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Qur sequencing Guru takes the podium...

Posted on January 15, 2014 by Dr. Mel in Genomics, Workshops

ody Broad Institute Topic: Genomics Study Design Dr. Zody is a jack of all sequencing trades—he’'s been at it for several years and his career
an Genome Project, vertabrate evolution and postitive selection, to genetic links to viral disease. He's probably seen and heard it all, his
slides are excellent so [...]

Leave a comment + Continue Reading —

LIS Unix 101+1: Tinkerbell has issues
Posted on January 14, 2014 by Dr. Mel in Programming, Workshops
Julian Catchen University of Oregon Unix Ninja Topic: Unix Part 2: More Advance MNinja-ry So unfortunately as with this blog, |

DON'T MAKE ME USE THEM am or will be unable to give you files that we practiced on but Julian's slides are guite good. Remember, we learned about
pipes and added on to our current knowledge of command line. [...]

Leave a comment = Continue Reading —

Sequencing Technology: Where’s my Minlon!?

Posted on January 14, 2014 by Dr. Mel in Genomics, Workshops

So this morning started off with a lecture from Dr. Konrad Paszkiewicz on the ‘state of the union’ with respect to Sequencing



New Illumina sequencer launched

Mi-seq Next-seq 500 HiSeq 2500


http://biomickwatson.wordpress.com/
http://biomickwatson.wordpress.com/
http://biomickwatson.wordpress.com/
http://biomickwatson.wordpress.com/
http://biomickwatson.wordpress.com/
http://biomickwatson.wordpress.com/

HiSeq X10

The HiSeq X Ten is a set of ten ultra-high-throughput sequencers, purpose-built for large-scale human whole-genome sequencing.




General queries

« Technical replicates

 Allele drop out for double-digest RAD


http://genomebiology.com/2011/12/3/R22
http://genomebiology.com/2011/12/3/R22
http://genomebiology.com/2011/12/3/R22
http://genomebiology.com/2011/12/3/R22
http://www.ncbi.nlm.nih.gov/pubmed/23110526
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Alignment of reads to a reference

. .ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA. . Reference

. . ACTGGGTCATCGTACGATCGATAGATCGATCGATCGCTAGCTAGCTA. .  Sample




Why is short read alignment hard?

The shorter a read, the

less likely it Is to have a i aamrTATA
unique match to a s 21 |
reference sequence S ’r
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lengths. This graph indicates that read length has a critical affect on
the ability o place reads uniquely o the genome



Why do we generate short reads?
« Sanger reads lengths ~ 800-2000bp

 Generally we define short reads as anything below 200bp
— Illumina (50bp — 300bp)
— SoLID (80bp max)
— lon Torrent (200-400bp max...)
— Roche 454 — 400-800bp

« Even with these platforms it is cheaper to produce short reads (e.g. 50bp)
rather than 100 or 200bp reads

 Diminishing returns:
— For some applications 50bp Is more than sufficient
— Resequencing of smaller organisms
— ChlIP-Seqg
— Digital Gene Expression profiling
— Bacterial RNA-seq



Short read alignment applications

Genotyping:

Methylation
SNPs
GGTATAC...

|nde|s ...CCATAG TATGCGCCC CGG ITT CGGIATAC
...CCAT CTATATGCG TCGEAMATT  CGGTATAC
.CCAT GGCTATATG CTATCGGA GCGGTATA \
...CCA AGGCTATAT CCTATCGGA TTGCGGIA C...
...CCA AGGCTATAT GCCCTATCG GCGGT C...
..CC _AGGCTATAT GCCCTATCG [GC ATAC. ..
...CC TAGGCTATA GCGCCCTA [TTGC GTATAC... |
...CG&TAGGCTATATGCGCCCTATCGGCt\.+I ITGCGGTATAC. ..

Classify and measure peaks:
ChlIP-Seq
RNA-Seq ' GAAATTTGC |

GGAAATTTG
CGGAAATTT
CGGAAATTT

TCGGAAATT
CTATCGGAAA
CCTATCGGA  TTTGCGGT,
GCCCTATCG AAATTTGC
...CC GCCCTATCG _AAATTTGC ATAC. ..

...CCATAGGCTATATGCGHCCCTATCGGCAATTTGCGGTATAC. ..
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Dot Matrix Method
- Aligning by eye




Sequence Alignment

AR NARE G

AAVG TP A A (o2

3 possibilities

Match Mismatch Indel



A very simple alignment scoring system

Points for a matching letter: 1
Points for a non-matching letter: 0

Points for inserting a gap: 0



Global Pair-wise Alignment

ATCGATACG, ATGGATTACG
ATCGAT-ACG

ATGGATTACS

Matches: +1 +1 +1 +1 +1 +1 +1 +1 = +8
Mismatches: 0 =0
Gaps: 0 =0

Total score = +8

But, what does this score mean??
Could we get a better alignment?



How to choose the best alignment?

e Sequence 1: ACTGAGC
e Sequence 2: ATGATGC

« Some possible alignments:

ACTGAGC-- ACTGA-GC A----CTGAGC
A-TGA-TGC A-TGATGC ATGAT----GC



Global alignment — Needleman-Wunsch

A global alignment covers the entire lengths of the
seguences involved

The Needleman-Wunsch algorithm finds the best global
alignment between 2 sequences across their whole length



Step 1: Initialise

T

G

O O 4] >»| O 4| >

Fill in far-right column and bottom row with:

0 for a mis-match
1 for a match




Step 2:

O O 4] >»| O 4| >

For each box, find the highest number out of the blue boxes



Step 3:

1+1=2 0

O O 4] >»| O 4| >
o

If there is @ match In the yellow box as, take the highest value from the
blue boxes and add 1 to it
G matches G in the yellow box, so add 1 to the 1 in the blue box




Step 2:

T A G
A
T
G
A
T
G 0+0=0 2

A does not match G. So add zero to the zero in the blue box.




Step 2:

A C T G A G
A
T
G
A
T
G 0+1=1 1 2
C 0 1 0 0 - 0

If there Is a match as here, take the highest value and add 1 to it

G matches G so add 1 to zero in the blue box



Step 2:

A C T G A G
A
T
G
A
T
G 0+0=0 1 0 2
C 0 1 0 - 0 0

If there Is a match as here, take the highest value and add 1 to it

T does not match G. So add zero.



Step 2:

T G
A
T
G
A
T 0+1=1
G 0 2
C 0 0

Highest out of the blue boxes is zero




Step 2:

C T G A
A
T
G
A
T 2+0=2
G 0 0 1 0
C 1 0 0 0

Highest out of the blue boxes is 2

A does not match T




Step 2:

C T G A G C
A 0
T 0
G 0
A 0
T 2+0=2 2 1 0
G 0 0 1
C 1 0 0

Highest out of the blue boxes is 2

G doesnotmatch T



Step 2:

C T G A
A
T
G
A
T 3
G 0 0
C 1 0

Highest out of the blue boxes is 2

T does match T



Step 2:

C T G A
A
T
G
A
T 2+0=2 3 2 2
G
C

Highest out of the blue boxes is 2

C does not match T



Step 2:

O O 4] >»| O 4| >

Do the same for all remaining rows




Step 2:

T G
A
T
G
A 1+0=0
T 3 1
G 0 2
C 0 0

Do the same for all remaining rows




Step 2:

T A
A
T
G
A 2+1=3
T 3 2
G 0 0
C 0 0

Do the same for all remaining rows




Step 2:

O @] 4] »| @ 4] >

Do the same for all remaining rows




Step 2:

O @] 4] »| @ 4] >

Do the same for all remaining rows




O O 4] >»| O 4| >

C T G A
5 4 3 3
4 5 3 2
3 3 4 2
3 2 2 3
2 3 2 2
0 0 1 0
1 0 0 0

Do the same for all remaining rows




Step 3: Backtracking

A C T G A G C
A 6 5 4 3 3 1 0
T T T 3 2 0 0
G 3 3 3 4 2 1 0
A 4 3 2 2 3 1 0
T 2 2 3 2 2 1 0
G 0 0 0 1 0 2 0
C 0 1 0 0 0 0 1

