
Genetic and genomic analyses using

 RAD-seq and Stacks
Instructors:	

Julian Catchen <jcatchen@uoregon.edu>
William Cresko <wcresko@uoregon.edu>
Institute of Ecology and Evolution, University of Oregon

Objectives:	

The goal of this exercise is to familiarize students with the use of next generation sequence
data produced from Reduced Representation Libraries (RRL) approaches such as
Restriction site Associated DNA (RAD-tags). These libraries are often used for genotyping
by sequencing, and can provide a dense set of single nucleotide polymorphism (SNP)
markers that are spread evenly across a genome. These markers are useful for a variety of
genetic and genomic analyses in model and non-model organisms. Students will gain
experience with a computational pipeline called Stacks that was designed for the analysis
of such data. Data will be analyzed de novo to perform a population analysis without the
aid of a reference genome, and from an organism with a reference genome to identify
signatures of selection. Stacks can be used for other analyses of RAD-seq data as well,
such as constructing genetic maps and phylogeography, although those are beyond the
scope of this exercise. !
Students will learn how to:

1. Prepare raw RAD Illumina data for analysis by removing low quality reads and de-
multiplexing a set of barcoded samples using both sheared and double-digested
data.

2. Use Stacks to assemble RAD-tags de novo from several populations of samples.

3. Call SNPs, genotypes, and haplotypes of these individuals within Stacks.

4. Export data from Stacks for analysis in Structure and build a distance-based
phylogenetic tree.

5. Align RAD sequences against a reference genome.

6. Use Stacks to calculate population genetic statistics and plot these across the
genome.	

!
By the end of this workshop you will be expected to know how to:

7. Manipulate raw RAD Illumina data for analysis using a variety of different
parameters.

���1

mailto:jcatchen@uoregon.edu
mailto:wcresko@uoregon.edu

8. Produce de novo assemblies using reads from an organism without a reference
genome.

9. Align RAD tags against a reference genome to identify signatures of selection.

10. Extend what was learned to more complicated ‘on your own’ problems.  

���2

Introduction	

The advent of next generation sequencing technologies has revolutionized the study of
genomic variation from complete sequences in model organisms such as nematode
worms, fruit flies, zebrafish, mice and humans. In addition, the long-standing dream of
biologists of having complete genomic information from numerous individuals from
different populations in the lab and wild, the field of population genomics, is becoming a
possibility for a variety of ecological and evolutionary studies.

Until just a few years ago the goal of acquiring complete genomic information from
numerous individuals in many populations was out of reach for all but a small number of
model organisms. For example, producing a high density genetic map for an organism
required an immense investment of resources to first produce and then type the large
number of genetic markers needed to adequately cover the genome. Furthermore,
identifying genomic regions associated with phenotypic variation, or involved in the
adaptation of organisms to novel conditions, was restricted to organisms for which re-
sequencing projects produced a dense battery of genetic markers at a significant cost.

The limits to population genomic studies will gradually fade as the costs of second
generation sequencing continue to drop. However, many studies using complete genome
re-sequencing will not be feasible for a while because costs are still significant, high
quality read lengths are still too short, and analysis remains challenging. Luckily, many
population genomic studies can now efficiently be performed by using an alternative
approach called genotype-by-sequencing that occurs by the sequencing of reduced
representation libraries (RRL), and subsequent identification and scoring of SNPs and
inference of haplotypes. Although they do not provide complete genomic information,
these approaches provide a sufficient picture via data on hundreds of thousands of SNPs
and haplotypes spread across a genome at a fraction of the cost of complete re-
sequencing.

We developed one such approach called Restriction-site Associated DNA sequencing
(RAD-seq), which has been used to identify signatures of selection, produce high density
genetic maps, help assemble genomes, and be useful for studies of allelic specific
transcriptional profiling. Because these data are so new, and the sample sizes of sequences
often so massive, a critical related breakthrough has been the development of algorithms
and software pipelines for the analysis of such data. We have produced Stacks for the
analysis of RAD-seq data. You will learn how to analyze RAD data with and without the
use of a reference genome with the goal of identifying population structure in one case
and identifying signatures of selection in a second case. Through the completion of these
tasks you will learn how to process RAD-seq data and use the software programs Stacks,
GSnap and Structure.

