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BEAST (http://evolve.zoo.ox.ac.uk/beast/)

Drummond and Rambaut

Estimates:

– Overall population size x mutation rate
– Overall growth rate
– With multiple time points, mutation rate and generation time
– Detailed skyline plots of growth rate
– Relaxed molecular clock

Bayesian analysis

DNA, RNA, amino acids, codon data, continuous and discrete
morphological traits



BEAST

Strengths:

– Multiple time point data (ancient DNA, microorganisms)
– Flexible population growth model
– Highly flexible mutation model

Weaknesses:

– Single population
– No recombination



IM, IMa2
(http://lifesci.rutgers.edu/ heylab/HeylabSoftware.htm#IM)

Nielsen, Hey, Wakeley

Estimates:

– Population size x mutation rate
– Immigration rates
– Size of ancestral population
– Time of divergence
– Daughter population growth rates (IM only)

Bayesian analysis

DNA, RNA, microsatellites, HapSTRs

IM has the most models; IMa2 has more than two populations



IM/IMa2

Strengths:

– Correct analysis of young (less than 4N generations) populations
– Distinguishing gene flow from common ancestry

Weaknesses:

– Single time point only
– No recombination
– Exponential growth only



LAMARC
(http://evolution.gs.washington.edu/lamarc.html)

Kuhner, Beerli, Felsenstein et al.

Estimates:

– Population size x mutation rate
– Immigration rates
– Growth rates
– Overall recombination rate

Likelihood or Bayesian analysis

DNA, RNA, SNPs, microsats, elecrophoretic alleles

Gene mapping, haplotype inference



LAMARC

Strengths:

– Recombination
– Data with unknown haplotype phase
– Combining dissimilar loci

Weaknesses:

– Assumes stable population structure (divergence coming soon!)
– Single time point data only
– Exponential growth only



MIGRATE-N
(http://popgen.csit.fsu.edu/Migrate-n.html)

Beerli

Estimates:

– Population size x mutation rate
– Immigration rates
– Tests among different migration models

Likelihood or Bayesian analysis

DNA, RNA, SNPs, microsats, elecrophoretic alleles

Multiple time points



Bayes factor tests of models

Bayes factor
Simulation
results
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MIGRATE-N

Strengths:

– Skyline plots for all parameters
– Multiple time points
– Bayes factor tests of different models

Weaknesses:

– Assumes stable population structure and size
– No recombination or growth
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influenza data with multiple time points



Genetree
(http://www.stats.ox.ac.uk/g̃riff/software.html)

Infinite sites model

Use MCMC to sample a path
through the possible histories

Sample many different possible
histories



Dating mutations events using Genetree

Milot et al. (2000)



Comparison between Migrate-N and Genetree

(Beerli and Felsenstein 2001)



Genetree

Strengths:

– Efficient search
– Dating of specific mutations
– Dating of the common ancestor

Weaknesses:

– Infinite-sites mutational model only
– No recombination
– Exponential growth only
– Single time point
– Less developed user interface
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Genetic drift (Theta)

With one time point, we estimate Θ = 4Neµ in diploids

The number estimated is 2Neµ in haploids or Neµ in mtDNA

Two ways to separate Ne and µ:

– Dated historical data (ancient DNA, etc.)
– External estimate of mutation rate

For most organisms, Ne is less than N

Demographic models can help resolve this



Variable population size

In a small population lineages coalesce quickly

In a large population lineages coalesce slowly

This leaves a signature in the data. We can exploit this and estimate the
population growth rate g jointly with the current population size Θ.



Exponential population size expansion or shrinkage



Grow a frog
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-10000 generations Present
10−8 8, 300, 000 8, 360, 000
10−7 780, 000 836, 000
10−6 40, 500 83, 600



Bayesian skyline plots



Growth estimation software

Currently done with Lamarc or Beast

Statistically weaker than estimation of Θ:

– Biased upwards with one locus/one timepoint
– Reasonable results with multiple unlinked loci
– Even better results with multiple timepoints

Lamarc assumes exponential growth/shrinkage

Beast has a generalized model



Gene flow

p(G|Θ,M) =
∏
uj

(
pop.∏
i

g(Θi,M.i)

){
2
Θ if event is a coalescence,

Mji if event is a migration from j to i.