Follow largest numbers starting from top-left going down and to the
right




Step 3: Backtracking

A C T G A G C
A 6 5 4 3 3 1 0
T T T 3 2 0 0
G 3 3 3 \S 4 2 1 0
A 4 3 2 2 3 1 0
T 2 2 3 2 2 1 0
G 0 0 0 1 0 2 0
C 0 1 0 0 0 0 1

Follow largest numbers starting from top-left going down and to the
right




Step 3: Backtracking

A C T G A G C
A 6 5 4 3 3 1 0
T | s 3 2 0 0
G 3 3 3 e 4 2 1 0
A 4 3 2 2 ~ 3 1 0
T 2 2 3 2 2 \ 1 0
G 0 0 0 1 0 2 0
C 0 1 0 0 0 0 1

Follow largest numbers starting from top-left going down and to the
right




Step 3: Backtracking

A C T G A G C
A 6 5 4 3 3 1 0
T | s 3 2 0 0
G 3 3 :-3\s 4 2 1 0
A 4 3 2 2 ~ 3 1 0
T 2 2 3 2 2 \ 1 0
G 0 0 0 1 0 2 0
C 0 1 0 0 0 0 \3 1

Follow largest numbers starting from top-left going down and to the
right




Step 4: Generate alignment

Vertical seq A

G A G C
A 3 3 1 0
T 3 2 0 0
G 4 2 1 0
A 3 2 2\3 1 0
T 2 3 2 2 1 0
G 0 0 1 0 2 0
C 1 0 0 0 O\sl

Horizontal seq A




Vertical seq A-T

Gap Step 4: Generate alignment
G A G C
A 3 3 1 0
T 3 2 0 0
G 4 2 1 0
A 3 2 2 TS 3 1 0
T 2 3 2 2 \ 1 0
G 0 0 1 0 2 0
C 1 0 0 0 0 \S 1
Horizontal seq ACT




Step 4: Generate alignment

O @] 4] »| @ 4] >

Horizontal seq ACTG
Vertical seq A-TG




Step 4: Generate alignment

O @] 4] »| @ 4] >

Horizontal seq ACTGA
Vertical seq A-TGA




Step 4: Generate alignment

O @] 4] »| @ 4] >

Horizontal seq ACTGA-
Vertical seq A-TGAG




Step 4: Generate alignment

O @] 4] »| @ 4] >

Horizontal seq ACTGA-C
Vertical seq A-TGAGC




Optimal global alignment

ACTGA-C

RN
A-TGAGC



Local alignment

A global alignment is often not appropriate as only parts
of sequences may be conserved

A local alignment only covers parts of the sequences

The Smith-Waterman algorithm finds the best local alignment between 2
sequences
QKESGPSSSYZC

| |1 |
Global alignment v g Q ESGLVRTTC

E S G

Local alignment |1
ocal alig E S G



Local alignment

A local alignment of 2 sequences Is an alignment
between parts of the 2 sequences

E.g. Two proteins may be very similar in a functional site, but be very dissimilar
outside that region

A global alignment of such sequences would have:
(1) lots of matches in the region of high sequence similarity

(i1) lots of mismatches & gaps (insertions/deletions) outside the region  of
similarity

It makes sense to find the best local alignment instead
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Alignment of an orthologous protein in
D.melanogaster vs H.sapiens

Not suitable for global alignment

2 main regions of similarity

Better to use local alignment



Local alignment — Smith-Waterman algorithm

Example —align GATC to GAC

O > O




Local alignment — Smith-Waterman algorithm

GATC

Local alignment algorithm R

- - G A T C

O > O

Points for match
Points for mismatch

+1
-1
Points for a gap insertion = -2



Local alignment — Smith-Waterman algorithm

GAC

Local alignment algorithm o

- - G A T C

O >» O
N

Points for match
Points for mismatch
Points for a gap insertion

+1
-1
-2



Local alignment — Smith-Waterman algorithm

GATC
|
I : G A T C
- ol -2, 4 -6 -8
T~ |
G 2 L Max=1
A -4
C -6

+ MATCH + GAP
| ¥

—

 + GAP

Points for match
Points for mismatch
Points for a gap insertion

+1
-1
-2



Local alignment — Smith-Waterman algorithm

- 0 L -2 4 -6 -8
G 2 1
N !
A 4 T 1
C -6

Points for match
Points for mismatch

+1
-1
Points for a gap insertion = -2



Dynamic Programming

Local alignment algorithm

i 0 | -2 4 6 8

G 2 1 4+ a1 L 3 4 =5

A 4 1 + 0 4 =2
12 ==

C 6 3 0 1 1

Points for match
Points for mismatch

+1
-1
Points for a gap insertion = -2



Backtracking and final alignment




Smith-Waterman — more details


http://www.youtube.com/watch?v=IVRSFaGCGeE

Dynamic programming

Needleman-Wunsch and Smith-Waterman are a
class of methods known as ‘Dynamic
Programming’

Guaranteed to give you the best possible
alignment

In biology, this algorithm is very inefficient
because most sequences are not similar to each
other

Therefore it takes a long time to run



BLAST —
Basic Local Alignment Search Tool



Background — BLAST

« Primarily designed to identify homologous sequences
- Blast Is a hashed seed-extend algorithm

~ Negative selection
- Only some parts of a sequence are usually constrained




BLAST - Original version

Example:

Seed size =4,
No mismatches in seed

The matching word GGTC
Initiates an alignment

Extension to the left and right
with no gaps until alignment
score falls below 50%

Output:
GTAAGGTCC

GTTAGGTCC

ACGAAGTAA

G GT C

CAGT

AN

cccTTCCTG GATT GCGA




BLAST - Original algorithm

Finding seeds significantly increases the speed of BLAST
compared to doing a full local alignment over a whole sequence

Will not guarantee the best solution

BLAST first finds highly conserved or identical sequences which
are then extended with a local alignment.




BLAST — Speed (or lack thereof)

Typically BLAST will take approximately 0.1 — 1 second to search
1 sequence against a database

Depends on size of database, e-value cutoff and number of hits to
report selected

60 million reads equates to 70 CPU days!
Even on multi-core systems this is too long!
Especially if you have multiple samples!

This is still true of FPGA and SIMD (vectorised) implementations
of BLAST



When NOT to use BLAST

« Atypical situation: you have lots DNA sequences and want to
extend it or find where on a genome it maps.

* In other words, you want an exact or near-exact match to a
sequence that is part of an assembled genome.

 Short reads require very fast algorithms for finding near-exact
matches in genomic sequences:

- BLAT

- Highly recommended: the BLAT paper (Kent WJ (2003) Genome Res
12:656-64) — very well written

- SOAP

— Bowtie/Bowtie 2
- MAQ

- BWA

— Shrimp2



Contents

« Alignment algorithms for short-reads
- Background — Blast (why can’t we use it?)

- Adapting hashed seed-extend algorithms to work with shorter reads
— Indel detection

— Suffix/Prefix Tries

— Other alignment considerations

- Typical alignment pipeline

- New methods of SNP calling



Adapting hashed seed-extend algorithms to work
with shorter reads

« Improve seed matching sensitivity
— Allow mismatches within seed

—BLAST
— Allow mismatches + Adopt spaced-seed approach

—ELAND, SOAP, MAQ, RMAP, ZOOM
— Allow mismatches + Spaced-seeds + Multi-seeds

—SSAHA2, BLAT, ELAND2
« Above and/or Improve speed of local alignment for seed extension

— Single Instruction Multiple Data
— Shrimp2, CLCBIo
— Reduce search space to region around seed



Hashed seed-extend algorithms

* These are most similar to BLAST
« Are not designed to work with large databases

e 2 step process
— ldentify a match to the seed sequence in the reference

— Extend match using sensitive (but slow) Smith-
Waterman algorithm (dynamic programming)



Seed-extend algorithm

Reference sequence:

. . .ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA. . .

Short read:

GTCATCGTACGATCGATAGATCGATCGATCGGCTA

Note that the short read has 1 difference wrt to reference



Seed-extend algorithm

Reference sequence:

..ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA...

