, it would not exceed 1.0)

density.ai example_density.xls
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Densities of various substances

Substance Density (g/cm3)
Cork 0.24

Aluminum 2.70
Gold 19.30

Density does not equal mass
mass = density × volume

Note: volume is appropriate for objects of dimension 3 or higher
For 2-dimensions, area takes the place of volume
For 1-dimension, linear distance replaces volume.
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density.ai

Integration of densities

The density curve is scaled so 
that the value of this integral
(i.e. the total area) equals 1.0

θ 
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density.ai

Integration of a probability density 
yields a probability

Area under the density
curve from 0 to 2 is the
probability that θ is less

than 2
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mean=60
var=3

0 10 20 30 40 50 60

0.
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30

mean=200
var=40000

mean=2.5
var=3.125 Archery Priors Revisited

These density curves are
all variations of a gamma
probability distribution.

We could have used a
gamma distribution to

specify each of the prior
probability distributions

for the archery example.
Note that higher variance
means less informative



Pr(y|p) =
✓

n

y

◆
py(1� p)n�y = L(p|y)
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Coin-flipping

y = observed number of heads
n = number of flips (sample size)
p = (unobserved) proportion of heads

Note that the same formula serves as both the: 
- probability of y (if p is fixed)
- likelihood of p (if y is fixed)



Outcome Fair coin model Two-heads 
model

H 0.5 1.0

T 0.5 0.0

1.0 1.0
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Likelihood: why a new term?

Probabilities are functions of 
the data (the model is fixed)

Sum to 1.0

Likelihoods are 
functions of 

models (data fixed)
Do not ordinarily 

sum to 1.0

Example usage:
• likelihood of the two-heads 

model
• probability of tails
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The posterior is (almost always) more informative 
than the prior

p

uniform prior density

posterior density

= posterior probability (mass)
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Beta(2,2) prior is vague but not flat

Beta(2,2) prior density

posterior density

Posterior probability of p between 0.45 and 0.55 is 0.223



f(✓,�|D) =
f(D|✓,�) f(✓)f(�)R

✓

R
� f(D|✓,�) f(✓)f(�) d✓d�
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Usually there are many parameters...

Likelihood

Marginal probability of dataPosterior
probability

density

Prior probability
densityA 2-parameter example

An analysis of 100 sequences under the simplest
model (JC69) requires 197 branch length parameters.
The denominator is a 197-fold integral in this case!

Now consider summing over all possible tree topologies!
It would thus be nice to avoid having to calculate the

marginal probability of the data...
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II. Markov chain Monte Carlo
(MCMC)
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Markov chain Monte Carlo (MCMC)

For more complex problems, we might settle for a 

good approximation
to the posterior distribution
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MCMC robot’s rules

Uphill steps are 
always accepted

Slightly downhill steps
are usually accepted

Drastic “off the cliff”
downhill steps are almost
never accepted

With these rules, it 
is easy to see why the

robot tends to stay near 
the tops of hills
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(Actual) MCMC robot rules

Uphill steps are 
always accepted
because R > 1

Slightly downhill steps
are usually accepted
because R is near 1

Drastic “off the cliff”
downhill steps are almost
never accepted because
     R is near 0

Currently at 1.0 m
Proposed at 2.3 m
R = 2.3/1.0 = 2.3

Currently at 6.2 m
Proposed at 5.7 m
R = 5.7/6.2 =0.92 Currently at 6.2 m

Proposed at 0.2 m
R = 0.2/6.2 = 0.03

6

8

4

2

0

10

The robot takes a step if it draws 
a Uniform(0,1) random deviate
that is less than or equal to R



=
f(D|�⇤)f(�⇤)

f(D)

f(D|�)f(�)
f(D)
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Cancellation of marginal likelihood

When calculating the ratio R of posterior densities, the marginal 
probability of the data cancels.

f(�⇤|D)
f(�|D)

Posterior 
odds

=
f(D|�⇤)f(�⇤)
f(D|�)f(�)

Likelihood 
ratio Prior odds
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Target vs. Proposal Distributions

Pretend this proposal distribution 
allows good mixing. What does 

good mixing mean?
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Trace plots

“White noise” 
appearance is a sign of 
good mixing

I used the program Tracer to create this plot:
http://tree.bio.ed.ac.uk/software/tracer/

AWTY (Are We There Yet?) is useful for 
investigating convergence:

http://king2.scs.fsu.edu/CEBProjects/awty/
awty_start.php

lo
g(

po
st

er
io

r)
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Target vs. Proposal Distributions

Proposal distributions
with smaller variance...