Gene flow: What researchers used (and still use)
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What researchers used (and still use)

Sewall Wright showed
that

FST =
1

1 + 4Nm

and that it assumes

migration into all subpopulation is the same

population size of each island is the same



Simulated data and Wright’s formula



Maximum Likelihood method to estimate gene flow
parameters

(Beerli and Felsenstein 1999)

100 two-locus datasets with 25 sampled individuals for each of 2 populations
and 500 base pairs (bp) per locus.

Population 1 Population 2

Θ 4N
(1)
e m1 Θ 4N

(2)
e m2

Truth 0.0500 10.00 0.0050 1.00
Mean 0.0476 8.35 0.0048 1.21
Std. dev. 0.0052 1.09 0.0005 0.15



Complete mtDNA from 5 human“populations”

A total of 53 complete mtDNA sequences (∼ 16 kb):
Africa: 22, Asia: 17, Australia: 3, America: 4, Europe: 7.

Assumed mutation model: F84+Γ



Full model: 5 population sizes + 20 migration rates



Restricted model: only migration into neighbors allowed

0.015

0.009
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Coalescent migration estimation

Done by Lamarc, Migrate-N, IM/IMa estimating:

– Θ per subpopulation
– Immigration from each subpopulation into each of the others

Lamarc and Migrate-N assume stable population structure

IM/IMa assume divergence of two or more populations from a common
ancestor



Recombination rate estimation



Coalescent recombination estimators

Previously done with Recombine

Currently done with Lamarc

Assumptions:

– No gene conversion
– Equal recombination rate at every site

Allows correct use of data with recombination to estimate other
parameters

Use of recombining data in a non-recombination-aware algorithm leads
to bias



Estimation of divergence time

Wakeley and Nielsen (2001)



Estimation of divergence time

Wakeley and Nielsen (2001) Figure 7. The joint integrated likelihood surface
for T and M estimated from the data by Orti et al. (1994). Darker values
indicate higher likelihood.



Coalescent divergence estimators

Done with IM/IMa

Up to 10 populations

Co-estimates divergence time, migration rates and populations sizes

Not all data sets can separate migration from divergence

Multiple loci are helpful



Multiple time points

Ancient DNA or historical samples of fast-evolving organisms

Done with Beast or Migrate-N

Points must be:

– Dated
– Far enough apart for measurable evolution

Advantages:

– Separation of Θ into Ne and µ
– Much better resolution of growth rates



Haplotype uncertainty



Haplotypes

Either haplotypes must be resolved or the program must integrate over all
possible haplotype assignments.

Currently only Lamarc can do the latter.



MCMC versus best-fit haplotypes

Advantages of MCMC:

– Avoids bias of ”too good” best fit
– Incorporates error of haplotypes into error estimates

Advantages of best-fit haplotyping:

– Much faster
– Avoids MCMC search failure issues
– Can use external evidence about best haplotypes



Linkage disequilibrium mapping

With a disease mutation model we can use the recombination estimator to
post-analyze the sampled genealogies that where used to estimate r and
find the location of the disease mutation on the DNA.



Linkage disequilibrium mapping

Lamarc can perform this type of mapping.

Takes phenotype data with penetrance model

Handles haplotype uncertainty

Currently limited in the size of case it can handle

We hope to relax this limitation soon



Selection coefficient estimation

Krone and Neuhauser (1999), Felsenstein (unpubl)

only A

A or a

A a
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Information content of the coalescent

What can best give us more information?

More individuals?

More base pairs?

More loci?



Variability of the coalescent

10 coalescent trees generated with the same population size, N = 10, 000



Variability of mutations



Does adding more individuals help?



The bottom line

The information content of a single locus is limited

Additional sequence length or individuals are only mildly helpful

Multiple loci allow the best estimates

If recombination is present, long sequences can partially substitute for
multiple loci

Multiple time points can also help, if significant evolution happens
between them



Two publications supporting this conclusion

Felsenstein, J (2005) Accuracy of coalescent likelihood estimates: Do we
need more sites, more sequences, or more loci? MBE 23: 691-700.

Pluzhnikov A, Donnelly P (1996) Optimal sequencing strategies for
surveying molecular genetic diversity. Genetics 144: 1247-1262.