Short read:
GTCATCGTACG ATCGATAGATCG ATCGATCGGCTA

11bp word 11bp word 11bp word

The algorithm will try to match each word to the reference. If there
IS @ match at with any single word it will perform a local alignment
to extend the match



Seed-extend algorithm

Reference sequence:
Seed Extend with Smith Waterman

.. .ACTGGGTCATCGTACG GCTAGCTA. . .
GTCATCGTACGATCGAACGATCGATCGATCGGCTA

Short read:

GTCATCGTACG ATCGATAGATCG ATCGATCGGCTA

Here the algorithm is able to match the short read with a word length of
11bp



Seed-extend algorithm

Reference sequence:

. . .ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA. . .

Short read:

GTCATCGTACGATCGATCGATCGATCGATCGGCAA

Note that the short read has 3 differences
Possibly sequencing errors, possibly SNPs



Seed-extend algorithm

Reference sequence:

. . .ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA. . .

Short read:

GTCATCGTACG ATCGATCGATCG  ATCGATCGGCAA
11bp word 11bp word 11bp word

Note that the short read has 3 differences



Seed-extend algorithm

Reference sequence:

. . .ACTGGGTCATCGTACGATCGATCGATCGATCGATCGGCTAGCTAGCTA. . .

Short read:

GTCATCGTACG ATCGATCGATCG ATCGATCGGCAA

No seeds match

Therefore the algorithm would find no hits at all!
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Adapting hashed seed-extend algorithms to work
with shorter reads

« Improve seed matching sensitivity
— Allow mismatches within seed

—BLAST
— Allow mismatches + Adopt spaced-seed approach

—ELAND, SOAP, MAQ, RMAP, ZOOM
— Allow mismatches + Spaced-seeds + Multi-seeds

—SSAHA2, BLAT, ELAND?2
« Above and/or Improve speed of local alignment for seed extension

— Single Instruction Multiple Data

— Shrimp2, CLCBIo
— Reduce search space to region around seed



Adapting hashed seed-extend algorithms to work
with shorter reads

« Improve seed matching sensitivity
— Allow mismatches within seed

—BLAST
— Allow mismatches + Adopt spaced-seed approach

—ELAND, MAQ, RMAP, ZOOM
— Allow mismatches + Spaced-seeds + Multi-seeds

—SSAHA2, BLAT, ELAND?2
« Above and/or Improve speed of local alignment for seed extension

— Single Instruction Multiple Data

— Shrimp2, CLCBIo
— Reduce search space to region around seed



Consecutive seed

Consecutive seed 9bp with no mismatches:

ACTCCCATCGTCATCGTACTAGGGATCGTAACA Reference sequence
TCATCGTAC
TCCTCCTAC Cannot find seed match due to A->C SNP
and G->C SNP

Even allowing for 2 mismatches in
the seed - no seeds match.
No hits!



Spaced seeds

To Increase sensitivity we can used spaced-seeds:

11111111111 Consecutive seed template with length 9bp

ACTATCATCGTACACAT Reference
TCATCGTAC Query

110011T0011T0011001  Spaced-seed template with weight 9bp
ACTATCATCGTACACAT Reference

ACTCTCACCGTACACAT  Query



Spaced seeds

Spaced seed with weight 9bp and no mismatches:

ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference sequence
CCACTGTAATCGTACATGGGAACGA SNP ‘heavy’ read
CCATTGTCATCGTACAT
COXXTOXXATXXTAXXT Despite SNPs — seed matched with O

mismatches

Can now extend with Smith-Waterman or other local alignment



Spaced seeds

Spaced seeds:

* A seed template ‘111010010100110111” 1s 55% more sensitive than
BLAST’s default template ‘11111111111° for two sequences of 70%
similarity

* Typically seeds of length ~30bp and allow up to 2 mismatches in short
read datasets

1
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similarity

Ma, B. et al. PatternHunter. Bioinformatics Vol 18, No 3, 2002
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Suffix-Prefix Trie

Trie — data structure which stores the suffixes (i.e. ends of a sequence)

A family of methods which uses a Trie structure to search a reference
sequence

— Bowtie
— BWA aln (<70bp reads) and MEM algorithm (>70bp reads)
— SOAP version 2

Key advantages:

— Alignment of multiple copies of an identical sequence in the
reference only needs to be done once

— Use of an FM-Index to store Trie can drastically reduce memory
requirements (e.g. Human genome can be stored in 2Gb of RAM)

— Burrows Wheeler Transform to perform fast lookups



Suffix Trie

Read
AGGAGC

}—I—
k=
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Heng Li & Nils Homer.
Sequence alignment
algorithms for next-
generation sequencing.
@E} Briefings in
Bioinformatics. Vol 11.
No 5. 473 483, 2010




Suffix Trie

Rank: 2 Sacaacg
.. aacg$ac
ajgaacgs$
E]caacg$ —— acg$aca—— gc$aaac
T caacgs$ BWT(T)
cgSacaa "
gsacaac Rank: 2
Burrows-Wheeler
Matrix BWM(T) LF Property
implicitly encodes
* BWT(T) is the index for T Suffix Array

A block sorting lossless data compression algorithm.
Burrows M,Wheeler D] (1994) Digital Equipment Corporation. Technical Report 124



Encodes data so that it is easier to compress
Burrows-Wheeler transform of the word BANANA
Can later be reversed to recover the original word

Input

________________

................

Burrows-Wheeler Algorithm

All
Rotations

________________

“BANANA

! NA|“BENA ||
|| ANA|~BAN ||
i NANE|~B&A |
, ANANA|~B |
i BRANANA|~ |

Transformation

Sorting All Rows in Alphabetical
Order by their first letters

|| ANANA|~B
~“BRNANA |
. A|~“BANAN |

ANZ | “BRAN
A| ~BANAN
BANANA | ~
MANA | “BA
NA | “BANA
~BANANA
| ~“BANANA

Taking

—————————————————————————————————————————————————————

ii ENLNA| ~B i
||| ANA|“BEAN |
:i L|“BRNEN
[\ BANANA|~ i)
| HANA|~BA !
|| NA|~BANA !

~BANANA |

~BRANLNE 5

____________________________________________________

Output

Last Column Last Column

________________

................



More Burrows-Wheeler

Input SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES

Burrows-Wheeler Output TEXYDST.E.IXIXIXXSSMPPS.B..E.S.EUSFXDIIOHIT

Repeated characters mean that it is easier to compress
Suffix Trie for a bacterial genome would be > 1Thb
We have to compress it

Use FM-Index/BW transform to do this compression



Bowtie/BWA example

Reference

BWT/( Reference )

Query:
AATGATACGGCGACCACCGAGATCTA



Bowtie/BWA example

Reference

BWT( Reference )

Query:
AATGATACGGCGACCACCGAGATC@



Bowtie/BWA example

Reference

BWT( Reference )

Query:
AATGATACGGCGACCACCGAGATC



Bowtie/BWA example

Reference

BWT( Reference )

Query:
AATGATACGGCGACCACCGAGAT@



Bowtie/BWA example

Reference

Yoo0w v O oUOUUOOOU O COOWTOGO DOO
0

BWT( Reference )

Query:

ARTGATACGGCGACEACCCACATCTA




Bowtie/BWA example

Reference

D "'BSHHHH

BWT/( Reference )

Query:

AATGA'! EEEEEEAC-CAC-C%AEE! E !E'




Bowtie/BWA example

Reference
L]

G
BWT( Reference )

Query:

AATGHE ! EEEEEEAC_CAC_C%AEE! E !Ei




Bowtie/BWA example

Reference

HTESHHHHk-Hk

BWT( Reference )

Query:

AATGTH! EEEEEEAC_CACEAEE! E !E'




Bowtie/BWA example

Reference

A

BWT( Reference )

Query:




Bowtie/Soap2 vs. BWA

« Bowtie 1 and Soap2 cannot handle gapped alignments
— No Indel detection => Many false SNP calls

Bowtie/Soap2:

ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference

CCATTGTCATCGTACTTGGGATCTA
TCATCGTACTTGGGATCTA

TTGGGATCTA \
False SNPs

N.B. Bowtie2 can handle gapped alignments



Bowtie/Soap2 vs. BWA

« Bowtie 1 and Soap2 cannot handle gapped alignments
— No Indel detection => Many false SNP calls

BWA:

ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference

CCATTGTCATCGTACTTGGGATC-TA
TCATCGTACTTGGGATC-TA

TTGGGATC-TA

N.B. Bowtie2 can handle gapped alignments



Comparison

Hash referenced spaced seeds
* Requires ~50Gb of memory
* Runs 30-fold slower

* |Is much simpler to
program

* Most sensitive

Indexed Suffix/Prefix Trie
* Requires <2Gb of memory
Runs 30-fold faster

Is much more complicated
to program

|_east sensitive



There are limits however

With longer 100-300 bp reads, multiple indels or variable regions
longer than a few bp are likely to be missed

ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference

CCATTGTCAACCATCTAGTAGCT-TA
TCAACCATCTAGTAGCT-TA

ACCATCTA-TA



You only find what you are looking for

What happens if there are SNPs and Indels in the same region?