Disadvantage: robot takes 
smaller steps, more time 
required to explore the
same area

Advantage: robot seldom
refuses to take proposed
steps
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If step size is too 
small, large-scale 
trends will be 
apparentlo

g(
po

st
er

io
r)
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Target vs. Proposal Distributions

Proposal distributions
with larger variance...

Disadvantage: robot 
often proposes a step
that would take it off
a cliff, and refuses to
move

Advantage: robot can
potentially cover a lot of 
ground quickly



bi
gs
te
ps
2.
TX

T

State
0 2500 5000 7500 10000 12500 15000 17500

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

48

Chain is spending long periods of time
“stuck” in one place

“Stuck” robot is indicative of  step sizes that 
are too large (most proposed steps would 
take the robot “off the cliff”)

slowmix.ai

lo
g(

po
st

er
io

r)
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MCRobot (or "MCMC Robot")
Free apps for Windows or iPhone/iPad available

from http://mcmcrobot.org/

Mac version: some day
(but see John Huelsenbeck's

iMCMC app for MacOS:
http://cteg.berkeley.edu/software.html)

Android: some day
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Tradeoff

• Taking big steps helps in jumping from one “island” 
in the posterior density to another

• Taking small steps often results in better mixing
• How can we overcome this tradeoff? MCMCMC
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Metropolis-coupled Markov chain Monte Carlo 
(MCMCMC)

• MCMCMC involves running several chains 
simultaneously

• The cold chain is the one that counts, the rest are 
heated chains

• Chain is heated by raising densities to a power 
less than 1.0 (values closer to 0.0 are warmer)

Geyer, C. J. 1991. Markov chain Monte Carlo maximum likelihood for dependent data. Pages 156-163 in Computing Science and Statistics (E. 
Keramidas, ed.).
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Heated chains act as scouts for the cold 
chain
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Cold and hot chains swapped



Back to MCRobot...

54
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The Hastings ratio
If robot has a greater tendency 
to propose steps to the right as 
opposed to the left when choosing 
its next step, then the 
acceptance ratio must 
counteract this 
tendency.

Suppose the probability of
proposing a spot to the right 

is twice that of proposing a spot 
to the left

In this case, the Hastings ratio 
decreases the chance of accepting moves to the right by half, and

increases the chance of accepting moves to the left (by a factor of 2),
thus exactly compensating for the asymmetry in the proposal distribution.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97-109.
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Hastings Ratio

Note that if q(θ|θ*) = q(θ*|θ), the Hastings ratio is 1

Acceptance 
ratio Posterior ratio Hastings ratio
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III. Bayesian phylogenetics
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So, what’s all this got to do with 
phylogenetics?

Imagine pulling out trees at random from a barrel. In the barrel, some 
trees are represented numerous times, while other possible trees are not 
present. Count 1 each time you see the split separating just A and C 
from the other taxa, and count 0 otherwise. Dividing by the total trees 
sampled approximates the true proportion of that split in the barrel.
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Moving through treespace
The Larget-Simon* move

*Larget, B., and D. L. 
Simon. 1999. Markov 
chain monte carlo 
algorithms for the 
Bayesian analysis of 
phylogenetic trees. 
Molecular Biology and 
Evolution 16: 750-759.

See also: Holder et al. 
2005. Syst. Biol. 54: 
961-965.

lsmove.ai
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Moving through parameter space
Using κ (ratio of the transition rate to 
the transversion rate) as an example 
of a model parameter.