For more information on RAD genotyping and related methods, in particular conceptual
and statistical issues, see the papers listed at the end of this document. Many of these
papers can be read outside of class. However, the first set of papers (Core readings for the
lecture and workshop) should be read during your time in Český Krumlov. These papers will
help you better understand both the molecular biology, computational analyses, and
conceptual framework for the analysis of RRL data such as RAD.  

���3

Datasets and Software	

• Data sets - All are produced using an Illumina HiSeq 2500 sequencer

• Dataset 1 (DS1) - This data set comprises just a small proportion of a lane of single-
end standard RAD data.

• Dataset 2 (DS2) - A fragment of a lane of paired-end RAD sequences that have been
double-digested with two restriction enzymes.

You will use these first two data sets to become familiar with the structure of RAD
sequences, as well as to become proficient with the pre-processing (i.e. cleaning
and de-multiplexing) of data before alignment or assembly.

• Dataset 3 (DS3) - This dataset comprises a subset of RAD-seq data generated from 30
individuals from three populations of threespine stickleback, each of which has been
individually barcoded. The RAD-seq data were prepared using the restriction enzyme
SbfI, and sequenced using an Illumina sequencer. These data are a component of the
data originally published in Catchen, et al. 2013.

• Dataset 4 (DS4) - This is a set of population genomic data from the threespine
stickleback. The dataset comprises 8 individuals from each of two differentiated
populations, for a total of 16 barcoded individuals. The RAD data were prepared
using the restriction enzyme SbfI, and sequenced using an Illumina sequencer. These
data are unpublished, but similar to those published in Hohenlohe, et al. 2010. !

• Software - All are open source software
• Stacks (http://creskoloab.uoregon.edu/stacks/) - A set of interconnected open source

programs designed initially for the de novo assembly of RAD sequences into loci for
genetic maps, and extended to be used more flexibly in studies of organisms with
and without a reference genome. The pipeline has a Perl wrapper allowing sets of
programs to be run. However, the software is modular, allowing it to be applied to
many scenarios. You will use the Perl wrapper in class and the modules on your own.

• GSnap (http://research-pub.gene.com/gmap/) - GSnap is a very fast and efficient
software package used for aligning sequences against a reference genome. We will
use GSnap to align RAD reads against the stickleback reference genome, and then
analyze these reads within the Stacks pipeline. Although we will use GSnap for this
exercise, many other algorithms and software exist for aligning against a reference
genome, and these could be used in conjunction with Stacks as well.

• Samtools (http://samtools.sourceforge.net) - A suite of software tools designed to
perform a variety of common tasks with next generation sequencing data tools. The
SAM and BAM were developed associated.

• Structure (http://pritch.bsd.uchicago.edu/structure.html) - A software program
originally written by Jonathan Pritchard and colleagues that uses Bayesian stochastic
models of multi-locus genotype data. The package was written to estimate the
distribution and abundance of genetic variation within and among populations,
patterns that are now commonly called the genetic structure of populations.

• Phylip (http://evolution.genetics.washington.edu/phylip/) - A very broad suite of
tools written, collected and maintained by Joe Felsenstein, one of the prime movers
of molecular phylogenetics over the last 20 years. These tools are often bare bones,
but provide a rich set of flexible and fast programs for all things phylogenetics.  

���4

Exercise 1. Data preparation, part 1	

1. 10 minute mini-lecture on Phred scores and the process_radtags cleaning
algorithm.

2. The first step in the analysis of all next generation sequencing data, including RAD-seq
data, is removing low quality sequences and separating out reads from different
samples that were individually barcoded. This ‘de-multiplexing’ serves to associate
reads with the different individuals or population samples from which they were
derived.