Let’s assume that the SNP caller made this call of a single SNP:

ATGTATGTA
ATGTGTGTA

and the indel caller produced this call of a 3 base deletion:

ATGTATGTA
ATGT---TA

Should we assume this is a heterozygous SNP opposite a
heterozygous Indel or a more complex locus?



Comparison

» Bowtie's reported 30-fold speed increase over hash-based methods with
small loss In sensitivity
« Limitations to Trie-based approaches:
— Only able to find alignments within a certain 'edit distance’
— Important to quality clip reads (-q in BWA)
— Non-A/C/G/T bases on reads are often treated as mismatches
— Make sure Ns are removed!

Hash based approaches are more suitable for divergent alignments
 Rule of thumb:
— <2% divergence -> Trie-based
— E.g. human alignments
— >2% divergence -> Seed-extend based approach
— E.g. wild mouse strain alignments



>

75 paired | | 50 paired

50 single

75 single

Precision and recall by amount of variation for 4
datasets, by polymorphism:
(number of SNPs, Indel size)

(0,0)

(1,0)

(2,0)

(4,0)

2,3

Program |Prec. Recl.
SHRIMP
BFAST
BWA
Bowtie

SHRIMP
BFAST
BWA
Bowtie

SHRIMP
BFAST

Prec. Recl.

BWA 95.3 79.7 93.0
Bowtie | 952 655 92.1

SHRIMP
BFAST
BWA
Bowtie

Prec. Recl.

Prec. Recl.

David M et al. Bioinformatics 2011;27:1011-1012

. |Prec. Recl.

.-857

89.5/ 953 835 93.0 69.6

| 952 80.4 92.8 68.7 89.0 53.5 78.0

79.7

921 943 81.6

300.0

289.0

290.0



False discovery rates for variants were ascertained using
cFDR for three fungal NGS datasets

A Homozygous SNPs

100

g8 8

False Positives (%)

S

False Positives (%)
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B Bd JEL423 S50mers (4.5X)
A Bd JEL423 30mers (13.4X)
> Bd JEL423 30mers (10X)
® Bd JEL423 30mers (10X) CDS
" Pt BBBD1 76mers (38X)
A Pt BBBD1 30mers (18X)
Pt BBBD1 30mers (10X)
® Pt BBBD1 30mers (10X) CDS
B Sc S288C 36mers (67.9X)
A Sc S288C 30mers (65.2X)
< Sc $288C 30mers (10X)
® Sc S5288C 30mers (10X) CDS

7 BWA and Percent cut-off

“ BWA and Sam/Bcftools

O BWA and GATK2

© BWA and BiSCaP

+ SHRIMP and Percent cut-off
* SHRIMP and Sam/Bcftools
¥ SHRIMP and BiSCaP


http://www.nature.com/srep/2013/130321/srep01512/full/srep01512.html

Summary of open-source short read alignment programs

Bfast Hashing ref

Bowtie2* FM-Index Yes Yes Yes Yes Yes
Blat Hashing ref No Yes Yes No No
BWA FM-Index Yes Yes Yes Yes No
MAQ Hashing reads  Yes No Yes Yes Yes
Mosaik Hashing ref Yes Yes Yes Yes No
Novoalign Hashing ref No No Yes Yes Yes
Shrimp2 Hashing ref Yes Yes Yes Yes Yes
SOAP2 FM-Index No No No Yes Yes
SSAHA?2 Hashing ref. No No No Yes Yes

Heng Li & Nils Homer. Sequence alignment algorithms for next-generation sequencing.
Briefings in Bioinformatics. Vol 11. No 5. 473 483, 2010

* Bowtiel does not support gapped alignments



Aligner phylogeny

BLASR BWA.

hn:!auve l SOAP
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BLASTZ
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FASTA _—ELAMD
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Meedleman-Wuncsh

Whole genome Short read



Alignment format for short reads — Sequence AlignMent
(SAM format)

« Plain text format — human readable (sort-of)
« Eleven mandatory fields and a variable amount of optional fields.

« The optional fields are a key-value pair of TAG:TYPE:VALUE. These store
extra information

« Can be converted to Binary AlignMent format (BAM) to save space and speed
up look-up operations using SAMTools



Alignment format for short reads — Sequence AlignMent
(SAM format)

Table 1. Mandatory fields in the SAM format

No. Name Description

1 QNAME Query NAME of the read or the read pair
2 FLAG Bitwise FLAG (pairing, strand, mate strand, etc.)
3 RNAME Reference sequence NAME
4 POS I-Based leftmost POSition of clipped alignment
5 MAPQ MAPping Quality (Phred-scaled)
b CIGAR Extended CIGAR string (operations: MIDNSHE)
T MRIIM Mate Reference NaMe (‘=" if same as RNNAME)
8 MPOS I-Based leftmost Mate POSition
0 ISIZE Inferred Insert SIZE

10 SEQ Query SEQuence on the same strand as the reference

11 QUAL Query QUALity (ASCII-33=Phred base quality)




SAM format — Optional fields

Tag Type Description

X7 ? Reserved fields for end users (together with Y? and Z7)

M i The smallest template-independent mapping quality of fragments in the rest

AS 1 Alignment score generated by aligner

BQ 7 Offset to base alignment quality (BAQ), of the same length as the read sequence. At the
i-th read base, BAQ, = @, — (BQ, — 64) where @, is the i-th base quality.

cM i Edit distance between the color sequence and the color reference (see also NM)

cqQ Z Color read quality on the original strand of the read. Same encoding as QUAL; same
length as CS.

cs Z Color read sequence on the original strand of the read. The primer base must be included.

E2 74 The 2nd most likely base calls. Same encoding and same length as QUAL.

FI i The index of fragment in the template.

FS Z Fragment suffix.

LB 7 Library. Value to be consistent with the header RG-LB tag if @RG is present.

HO i Number of perfect hits

H1 i Number of 1-difference hits (see also NM)

H2 i Number of 2-difference hits

HI 1 Query hit index, indicating the alignment record is the i-th one stored in SAM

IH i Number of stored alignments in SAM that contains the query in the current record

MD Z String for mismatching positions. Regex: [0-9]1+(([ACGTN] |\~ [ACGTN]+) [0-9]+) '

MQ i Mapping quality of the mate/next fragment

NH i Number of reported alignments that contains the query in the current record

NM i Edit distance to the reference, including ambiguous bases but excluding clipping

0Q Z Original base quality (usually before recalibration). Same encoding as QUAL.

OP i Original mapping position (usually before realignment)

oc 7 Original CIGAR (usually before realignment)

PG Z Program. Value matches the header PG-ID tag if @PG is present.

PQ i Phred likelihood of the template, conditional on both the mapping being correct

PU Z Platform unit. Value to be consistent with the header RG-PU tag if @RG is present.

02 Vi Phred quality of the mate/next fragment. Same encoding as QUAL.

R2 7 Sequence of the mate/next fragment in the template.

RG i Read group. Value matches the header RG-ID tag if @RG is present in the header.

SM i Template-independent mapping quality

TC 1 The number of fragments in the template.

U2 7 Phred probility of the 2nd call being wrong conditional on the best being wrong. The
same encoding as QUAL.

uQ i Phred likelihood of the fragment, conditional on the mapping being correct




SAM output

amaxwell@pinfish:~/ecoli/illum/bwamem/i4m1_1/segAssist1/result =




Contents

« Alignment algorithms for short-reads
- Background — Blast (why can’t we use it?)