Proposal distribution is the uniform
distribution on the interval (κ-d, κ+d)

The “step size” of the MCMC robot
is defined by d: a larger d means 
that the robot will attempt to make
larger jumps on average.
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Putting it all together
• Start with random tree and arbitrary initial

values for branch lengths and model parameters
• Each generation consists of one of these (chosen at 

random):
– Propose a new tree (e.g. Larget-Simon move) and either accept 

or reject the move
– Propose (and either accept or reject) a new model parameter 

value

• Every k generations, save tree topology, branch lengths 
and all model parameters (i.e. sample the chain)

• After n generations, summarize sample using
histograms, means, credible intervals, etc.
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Marginal Posterior Distribution of κ

95% credible interval

Histogram created
from a sample of 
1000 kappa values.

upper = 3.604

mean = 3.234

lower = 2.907

Data from Lewis, L., and Flechtner, V. 2002. Taxon 51: 443-451.
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IV. Prior distributions



Common Priors
• Discrete uniform for topologies

– exceptions becoming more common
• Beta for proportions
• Gamma or Log-normal for branch lengths 

and other parameters with support [0,∞)
– Exponential is common special case of the 

gamma distribution
• Dirichlet for state frequencies and GTR 

relative rates

64
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Discrete Uniform distribution for topologies
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Yule model provides joint prior for both topology and 
divergence times

66

The rate of speciation under the Yule model (λ) is constant and applies equally 
and independently to each lineage. Thus, speciation events get closer together 
in time as the tree grows because more lineages are available to speciate.
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Gamma(a,b) distributions

Exponential(1) 
= Gamma(1,1)

Gamma(0.1, 10)
Gamma(400, 0.01)

peak > 0 if a > 1

shoots off to infinity 
if a < 1

hits y-axis at b 
if a = 1

Gamma distributions are 
ideal for parameters that 
range from 0 to infinity 
(e.g. branch lengths)

a = shape
b = scale
mean* = ab
variance* = ab2

*Note: be aware that in many papers the Gamma distribution is defined such that the second 
(scale) parameter is the inverse of the value b used in this slide! In this case, the mean and 
variance would be a/b and a/b2, respectively. 



µ = log(m2)� log(m)� log(v + m2)� log(m2)
2

Log-normal distribution

68

If X is log-normal with parameters 
µ and σ...

µ

σ

...then log(X) is normal with mean µ 
and standard deviation σ.

Important: µ and σ do not represent the mean and standard deviation of X: they 
are the mean and standard deviation of log(X)!

X
log(X)

mode = eµ�⇥2 mode = µ

median = µmedian = eµ

mean = eµ+⇥2/2 mean = µ

variance = �2variance = e2µ+⇥2
(e⇥2

� 1)

To choose µ and σ to yield a particular mean (m) and variance (v) for X, use these 
formulas: 

�2 = log(v + m2)� log(m2)
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Beta(a,b) gallery

Beta(10,10)

Beta(1,1)

B
et

a(
1.

2,
2)

Beta(0.8,2)
leans left if a < b
mean = a/(a+b) = 

0.286 symmetric if a = b
mean = a/(a+b) = 0.5

flat if a = b = 1

Beta distributions are 
appropriate for 
proportions, which 
are constrained to 
the interval [0,1].

mean = a/(a+b)
variance =
  ab/[(a+b)2(a+b+1)]
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Flat prior:
a = b = c = d = 1

Informative prior:
a = b = c = d = 300

(stereo pairs)

 Dirichlet(a,b,c,d) distribution

a→πA, b→πC, c→πG, d→πT

Used for nucleotide relative frequencies:

(equal frequencies strongly encouraged)

(no scenario discouraged)

Dirichlet(a,b,c,d,e,f) used for GTR 
exchangeability parameters.

(Thanks to Mark Holder for suggesting the use of a tetrahedron)
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Prior Miscellany
- priors as rubber bands
- running on empty
- hierarchical models
- empirical bayes
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This Gamma(4,1) prior ties down its parameter 
at the mode, which is at 3, and discourages it 

from venturing too far in either direction. For 
example, a parameter value of 10 would be 

stretching the rubber band fairly tightly

The mode of a 
Gamma(a,b) distribution 

is (a-1)b
(assuming a > 1)



0 2 4 6 8 10
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This Gamma prior also has a mode at 3, but 
has a variance 40 times smaller. Decreasing 
the variance is tantamount to increasing the 

strength of the metaphorical rubber band.

Now you (or the likelihood) would have to tug 
on the parameter fairly hard for it to have a 

value as large as 4.