3. In each exercise you will set up a directory structure on the remote server (in this case
our Amazon Virtual Machine) that will hold your data and the different steps of your
analysis. We will use the directory ~/stacks on the cloud to hold these analyses. Be
careful that your are reading and writing files to the appropriate directories within
your hierarchy. You’ll be making many directories, so stay organized!

• Each step of your analysis goes into the hierarchy of the workspace, and each step of
the analysis takes its input from one directory and places it into another directory, this
is known as a ‘waterfall workspace’. We will name the directories in a way that
correspond to each stage and that allow us to remember where they are. A well
organized workspace makes analyses easier and prevents data from being overwritten.

• In ~/stacks, create a directory called clean to contain all the data for this exercise.
Inside that directory create two additional directories: lane1 and samples. We will
refer to the clean directory as the working directory.

• Unarchive data set 1 (DS1):

/stacks_data/clean/lane1.tar

to the lane1 directory.

• You can copy the file to your working directory and use tar to unarchive it, or you can
change to your working directory and untar it without moving the file (this will save
you time and will dump the unarchived files into the directory you are currently in).

4. Your decompressed files has millions of reads in it, too many for you to examine in a
spreadsheet or word processor. Examine the contents of the set of files in the terminal
(the head, more, and tail commands may be of use).

• You should see multiple different lines with different encodings.

• How does the FASTQ file format work?

• How are quality scores encoded? (See the link to quality scores in Appendix.)

• How could you tell by eye which type of encoding your data are using?

• Can you find strings of Bs in the quality scores? What do these mean?

5. You probably noticed that not all of the data is high quality. In general, you will want
to remove the lowest quality sequences from your data set before you proceed.
However, the stringency of the filtering will depend on the final application. In

���5

general, higher stringency is needed for de novo assemblies as compared to
alignments to a reference genome. However, low quality data will almost always
affect downstream analysis, producing false positives, such as errant SNP predictions.

6. We will use the Stacks’s program process_radtags to clean and demultiplex our
samples.

• Take advantage of the manual page for process_radtags on the Stacks website to
find information and examples:

http://creskolab.uoregon.edu/stacks/comp/process_radtags.php

• You will need to specify the set of barcodes used in the construction of the RAD library.
Remember, each P1 adaptor in RAD has a particular DNA sequence (an inline
barcode) that gets sequenced first, allowing data to be associated with samples such as
individuals or populations.

• Enter the following barcodes into a file called lane1_barcodes in your working
directory (make sure you enter them in the right format):

• AAACGG AACGTT AACTGA AAGACG!

• AAGCTA AATGAG ACAAGA ACAGCG!

• ACATAC ACCATG ACCCCC ACTCTT!

• ACTGGC AGCCAT AGCGCA!

• Copy the remaining barcodes for this lane of samples from the file:

/stacks_data/clean/lane1_barcodes

and append them to your barcodes file in your working directory.

• You can concatenate this file onto the end of your file using the cat command and
the shell’s append operator: cat file1 >> file2, or you can cut+paste.

• Based on the barcode file, how many samples were multiplexed together in this
RAD library? (The wc command can tell you this.)

• You will need to specify the restriction enzyme used to construct the library (SbfI), the
directory of input files (the lane1 directory), the list of barcodes, the output directory
(samples), and specify that process_radtags clean, discard, and rescue reads.

• The process_radtags program will write a log file into the output directory.
Examine the log and answer the following questions:

• How many raw reads were there?
• How many were retained?
• Of those discarded, what were the reasons?

• What can the list of “sequences not recorded” tell you about the data analyzed and
about the design of barcodes in general?

7. Rename five of the output files in the samples directory to use more meaningful
names:

���6

sample_AAACGG.fq indv_01.fq!
sample_AACGTT.fq indv_02.fq!
sample_AACTGA.fq indv_03.fq!
sample_AAGACG.fq indv_04.fq!
sample_AAGCTA.fq indv_05.fq!!