— Adapting hashed seed-extend algorithms to work with shorter reads
— Indel detection

— Suffix/Prefix Tries

— Other alignment considerations

- Typical alignment pipeline

- New methods of SNP calling



Other alignment considerations

* Indel detection

« Effect of paired-end alignments

* Using base quality to inform alignments

* PCR duplicates

* Methylation experiments — bisulfite treated reads

» Multi-mapping reads

* Aligning spliced-reads from RNA-seq experiments
* Local realignment to improve SNP/Indel detection
* Platform specific errors

« Unmapped reads



Indel detection

Spaced seed with weight 9bp and no mismatches:

ACTCCCATTGTCATCGTACTTGGGATCGTAACA Reference sequence
CCATTGTCATGTACTTGGGATCGET Read Containing a
\ / deletion
CCATTGTCATCGTACAT
COXXTGEXXATXXACXXG Seed not matched due to frame shift caused
by gap

No seed match. No alignment!



Indel detection

Reference sequence:

Seed Extend with Smith Waterman
.. .ACTGGGTCATCGTACG SETAGCTA .
GTCATCGTACG

Most alignment programs can only detect gaps in
Smith-Waterman phase
once a seed has been identified. Some algorithms (e.g.
Bowtie) do not allow gaps at this stage to improve
speed

This reduces sensitivity especially with multiple
Insertions in a small region



Indel detection

« Some algorithms do allow gaps within seed

— Indel seeds for homology search Bioinformatics (2006) 22(14): e341-e349
doi:10.1093/bioinformatics/btl263

— Weese D, Emde AK, Rausch T, et al. RazerS—fast read mapping with
sensitivity control. Genome Res 2009;19:1646-54

— Rumble SM, Lacroute P, Dalca AV, et al. SHRiMP: accurate mapping of
short color-space reads. PLoS Comput Biol 2009;5:1000386
» Use of multiple seeds
— Especially useful for longer reads (>50bp)

— LIR, LiY, Kristiansen K, et al. SOAP: short oligonucleotide alignment
program. Bioinformatics 2008;24:713-4

— Jiang H, Wong WH. SegMap: mapping massive amount of oligonucleotides
to the genome. Bioinformatics 2008;24: 23956



Paired-end reads are important

Known Distance

/ /

Read 1 Read 2

Repetitive DNA

Unigue DNA
] ]
Paired read maps uniquely
— ] ]

Single read maps to
multiple positions



Effect of paired-end alignments
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http://arxiv.org/pdf/1303.3997v2.pdf
http://arxiv.org/pdf/1303.3997v2.pdf

Effect of coverage on SNP call accuracy

 Depends crucially on ploidy

 Bacterial genomes can get away with 10-20x

 For human genomes and other diploids 20-30x is regarded as
standard

* Poly-ploids (e.g wheat) may need much higher coverage
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PCR duplicates

« 2"d generation sequencers are not single-molecule sequencers
— All have at least one PCR amplification step

— Can result in duplicate DNA fragments
— This can bias SNP calls or introduce false SNPs

« Generally duplicates only make up a small fraction of the results
— Good libraries have < 2-3% of duplicates

— SAMtools and Picard can identify and remove these when aligned
against a reference genome

— Do NOT do this for RNA and ChlP-seq data!



PCR duplicates
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Base quality impacts on read mapping
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Allele-specific sequencing

A Reference bias in simulated reads
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http://bioinformatics.oxfordjournals.org/content/25/24/3207.full.pdf

Biasing towards and against the reference allele

A TRUE LOCATICHN (REF)
chrl:110003188-110003258

REFERENCE REATY 1
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NON-REFERENCE READ 1
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NON-REFERENCE READ 3

8]

REGION OF HOMOLOGY
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http://bioinformatics.oxfordjournals.org/content/25/24/3207.full.pdf

Methylation experiments

/

5'-atcgCCcgataCga-3"
3'-tagcgggltatgct-5"'

Unmethylated cytosine

Bisulfite
treatment
v 5'-atcglTcgatalga-3' (1)
5'-atcgUUcgatalga-3" —»3'-tagcAAgCtatAct-5" (2)
Amplification
3'-tagcgggUtatgct-5"' _» > '-atcgcccAatacga-3" (3)

3'-tagcgggltatgct-5" (4)



Methylation experiments

* Directly aligning reads against a reference will fail due to excessive
mismatches in non-methylated regions

» Most aligners deal with this by creating 2 reference sequences
— One has all Cs converted to Ts
— One has all Gs converted to As

 Convert Cs to Ts in all reads aligned against C-T reference
 Convert Gs to As in all reads aligned against G-A reference

* If there are no mutations or sequencing errors the reads will always
map to one of the two references



Multiple mapping reads

T

» Asingle read may occur more than once in the reference genome.
* Could be due to:
 Paralogs (duplicated genes).
 Transcripts which share exons.
« Mutations in genotype relative to the reference.
 Transposons and other common repetitive sequences

« Some aligners automatically assign a multi-mapping read to one of the
locations at random (e.g. Tophat)

 Aligners may allow you to chose how these are dealt with — others
may not



Spliced-read mapping

Mapping to genome

* Need packages which can account for splice variants
« Examples: TopHat, STAR, GSNAP, MapSplice



Spliced-read mapper evaluation

B Both uniquely mapped @ Both multimapped [J One unique and one multi [ One unique and one unmapped @ One multi and one unmapped
K562 Mouse brain Simulation 1 Simulation 2

BAGET ann
GEM ann
GEM cons
GEM cons ann
GSNAP
GSNAP ann
GSTRUCT

ice
MapSplice ann
PALMapper
PALMapper ann
PALMapper cons [ |
PALMapper cons ann
PASS
PASS cons

STAR 1-pass
STAR 1-pass ann
STAR 2-pass
STAR 2-pass ann
TopHat1

TopHati ann
TopHat2
TopHat2 ann

I I T 1 1 I 1 1 1 T

20 40 60 80 100 0 20 40 60 80
Mapped fragments (%)



http://www.nature.com/nmeth/journal/v10/n12/full/nmeth.2722.html

L_ocal realignment to improve SNP/Indel detection

 Read aligners map each read (or read pair) independently of all

other reads
 Around indels and other variants it can be helpful to make use of
other metrics

e.g. Global median coverage for multi-mapping reads
* Tools such as GATK, SAMtools, Pindel and Breakdancer realign
reads in the vicinity of variants to improve calls

http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit

Chen, K. BreakDancer: an algorithm for high-resolution mapping of genomic structural
variation Nature Methods 6, 677 - 681 (2009)

Li H.*, Handsaker B.*, Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G.,
Durbin R. and 1000 Genome Project Data Processing Subgroup (2009) The Sequence
alignment/map (SAM) format and SAMtools. Bioinformatics, 25, 2078-9



Figure 6. A visual examination of a spurious gene (CDC27).
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http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038470

All platforms have errors and artefacts
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1. Removal of low quality bases
2. Removal of adaptor sequences
3. Platform specific artefacts (e.g homopolymers)



Table 2. Spurious genes having mutations detected in 30 samples.

CCDS ID Gene symbol Exon # samples
CCDS511509.1 CDC27 3% 36
CCDS12749.1 CGB - 36
CCDS12752.1 CGB5 i 36
CCDS41378.1 NBPF11 19 36
CCDS43407.1 FAM153C 4 36
CCDS5931.1 MLL3 4™ 36
CCDS34703.1 STAG3 33" 34
CCDS5590.1 POMZP3 1 34
CCDS10638.1 EIF3C gth 32
CCDS30836.1 NBPF14 22 31

CCDS: Consensus coding sequence. Exon: the specific exon in which the
variants are detected.
doi:10.137 1/journal.pone.0038470.t002

O PLOS | one


http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038470
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ABSTRACT

We identified the sequence-specific starting pos-
itions of consecutive miscalls in the mapping of
reads obtained from the lllumina Genome Analyser
(GA). Detailed analysis of the miscall pattern indi-
cated that the underlying mechanism involves
sequence-specific interference of the base elong-
ation process during sequencing. The two major
sequence paiterns that ftrigger this sequence-
specific error (SSE) are: (i) inverted repeats and
(ii) GGC sequences. We speculate that these se-
quences favor dephasing by inhibiting single-base

platforms [Illumina/Solexa Genome Analyser (4), Life
Technologies/ABI SOLIiD System (5) and Roche/454
Genome Sequencer FLX (6)], the Illumina Genome
Analyser (GA) is, at the moment, the most popular choice
for the analysis of genomic information (7). The [llumina/
Solexa sequencers are characterized by: (i) solid-phase
amplification and (ii)) a cyclic reversible termination
(CRT) process, also termed sequencing-by-synthesis
(SBS) technology (8). The sequencer can generate hun-
dreds of millions of relatively short (30-100bp) read se-
quences per run.