This gamma distribution 
has shape 91.989 and 

scale 0.032971



0.1
1 Arabidopsis thaliana

2 Taxus baccata
5 Dicksonia antarctica

4 Psilotum nudum
6 Sphagnum palustre

3 Huperzia lucidula
7 Anthoceros formosae

8 Marchantia polymorpha
12 Nitellopsis obtusa
11 Lychnothamnus barbatus

10 Lamprothamnium macropogon
9 Chara connivens
14 Tolypella int prolifera

13 Nitella opaca
18 Coleochaete sieminskiana
17 Coleochaete irregularis

16 Coleochaete soluta 32d1
15 Coleochaete orbicularis

20 Chaet oval
19 Chaet globosum SAG2698

27 Mougeotia sp 758
25 Mesotaenium caldariorum

26 Zygnema peliosporum 45
24 Spirogyra maxima 2495

22 Cosmocladium perissum
21 Onychonema sp

23 Gonatozygon monotaenium
30 Klebsormidium nitens
29 Klebsormidium subtilissimum

28 Klebsormidium flaccidum
31 Entransia fimbriata

32 Chlorokybus atmosphyticus
34 Mesostigma viride NIES
33 Mesostigma viride

36 Chlamydomonas reinhardtii
35 Volvox carteri

37 Paulschulzia pseudovolvox
38 Pteromonas angulos

39 Nephroselmis olivacea
40 Cyanophora paradoxa
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Internal branch length prior is 
exponential with mean 0.1

This is a reasonably vague
internal branch length prior

Example: Internal Branch Length Priors
Separate priors applied to internal 
and external branches

External branch length prior is 
exponential with mean 0.1
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Internal branch length prior mean 0.01

0.1
1 Arabidopsis thaliana

2 Taxus baccata
5 Dicksonia antarctica

4 Psilotum nudum
3 Huperzia lucidula
6 Sphagnum palustre

7 Anthoceros formosae
8 Marchantia polymorpha

12 Nitellopsis obtusa
11 Lychnothamnus barbatus

10 Lamprothamnium macropogon
9 Chara connivens

14 Tolypella int prolifera
13 Nitella opaca

18 Coleochaete sieminskiana
17 Coleochaete irregularis
16 Coleochaete soluta 32d1

15 Coleochaete orbicularis
20 Chaet oval
19 Chaet globosum SAG2698
27 Mougeotia sp 758

25 Mesotaenium caldariorum
26 Zygnema peliosporum 45

24 Spirogyra maxima 2495
22 Cosmocladium perissum
21 Onychonema sp

23 Gonatozygon monotaenium
30 Klebsormidium nitens

29 Klebsormidium subtilissimum
28 Klebsormidium flaccidum

31 Entransia fimbriata
32 Chlorokybus atmosphyticus

34 Mesostigma viride NIES
33 Mesostigma viride

36 Chlamydomonas reinhardtii
35 Volvox carteri

37 Paulschulzia pseudovolvox
38 Pteromonas angulos

39 Nephroselmis olivacea
40 Cyanophora paradoxa

(external branch length prior mean always 0.1)



0.1
1 Arabidopsis thaliana
2 Taxus baccata

5 Dicksonia antarctica
4 Psilotum nudum

3 Huperzia lucidula
6 Sphagnum palustre

7 Anthoceros formosae
8 Marchantia polymorpha

12 Nitellopsis obtusa
11 Lychnothamnus barbatus
10 Lamprothamnium macropogon
9 Chara connivens

14 Tolypella int prolifera
13 Nitella opaca

18 Coleochaete sieminskiana
17 Coleochaete irregularis
16 Coleochaete soluta 32d1
15 Coleochaete orbicularis

20 Chaet oval
19 Chaet globosum SAG2698

27 Mougeotia sp 758
25 Mesotaenium caldariorum

26 Zygnema peliosporum 45
24 Spirogyra maxima 2495

22 Cosmocladium perissum
21 Onychonema sp

23 Gonatozygon monotaenium
30 Klebsormidium nitens

29 Klebsormidium subtilissimum
28 Klebsormidium flaccidum

31 Entransia fimbriata
32 Chlorokybus atmosphyticus

34 Mesostigma viride NIES
33 Mesostigma viride

36 Chlamydomonas reinhardtii
35 Volvox carteri

37 Paulschulzia pseudovolvox
38 Pteromonas angulos
39 Nephroselmis olivacea

40 Cyanophora paradoxa
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Internal branch length prior mean 
0.001



Internal branch length prior mean 
0.0001

0.1
1 Arabidopsis thaliana

2 Taxus baccata
4 Psilotum nudum

5 Dicksonia antarctica
3 Huperzia lucidula
6 Sphagnum palustre
7 Anthoceros formosae

8 Marchantia polymorpha
12 Nitellopsis obtusa
11 Lychnothamnus barbatus
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40 Cyanophora paradoxa
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39 Nephroselmis olivacea
40 Cyanophora paradoxa
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Internal branch length prior mean 
0.00001
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Internal branch length prior mean 
0.000001