Renaming files by hand is time consuming as you can tell from just working with this
subset. Renaming all the files to more meaningful names can be greatly simplified by
writing a shell script in an editor, such as Emacs, and then using the search/replace
function. Then, you can execute the shell script to actually rename the files.

Exercise 1. Data preparation, part 2	

1. We will now work with the second data set. These data contain paired-end reads that
have been double-digested and dual barcoded. Each set of paired reads contains an
inline barcode on the first read, and an indexed barcode on both reads. These are
known as combinatorial barcodes as many unique combinations can be made from
pairs of barcodes.

• In ~/stacks/clean, create a directory called lane2 to contain the raw data for this
exercise and create the directory ddsamples to contain the cleaned output.

• Unarchive data set 2 (DS2):

/stacks_data/clean/lane2.tar

into the lane2 directory.

2. Examine the contents of the pairs of files in the terminal again.

• How are the FASTQ headers related between pairs of files?

• Can you identify the indexed barcode in the FASTQ header?

3. We will again use the Stacks’ program process_radtags to clean and demultiplex
our samples.

• You will need to specify the set of barcode pairs used in the construction of the RAD
library.

• Enter the following barcodes into a file called lane2_barcodes in your working
directory (make sure you enter them in the right format):

• AACCA/ATCACG CATAT/ATCACG GAGAT/ATCACG!

• TACCG/ATCACG AAGGA/CGATGT CAACC/CGATGT!

• GACAC/CGATGT TACGT/CGATGT!

• Copy the remaining barcodes for this lane of samples from the file:

/stacks_data/clean/lane2_barcodes

and append them to your barcodes file in your working directory.

���7

• You can concatenate this file onto the end of your file using the cat command and
the shell’s append operator: cat file1 >> file2, or you can cut+paste.

• How many samples were multiplexed together in this RAD library? (The wc
command can tell you this.)

• You will need to specify the two restriction enzymes used to construct the library
(NlaIII and MluCI), the directory of input files (the lane2 directory), the list of
barcodes, the output directory (ddsamples) and specify that process_radtags
clean, discard, and rescue reads.

• The process_radtags program will write a log file into the output directory.
Examine the log and answer the following questions:

• What is the purpose of the four different output files for each set of barcodes?

• How many raw reads were there?

• How many were retained?

4. For one of the sets of output files in the ddsamples directory rename the *.1.fq file to
use a more meaningful name. Then, concatenate the other output files onto the end,
so that for the set of files:

sample_AACCA-ATCACG.1.fq!
sample_AACCA-ATCACG.2.fq!
sample_AACCA-ATCACG.rem.1.fq!
sample_AACCA-ATCACG.rem.2.fq!!

We are left with a single output file:

indv_01.fq!!
• Why are we able to concatenate all the data together from both the single and

paired-end reads?

• How will Stacks interpret the single-end reads versus the paired-end reads?

On your own outside of class	

1. Remind yourself of the use of shell tools and regular expressions in Unix:

•Using shell tools:

• Identify all of the barcodes in one of the sequencing files.

• Count the number of occurrences of each barcode.

•(cut, grep, sort, uniq, and the pipe “|” are the commands you need)

•Using a single shell command, extract out the restriction site from the single end
reads of DS2 and print the distribution of restriction sites. Repeat this for the paired
end reads. If you are experiencing lots of ambiguous RAD sites when running

���8

process_radtags, this procedure can help you diagnose if your restriction
enzyme site is intact.

•Determine the distribution of read lengths in your data set (you’ll need to use awk
in addition to grep). This is useful if you have variable length data, say from a
MiSEQ machine and need to choose where to trim the data.

2. Write a shell script in Emacs to rename all the files in one execution.

• Use a shell loop to do the hard work.

3. Try using the process_radtags program with a range of parameters.

•Specify a different (incorrect) restriction enzyme

• How many reads were retained this time?

• Of those discarded, what were the reasons?

• Vary the sliding window score threshold, and the size of the window

• How do these changes to the parameter affect the number or retained reads?