The application of data obtained from this NGS tech-
nology can be roughlv categorized into the following three

Nakamura, K. et al. Sequence-specific error profile of Illumina sequencers
Nucl. Acids Res. (2011) May 16, 2011




lllumina artefacts

1. GCrich regions are under represented

a. PCR

b. Sequencing
2. Substitutions more common than insertions
3. GGC/GCC motif Is associated with low quality and
mismatches
4. Filtering low quality reads exacerbates low coverage
of GC regions

Alignment software should ideally account for technology
specific bias but generally does not

Its up to you to filter before alignment



Your alignments are only as good as your library prep

 Even If all other artefacts are removed:

* |If your library prep is biased, your alignments will also
reflect this bias



Tophat/Cufflinks aside

* Fragments near 5’ or 3’ are likely
to

« Random hexamer priming biases

RNA-seq libraries

« Applies to random primed
« Main potential biases:
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http://genomebiology.com/2011/12/3/R22

Effect of bias correction
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Unmapped reads

* Can be the result of:
— Sequencing errors (should be small fraction if quality filtering
applied before mapping)
— Contamination
— EXxcessive matches to repeats
— Highly divergent regions between samples
— Novel genetic material not present in reference
— Plasmids

 Should be assembled de-novo with paired-end information if possible

* Resulting contigs run through MegaBlast against NCBI NT to check
species

 Check against RepBase to remove repetitive contigs

* Call ORFs

* Blast ORFs using BlastP against NCBI NR or Swissprot and Blast2GO
* Run through PFAM



Typical alignment pipeline

* Remove low quality bases
» Remove reads containing adaptor sequences
QC * Trim or remove reads containing Ns

» Generate reference or read index
« Align reads to index
Alignment | * SAM output file

* Sort SAM file and convert to BAM with SAMtools

* Remove suspected PCR duplicates with SAMtools

* Perform local realignment around indels using GATK

_  Supply BAM file to variant caller (e.g. Samtools mpileup)

Postalignment | . Analyse variants (are they within genes, synonymous vs nonsynonymous changes etc)*
* Locate missing genes/regulatory regions

<

<

» Assemble unmapped reads (e.g. using Velvet)

Assemble | « Call Open Reading Frames (ORFs)
unmapped reads

« Search for homologous genes (BLASTP), protein families (PFAM)
* ldentify novel genes

* http://bioinformatics.net.au/software.nesoni.shtmi



Contents

« Alignment algorithms for short-reads
- Background — Blast (why can’t we use it?)

— Adapting hashed seed-extend algorithms to work with shorter reads
— Indel detection

— Suffix/Prefix Tries

— Other alignment considerations

- Typical alignment pipeline

- New methods of SNP calling



New methods of SNP calling

* FreeBayes (
« Warning - unpublished
 Haplotype calling in polyploids
ACA  Reference Genome
Assume a SNP at both 5> A->T and 3’ A->G
Do we have a heterozygous?
ACG
TCA
Or do we have a homozygous?

TCG


http://arxiv.org/pdf/1207.3907v2.pdf
http://arxiv.org/pdf/1207.3907v2.pdf

Haplotype issue calling — Long reads to the rescue

SNP1 SNP2 SNP3 SNP4

A T GT
C C ARG ATGT
Short-read ATAC
Genotyping ACGT
Approach ACAC
CTGT
CTAC
CCGT
CCAC

Long-read A T 7=

Approach C e Afe CCAC



New methods of SNP calling

« Why align at all?
* We only do this because of computational constraints

* |deally we want to assemble denovo and then align to
reference genome

» Cortex Is a step in this direction:

* Denovo genome assembler, but keeps track of differences
which could be due to SNPs/Indels Heterozygous

g e W g

Homozygous

O~

Repeat



Variant calling with de-novo assembly

Exploring single-sample SNP and INDEL calling with
whole-genome de novo assembly

Heng Li'-*

!'Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA

Associate Editor: Dr. Michael Brudno

ABSTRACT

Motivation: Evgane Myers in his siri
sugoested that in a string graph or &
path spells a valid assembly. As a st
evary valid assambly of reads, such
be constructed comectly, is in fact
reads. In principla, every analysis bas
saquancing (WGS) data, such as SNP
calling, can also be achieved with uniti

nature
genetlcs

De novo assembly and genotyping of variants using

colored de Bruijn graphs

Zamin Igbal->>, Mario Caccamo?®?, Isaac Turner!, Paul Flicek? & Gil McVean!+

Detecting genetic variants that are highly divergent from a
reference sequence remains a major challenge in genome
sequencing. We introduce de novo assembly algorithms using
colored de Bruijn graphs for detecting and genotyping simple
and complex genetic variants in an individual or population.
We provide an efficient software implementation, Cortex,

the first de novo assembler capable of assembling multiple
eukaryotic genomes simultaneously. Four applications of
Cortex are presented. First. we detect and validate both simple

a single suitable reference, as in ecological sequencing?!. Fourth,
methods for variant calling from mapped reads typically focus on a
single variant type. However, in cases in which variants of different
types cluster, focus on a single type can lead to errors, for example,
through incorrect alignment around indel polymorphisms®”. Fifth,
although there are methods for detecting large structural variants,
such as using array comparative genomic hybridization (aCGH)22- 2%
and mapped reads'!:'>!%#2%  these cannot determine the exact
location. size or allelic sequence of variants. Finallv. mapping



Questions!

biosciences.exeter.ac.uk/facilities/sequencing/usefulresources/



Assembly algorithms
for short reads



De-novo sequence assembly

1. Sequence DNA fragments from each end
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De-novo sequence assembly

1. Sequence DNA fragments from each end
2. Reads aligned to generate contigs
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De-novo sequence assembly

1. Sequence DNA fragments from each end
2. Reads aligned to generate contigs
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De-novo sequence assembly

Sequence DNA fragments from each end
Reads aligned to generate contigs

Supercontigs derived from paired reads on different
contigs




De-novo sequence assembly

Sequence DNA fragments from each end
Reads aligned to generate contigs

Supercontigs derived from paired reads on different
contigs

—>i< Me— < e e
1 ] [ ] [

. Ordering of contigs is determined

. Different insert lengths and read lengths can resolve
ambiguities

Insert size can be increased to 2-20kb by using mate-pair
libraries (helps to span repetitive regions)



Mate-pair vs paired-end

Often causes confusion

Paired-end usually refers to libraries prepared for the
Illumina platform with insert sizes 50-500bp.

Mate-pair iIs a different library preparation protocol and
usually produces insert sizes 2kb-20Kkb.