The internal branch length prior is 
calling the shots now, and the 

likelihood must obey.
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Prior Miscellany
- priors as rubber bands
- running on empty
- hierarchical models
- empirical bayes
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#NEXUS

begin data;
  Dimensions ntax=4 nchar=1;
  Format datatype=dna missing=?;
  matrix
    taxon1 ?
    taxon2 ?
    taxon3 ?
    taxon4 ?
  ;
end;

begin mrbayes;
  set autoclose=yes;
  lset rates=gamma;
  prset shapepr=exponential(10.0);
  mcmcp nruns=1 nchains=1 printfreq=1000;
  mcmc ngen=10000000 samplefreq=1000;
end;

Running on empty

You can use the program Tracer to show the estimated density:
http://tree.bio.ed.ac.uk/software/tracer/

Solid line: prior density 
estimated from MrBayes output

Dotted line: exponential(10)
density for comparison BEAST and MrBayes 3.2 

both make it easy to 
ignore the data without 

having to resort to 
creating fake data sets
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Prior Miscellany
- priors as rubber bands
- running on empty
- hierarchical models
- empirical bayes
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A

A

A T

C

C

Prior: Exponential, mean=0.1

In a non-hierarchical model, all parameters
are present in the likelihood function
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µ is a hyperparameter
governing the mean of
the edge length prior

Prior: Exponential, mean µ

Hierarchical models add hyperparameters
not present in the likelihood function

For example, see Suchard, Weiss and Sinsheimer. 2001. MBE 18(6): 
1001-1013.

hyperprior

During an MCMC analysis, µ will hover around a reasonable 
value, sparing you from having to decide what value is 

appropriate. You still have to specify a hyperprior, however.
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Prior Miscellany
- priors as rubber bands
- running on empty
- hierarchical models
- empirical bayes
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Empirical Bayes

Prior: Exponential, mean=MLE

An empirical Bayesian 
would use the maximum 
likelihood estimate (MLE) of 
the length of an average 
branch here 

Empirical Bayes uses the data to 
determine some aspects of the 
prior, such as the prior mean. 

This uses the data twice, which is 
not acceptable to Bayesian 

purists
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V. Bayesian model selection



AIC = 2k � 2 log(maxL)

AIC is not Bayesian. Why?

88

number of free (estimated) parameters maximized log likelihood

AIC is not Bayesian because the prior is not considered
(and the prior is an important component of a Bayesian model)

f(✓|D) =
f(D|✓)f(✓)R
f(D|✓)f(✓)d✓

The marginal likelihood (denominator in Bayes’ Rule) is 
commonly used for Bayesian model selection

Represents the (weighted) average fit of the model to the 
observed data (weights provided by the prior)
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An evolutionary distance example

– Let's compare models JC69 vs. K80
– Parameters:

•  ν is edge length (expected no. substitutions/site)
– free in both JC69 and K80 models

•  κ is transition/transversion rate ratio
– free in K80, set to 1.0 in JC69

X Y
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Likelihood Surface when K80 true

JC69 model (just this 1d line)

K80 model (entire 2d space)sequence length = 500 sites
true branch length = 0.15
true kappa = 5.0

K80 wins

Based on simulated data:


(branch length)(trs/trv rate ratio)

⌫

Assume joint prior is 
flat over the area 

shown.
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Likelihood Surface when JC true

sequence length = 500 sites
true branch length = 0.15
true kappa = 1.0

JC69 model (just this 1d line)

K80 model (entire 2d space)

JC69 wins

Based on simulated data:


(branch length)(trs/trv rate ratio)

⌫

Assume joint prior is 
flat over the area 

shown.



log BF12 = log

✓
f(D|M1)

f(D|M2)

◆

= log f(D|M1)� log f(D|M2)

\f(D|M) =
n

1
L(1) + 1

L(2) + · · · + 1
L(n)
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Harmonic mean method
L(i) = Likelihood (not log-

likelihood) calculated for the
ith sample from the MCMC 

analysis

Newton, M. A. and A. E. Raftery. 1994. Approximate Bayesian inference with the weighted
likelihood bootstrap (with discussion). J. Roy. Stat. Soc. B 56:3–48.