Practical advice

The major practical problem: how long to run the program?

Additionally: how many chains, how many steps per chain?



The problem of defaults

Length of run varies hugely with data and model

There are no good defaults

Programs normally ship with defaults which let you see results quickly

These are not suitable for publication runs!



Parameter estimates are still changing

If your estimate of a parameter looks like this:

Chain Θ
1 0.0035
2 0.0047
3 0.0088
4 0.0105
5 0.0121

you have not run the program long enough. It’s probably best to increase
the number of steps in each chain. (In a Bayesian run the same problem
appears as a trace that is still trending up or down at the end of the run.)



Parameter estimates are still changing

If your estimate of a parameter looks like this:

Chain Θ
1 0.0035
2 0.0047
3 0.0088
4 0.0105
5 0.0121

you have not run the program long enough. It’s probably best to increase
the number of steps in each chain.

You would prefer to see this:

Chain Θ
1 0.0056
2 0.0098
3 0.0110
4 0.0107
5 0.0109



Trees aren’t being accepted

If almost all trees are being rejected, the sampler obviously cannot move
well.

This might be due to a bad starting value

More likely it shows a need for heating



Parameter values leap around

If your estimate of a parameter looks like this:

Chain r
1 0.0005
2 0.0047
3 0.0001
4 0.1105
5 0.0021

Your chains may be too short. (Each visits only one of multiple peaks.)

Your data may have no power.



Posterior looks like prior

Posterior should be prior x effect of data

If posterior resembles prior, data are not contributing much!

This can mean:

– Not enough data (especially, not enough loci)
– Non-identifiable parameters (for example, population size of a very

young population)
– Inappropriate prior (much too narrow, much too broad, not containing

truth)

Do not ignore this problem!



Program takes forever to run

You may be asking too much

If estimating migration, try restricting your migration model

Disable or fix at constant values parameters you aren’t interested in

Try randomly removing some individuals

– More than 20 individuals per population doesn’t help much
– Don’t systematically remove similar sequences!

Borrow a faster computer with lots of memory



Error bars too wide

Particularly common with growth and recombination estimates

Usually not an error in your run

Badly performing genealogy samplers get estimates that are TOO
NARROW

If yours are too wide:

– Limit the number of parameters being inferred
– Add unlinked loci
– Add time points
– Add sequence length, if recombination present

Always publish error bars; point estimates have no meaning without them



Validating genealogy samplers

Two useful tools:

TRACER (Drummond and Rambaut)

– ESS statistic
– Traces of parameters throughout the run
– Histograms of parameter values

AWTY (Swofford)

– Traces of clade probabilities throughout the run



Review paper

Kuhner MK (2008) Coalescent genealogy samplers: windows into population
history. TREE 24:86-93.
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What was the long-term population size of gray whales?

Alter, Rynes and Palumbi (2007) DNA evidence for historic population size
and past ecosystem impacts of gray whales. PNAS 104: 15162-15167.



What was the long-term population size of gray whales?

How many gray whales pre-whaling?

Whaling ship records not conclusive

Recent slowing of the observed growth rate may suggest recovery

Molecular data an alternative source of information



What was the long-term population size of gray whales?

10 loci:

– 7 autosomal
– 2 X-linked
– 1 mtDNA

Complex mutational model with rate variation among loci

Complex population model with subdivision and copy number

Complex demographic model relating Ncensus to Ne



What was the long-term population size of gray whales?



What was the long-term population size of gray whales?

Locus n Estimated N
Aut ACTA 72 162,625

BTN 72 76,369
CP 76 77,319
ESO 72 272,320
FGG 72 180,730
LACTAL 72 44,410
WT1 80 51,972

X G6PD 30 2,769
PLP 52 92,655

mtDNA Cytb 42 107,778
All data 96,400 (78,500-117,700)
Current census 18,000-29,000
Previous models 19,480-35,430



What was the long-term population size of gray whales?

Important conservation implications

Effect on ecosystem significant:

– Resuspension of up to 700 million cubic meters sediment
– (12 Yukon Rivers worth)
– Food for 1 million sea birds

If accepted, result suggests halving gray whale kill rate

Broadly similar results for minke, humpback, and fin whales