Contents

« Alignment algorithms for short-reads
- Background — Blast (why can’t we use it?)
— Adapting hashed seed-extend algorithms to work with shorter reads
— Suffix/Prefix Tries
— Other alignment considerations
— Typical alignment pipeline
« Assembly algorithms for short reads
- Effect of repeats
— Overlap-Consensus
~ de Bruijn graphs
- Assembly evaluation metrics
- Typical assembly pipeline



Repetitive sequence

« Main reason for fragmented genome assemblies

 Additional sequencing depth will not help overcome
repeat limited assemblies

Whiteford N, Haslam N, Weber G, et al. An analysis of the
feasibility of short read sequencing. Nucleic Acids Res
2005;33:e171



Repetitive sequence

Known Distance

/ /

Repetitive DNA PREFEdeeddMipss Ut Hely

—_\ ] - =

Uniquy’v/'

Single read maps to
multiple positions



Repetitive sequence

I =T
Can try to identify collapsed

repeats by increased relative
coverage

http://www.cbcb.umd.edu/research/assembly primer.shtmi



Repetitive sequence

Main reason for fragmented genome assemblies

Additional sequencing depth will not help overcome repeat limited
assemblies

Can estimate the number of repetitive regions, based on relative
coverage

Only longer reads or paired-end/mate-pair reads can overcome this

PacBio reads can extend up to 10-20kb but expensive and
Impractical for most labs

Large mate pair insert sizes ~20kb are possible, but library
preparation is inefficient (2-3 days of trial and error). Also a
significant fraction will be error-prone and/or chimeric

Whiteford N, Haslam N, Weber G, et al. An analysis of the
feasibility of short read sequencing. Nucleic Acids Res
2005;33:el171



Assumptions made by de-novo assemblers

Based on Lander-Waterman model
Number of times a base is sequenced follows a Poisson distribution
Reads are randomly distributed throughout a genome

The ability to detect an overlap between two reads is not dependent
on the base-composition of the read

L N L = Read length
.P — 1 — [J. - _j| N = Number of reads
T -y G = Genome size
(-.T P = Probability base is sequenced

Lander, E.S. and Waterman, M.S. (1988). "Genomic
Mapping by Fingerprinting Random Clones: A
Mathematical Analysis". Genomics 2 (3): 231-239



Assumptions are not true
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NGS de-novo assemblies are draft quality at best

500 contigs covering most of a bacterial genome can be obtained in
1 week from genomic DNA to Genbank submission

To get 1 contigs covering all genomic sequence could take many
months

Is the extra effort worth it?
Short answer: Usually not.

§-$—%—Hﬂ‘ﬂ—ﬂﬂ+@ §—§—8 B B
3\9——6\9
8 -
(2}
£ 81
8
o
£
2 Q -
Assembly complexity of
prokaryotic genomes using
short reads
& {025 250 Carl Kingsford , Michael C
85 ‘W50 Schatz and Mihai Pop
?go = 1000 BMC Bioinformatics 2010, 11:21
R T T T
85 90 95 100

= X% reconstructible genes


http://www.biomedcentral.com/1471-2105/11/21/figure/F4?highres=y
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« Alignment algorithms for short-reads
- Background — Blast (why can’t we use it?)

— Adapting hashed seed-extend algorithms to work with shorter reads
— Suffix/Prefix Tries
— Other alignment considerations
- Typical alignment pipeline
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- Overlap-Consensus
~ de Bruijn graphs
- Assembly evaluation metrics

- Typical assembly pipeline



Overlap consensus vs. de Bruijn

« 2 main categories of assembly algorithms
— Overlap Consensus (OLC) and de Bruijn graph assemblers

« OLC

— Primarily used for Sanger and hybrid assemblies

— Memory constraints prevent its use beyond 1 million reads or so
* de Bruijn

— Primarily used for NGS assemblies

— Still memory hungry but possible



Original sequence
GTAGTATAGTCAGTATCA

-mers (2-mers)
CGT TA AG AT TC CA

Nature Reviews | Microbiology



de Bruijn graph assembly

AACTAACGACGCGCATCAAAA



de Bruijn graph assembly

AACTAAC | GACGCGCATCAAAA

1

AACTAAC



IBCTAACG

AACTAAC

ACGCGCATCAAAA

1

N

de Bruijn graph assembly

ACTAACG



de Bruijn graph assembly

AACTAACGACGCGCATCAAAA
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de Bruijn graph assembly
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de Bruijn graph assembly

AACTAAC @ CGCATCAAAA
ACTAAC T CGCATCAAAA
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de Bruijn graph assembly
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de Bruijn graph assembly

AACTAACGAC & |CGCA(T CAAAA
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Diagrams courtesy M. Caccamo, TGAC



Dealing with errors

lllumina sequencing error rate 1-2% depending on read length

many of the 25-mers will contain errors

Error correction before assembly for small data sets is less important
» Can be removed during the graph assembly

Large datasets

» Removal of singleton kmers is essential as will drastically reduce the
memory footprint of the graph

» e.g. Asian human genome data, the total number of distinct 25-mers was
reduced from 14.6 billion to 5.0 billion

Table 1. Summary of preassembly error correction in the Asian
genome sequencing

Total reads Error-free reads (%)  25-mer no.

Original reads ~ 4,083,271,441 60.1 14,551,534,812
After correction 3,312,495,883 74.0 4,966,416,149

Li et al (2009) Gen Res, 20

Thomas Keane and Jan Aerts, Wellcome Trust Sanger



de Bruijn graph assembly error correction

AACTAACGAC
ACTAACGAL
ACTAACGAC

CGCA
CGCA
CGCA

& = &

: [ — P(d>0)=1- o N(L-K)/G)

Diagrams courtesy M. Caccamo, TGAC



Errors or rare sequence?

« Depends on the type of data:

— Assumptions are probably true for single haploid genome
data

— Diploid and polyploid expect any branches to have equal
coverage

— Less clear for RNA-seq due to splicing

— Completely false assumption for metagenomic and
metatranscriptomic datal!



Short read assemblers

* First de Bruijn based assembler was Newbler
— Adapted to handle main 454 error — indels in homopolymers

« Several other de Bruijn assemblers developed subsequently
— \Velvet, Euler-SR, ABYSS, ALLPATHS2
— Most can use paired-end and mate-pair information

*Most cannot deal with mammalian sized genomes
— ABYSS — distributed genome assembly via MPI
— SOAPde-novo (BGI) Cortex (TGAC)
— Early removal of spurious errors

» Hybrid assemblers
— MIRA - capable of assembling 454, Sanger and short reads
— Memory hungry

*Other approaches
— String graph assemblers
— Fermi, SGA
— Correcting PacBio reads with Illumina
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« Alignment algorithms for short-reads
- Background — Blast (why can’t we use it?)
— Adapting hashed seed-extend algorithms to work with shorter reads
— Suffix/Prefix Tries
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— Typical alignment pipeline
« Assembly algorithms for short reads
- Effect of repeats
— Overlap-Consensus
~ de Bruijn graphs
- Assembly evaluation metrics
~ Typical assembly pipeline



Assembly evaluation — N50

NS0 has traditionally been used to compare assemblies

If you order the set of contigs produced by the assembler by size

» N50 is the size of the contig such that 50% of the total bases are in
contigs of equal or greater size

E.g.
15kb
15kb
- 12kb

12kb okb W) _ O

kb 7kb

7kb Sk

5kb cib

2kb
= 56/2 = 28 => 9Kb N50

Thomas Keane and Jan Aerts, Wellcome Trust Sanger



Assembly length vs. N50

Another informative measure is total length of the assembly
» Most genomes have an expected size prior to running assembly
» Assemblers assume diploid genome

Contig total length less than scaffold total length
» Scaffolds are contigs with runs of N's between the contigs

If you remove smaller contigs -> NS0 increases :0)

» Total length decreases i.e. less of the genome sequence in the
assembly :0(

Most assemblers will remove contigs less than 100bp or less than the
read length

Thomas Keane and Jan Aerts, Wellcome Trust Sanger



Assembly evaluation metrics

NS0 just measures the continuity of the assembly
» Larger values are generally better
However it does not assess the quality of the assembled sequence

» E.g. if there are incorrect joins in the assembly the N50 could appear to
be larger

Assembly quality measures

» Methods using contigs only:
» N50
» Total contig length
» Number of contigs

» Metrics using an alignment of reads onto the contigs
» Mapping Fraction (No. reads mapped/total reads) + pairing rate
» Count the SNPs and indels

» Misassemblies (regions not spanned by read pairs)

| Read pairs
— | — >

—
——— | ——— -

Thomas Keane and Jan Aerts, Wellcome Trust Sanger



Which human assembly is better? Why?