Most Bayesian programs provide the log of the harmonic mean of the sampled 
likelihoods for each model you run, so all you need to do is subtract.

	  	  	  	  	  	  Run	  	  	  Arithmetic	  mean	  	  	  Harmonic	  mean
	  	  	  	  	  	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐
	  	  	  	  	  	  	  	  1	  	  	  	  	  -‐22913.52	  	  	  	  	  	  	  	  -‐22923.02
	  	  	  	  	  	  	  	  2	  	  	  	  	  -‐22913.52	  	  	  	  	  	  	  	  -‐22922.68
	  	  	  	  	  	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐
	  	  	  	  	  	  TOTAL	  	  	  -‐22913.52	  	  	  	  	  	  	  	  -‐22922.86
	  	  	  	  	  	  -‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐

Example:
MrBayes 
output

Warning: the harmonic mean 
method is strongly biased and 

should not be used if more 
accurate methods are available
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f(✓|D) =
f(D|✓)f(✓)R
f(D|✓)f(✓)d✓

Another approach
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Prior is Beta(2,2)

Unnormalized posterior

MCMC provides a way to sample from any 
distribution. The orange points are values of p 
drawn from the Beta(2,2) prior. 

Marginal likelihood
(area under the unnormalized posterior)

1.0
(area under prior density)

The fraction of dots inside the unnormalized 
posterior is an estimate of this ratio:

Would work better if unnorm. 
posterior represented a 

larger fraction of the area 
under the prior...
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c1.0

c0.0
=

✓
c1.0

c0.9

◆ ✓
c0.9

c0.8

◆ ✓
c0.8

c0.7

◆ ✓
c0.7

c0.6

◆ ✓
c0.6

c0.5

◆ ✓
c0.5

c0.4

◆ ✓
c0.4

c0.3

◆ ✓
c0.3

c0.2

◆ ✓
c0.2

c0.1

◆ ✓
c0.1

c0.0

◆

Sample from this distribution

See what fraction of samples 
would fall within this distribution

This fraction is an 
estimate of this ratio

(estimates a series of ratios that each 
represent smaller jump)
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How many “stepping stones” 
(i.e. ratios) are needed?

K (number of ratios)

-6623

Xie, W.G., P.O. Lewis, Y. Fan, L. Kuo and M.-H. Chen. 2011. Improving 
Marginal Likelihood Estimation for Bayesian Phylogenetic Model 
Selection. Systematic Biology 60(2):150-160.

(see also followup paper describing more efficient generalized stepping-
stone method:
Fan, Y., Wu, R., Chen, M.-H., Kuo, L., and Lewis, P. O. 2011. Molecular 
Biology and Evolution 28(1):523-532)

Error bars based on 1 standard error computed 
using 30 independent analyses.

• rbcL data 
• 10 green plants
• GTR+G model
•1000 samples/
steppingstone

Stepping-stone method
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Is steppingstone sampling accurate?

• rbcL data 
• 10 green plants
• GTR+G model
•1000 samples/
steppingstone

Lartillot, N., and H. Philippe. 2006. Computing bayes factors using 
thermodynamic integration. Systematic Biology 55(2): 195-207.

See for comparison of SS and TI:
Baele G., Lemey P., Bedford T., Rambaut A., Suchard M.A., Alekseyenko 
A.V. 2012. Molecular Biology  and Evolution 29(9):2157–2167

Error bars based on 1 standard error computed 
using 30 independent analyses.

Thermodynamic integration
(also called path sampling)

Stepping-stone method

-6623

96K (number of ratios)
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How about the harmonic mean method?

• rbcL data 
• 10 green plants
• GTR+G model
•1000 samples/
steppingstone

Thermodynamic integration

Stepping-stone method

Harmonic mean method -6589
-6623
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Newton, M. A., and A. E. Raftery. 1994. Approximate Bayesian 
inference with the weighted likelihood bootstrap (with discussion). J. 
Roy. Statist. Soc. B 56:3-48.

K (number of ratios)

Note again that the 
harmonic mean method is 

biased; used TI or SS if 
available
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Konec