_ Assembly 1 Assembly 2 Assembly 1 | Assembly 2

51kb 42Kb 50Kb 20Kb
Total length 2.7Gb 2.69Gb 1.2Gb 2.7Gb
Avg. length 45Kb 39kb 40Kb 18Kb
Mapping rate  0.82 0.78 0.6 0.85
SNP rate 0.02 0.02 0.02 0.02
Indel rate 0.01 0.01 0.01 0.012
Pairing rate 0.8 0.9 0.9 0.88
Misassemblies 15 5 2 2

Thomas Keane and Jan Aerts, Wellcome Trust Sanger



Assembly benchmarking software

Density of miscalled bases in genome
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Types of assemblers

2 main categories, many variations

Each tends to have its own niche

Memory and hardware requirements can differ substantially
Typically a parameter scan is need to get the ‘best’ assembly
This means many assemblies need to be generated
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Which assembler is best?

« Depends on:

— Type of reads (lllumina, SoLID, 454, lon Torrent, PacBio,
Sanger etc)

— Paired/mate-pair data?
— Genome

— Repeat content

— Available hardware

* Prokaryote genomes — Velvet
« Larger genomes ABYSS or Soapdenovo

Narzisi G, Mishra B, Comparing De Novo Genome Assembly:
The Long and Short of It. 2011 PLoS ONE 6(4):



Merging assemblies

« Often assemblies are produced from 454 or Sanger data
and need to be merged with Illumina data

* In order of preference:

1. Attempt to assemble 454/Sanger reads with
lllumina reads using MIRA

2.  Merge assemblies separately using minimus2 or
SSPACE

3.  Input 454/Sanger contigs as part of a reference
guided assembly (e.g. Velvet/Columbus)



Transcriptome assembly

de-novo transcriptome assembly is also possible
RNA-seq reads can be assembled and isoform abundance estimated

Much harder as Lander-Waterman assumptions of randomly
distributed reads are not true

Also complicated by splice-variants and the need to statistically
model isoform abundance based on read distributions

Oases/Velvet
Trans-ABYySS
SOAPde-novo
Trinity

Good experimental option for vertebrates and other non-model
organisms where a reference genome is not available



Typical assembly pipeline

~
*Remove low quality bases
«Remove reads containing adaptor sequences
Qc Trim or remove reads containing Ns
J
~
 Generate multiple assemblies using different parameters
Assembly
J

<

Alignment

« Align filtered reads back to contigs for each assembly

«Blast unaligned reads to determine if contaminants are present

« Calculate assembly metrics of N50, total assembly length, number of reads mapping to assembly etc
+Call any relevant SNPs in case of intra-sample variation

<

Annotation

<

Alignment to related
species

«Call Open Reading Frames (ORFs)
+de-novo gene prediction (e.g. FGENES, Genemark, Glimmer)
«Search for homologous genes (BLASTP), protein families (PFAM) and/or Interproscan

-

+ Obtain synteny alignments (e.g. MummerQ
«Visualise in Mauve, IGV, GBrowseSyn

IAdditional sequencing|
to improve de-novo

» Mate-pair libraries to span repeats
«Sanger sequencing to gap -fill

assembly




Optimal de-novo sequencing strategy and
review papers

Assessing the benefits of using mate-pairs to resolve
repeats in de novo short-read prokaryotic assemblies
Joshua Wetzel , Carl Kingsford and Mihai Pop

BMC Bioinformatics 2011, 12:95

Comparing De Novo Genome Assembly:
The Long and Short of It.

Narzisi, G. Mishra B.

2011 PL0oS ONE 6(4)

De novo assembly of short sequence reads
Paszkiewicz, K. Studholme, D.
Briefings in Bioinformatics
August 2010 11(5): 457-472
A new strategy for genome assembly using
short sequence reads and reduced
representation libraries
Young A.L., Abaan H.O., Zerbino D, et al.
Genome Research 2010;20:249-56.



Variant calling with de-novo assembly

Exploring single-sample SNP and INDEL calling with
whole-genome de novo assembly

Heng Li'-*

!'Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA

Associate Editor: Dr. Michael Brudno

ABSTRACT

Motivation: Evgane Myers in his siri
sugoested that in a string graph or &
path spells a valid assembly. As a st
evary valid assambly of reads, such
be constructed comectly, is in fact
reads. In principla, every analysis bas
saquancing (WGS) data, such as SNP
calling, can also be achieved with uniti

nature
genetlcs

De novo assembly and genotyping of variants using

colored de Bruijn graphs

Zamin Igbal->>, Mario Caccamo?®?, Isaac Turner!, Paul Flicek? & Gil McVean!+

Detecting genetic variants that are highly divergent from a
reference sequence remains a major challenge in genome
sequencing. We introduce de novo assembly algorithms using
colored de Bruijn graphs for detecting and genotyping simple
and complex genetic variants in an individual or population.
We provide an efficient software implementation, Cortex,

the first de novo assembler capable of assembling multiple
eukaryotic genomes simultaneously. Four applications of
Cortex are presented. First. we detect and validate both simple

a single suitable reference, as in ecological sequencing?!. Fourth,
methods for variant calling from mapped reads typically focus on a
single variant type. However, in cases in which variants of different
types cluster, focus on a single type can lead to errors, for example,
through incorrect alignment around indel polymorphisms®”. Fifth,
although there are methods for detecting large structural variants,
such as using array comparative genomic hybridization (aCGH)22- 2%
and mapped reads'!:'>!%#2%  these cannot determine the exact
location. size or allelic sequence of variants. Finallv. mapping
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Questions!

biosciences.exeter.ac.uk/facilities/sequencing/usefulresources/



de-Bruijn graph assembly 1

TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG

AGTCGAG CTTTAGA CGATGAG CTTTAGA
GTCGGG TTAGATC ATGAGGC GAGACAG
GAGGCTC ATCCGAT AGGCTTT GAGACAG
AGTCGAG TAGATCC ATGAGGC  TAGAGAA
TAGTOGA CTTTAGA CCGATGA TTAGAGA
CGAGGCY AGATCCG TGAGGCT  AGAGACA
TAGTCGA GCTTTAG TOOGATG GCTCTAG
TCGACGC GATCCGA GAGGCTT AGAGACA
TAGTCGA TTAGATC GATGAGG TTTAGAG
GTCGAGG  TCTAGATY ATGAGGC TAGAGAC
AGGCTTT ATCCGAT AGGCTTT  GAGACAG
AGTCGAG TTAGATT ATGAGGC AGAGACA
GGCTTTA TCCGATG TTTAGAG
CGAGGCT TAGATCC TGAGGCT GAGACAG
AGTCGAG TITAGATC  ATGAGGC TTAGAGA
GAGGCTT GATCOGA GAGGCTT GAGACAG

Genome is sampled with random sequencing 7bp reads (e.g. lllumina or 454)

Note errors in the reads are represented in red
Flicek & Bimey (2009) Nat Meth, 6



de-Bruijn graph assembly 2

Linear stretches
/
(1x)

L

TGAG ATGA GATG CGAT COGA TCCG ATCC GATC AGAT
) @) G0 ©) 0 0 9 @& &)

. o= o= . . . .- e+ 0= -e
-. .. o - AGAL
(1)

. . -e -0 -~ =0 e . - “. '.w‘z;r)c C(:S: 7‘(2:'.[: C;?‘.‘ -e -0 < =0 .. .
FTAGT AGTC GTCG TCGA CGAG GAGG AGGC GGCT GGCTY TAGA AGAG GAGA AGAC GACA ACAG
89 () 99 (109 ) (169 (185 (189 (N = o—wo—wo—we (164 ) (9 9 @ @S9

. -0 O m Cm TTTA "‘0

@4 @9 ®) (29
CGAC GACG ACGC
(1 (19 (9 2

The k-mers in the reads (4-mers in this example) are collected into nodes
and the coverage at each node is recorded (numbers at nodes)

Features
» continuous linear stretches within the graph
» Sequencing errors are low frequency tips in the graph



de-Bruijn graph assembly 3

3. Simplification of linear
stretches

Bubble

- - o .

TAGTCOAG GAGGCTTIAGA AGAGACAG

Graph is simplified to combine nodes that are associated with the continuous linear
stretches into single, larger nodes of various k-mer sizes

Error correction removes the tips and bubbles that result from sequencing errors

Final graph structure that accurately and completely describes in the original genome
sequence