!

���9

Exercise 1I. de novo assembly of RAD tags without a genome	

1. In this second exercise we will be working on a set of threespine stickleback data
sampled from throughout Oregon, on the west coast of the United States. These
stickleback can be found in a number of habitats from costal marine and freshwater
habitats, to inland river habitats, to high mountain lakes in the interior of Oregon. We
want to understand how these populations relate to one another and in this exercise,
you will examine three of these populations: a coastal marine population, a costal
freshwater, and an inland river population. Without using a reference genome we will
assemble loci and determine population structure using the Structure program as well
as generating a distance based phylogenetic tree from FST values. For more information
on the study this data originated with, see Catchen, et al. 2012, listed at the end of this
document.

2. 10 minute mini-lecture on Stacks, primary/secondary reads, and parameters.

3. In your ~/stacks workspace, create a directory called denovo to contain all the data
for this exercise. Inside that directory, create two additional directories: samples, and
stacks. To save time, we have already cleaned and demultiplexed this data and will
start from the cleaned samples stage.

Unarchive data set 2 (DS2):

/stacks_data/denovo/oregon_stickleback.tar

into the samples directory.

4. Create a new MySQL database called orphy_radtags and populate the tables by
loading the table definitions from:

 /usr/local/share/stacks/sql/stacks.sql!

If you view this file, you will see all the SQL commands necessary to create tables to
hold our Stacks data. To create and populate the database we can feed these
commands to the MySQL server:

[Cutting+pasting the lines below may be difficult due to line breaks and non-standard
quote characters (“)]

 % mysql --defaults-file=/usr/local/share/stacks/sql/mysql.cnf
! ! -e "CREATE DATABASE orphy_radtags"

 % mysql --defaults-file=/usr/local/share/stacks/sql/mysql.cnf
! orphy_radtags < /usr/local/share/stacks/sql/stacks.sql!

To access the MySQL server, we need a username and password. When Stacks was
installed, we stored the username and password in the file:

 /usr/local/share/stacks/sql/mysql.cnf

which we are passing to the MySQL client program to create our database.

Note: as a convention we append “_radtags” as a suffix onto all our RAD-tag
databases. This is not necessary from a technical point of view, but the Stacks web

���10

interface will only show databases with this suffix (in case you have other,
unrelated MySQL databases on your server).

5. Run the Stacks’ denovo_map.pl pipeline program. This program will run ustacks,
cstacks, and sstacks on the individuals in our study.

[Once you get denovo_map.pl running, it will take approximately an hour.]

• Information on denovo_map.pl and its parameters can be found online:

• http://creskolab.uoregon.edu/stacks/comp/denovo_map.php

• We want Stacks to understand which individuals in our study belong to which
population. To specify this, create a file in the working directory called popmap, using
an editor. The file should be formatted like this:

 <sample file prefix><tab><population ID>!

Include all 30 samples in this file and specify which individuals belong to which
populations. You must supply the population map to denovo_map.pl when you
execute it.

• There are three additional important parameters that must be specified to
denovo_map.pl, along with each of the individuals in our data set.

• Set the stacks directory as the output, and set the three main parameters:
minimum stacks depth, distance allowed between stacks, and distance allowed
between catalog loci. Specify the database you just created and, finally, specify 1 as
the batch number.

• You will need to specify each individual in the dataset with ‘-s’. Since there are a
number of individuals it will be helpful to create the command ahead of executing it.
There are several ways you could do this:

1. Edit the command together in an external editor, say on your local laptop, then cut
and paste the command into the terminal window.

2. If you know how, create a shell script containing the command using a UNIX editor
such as emacs, vi, or nano.

3. Simply type the command out. This will take some time, but you can use tab-
completion to make it easier.

• Execute the Stacks pipeline.

6. Examine the Stacks log and output files when execution is complete.

• From the log: how are the different programs, ustacks, cstacks, and sstacks
executed?

• How many reads are used in each ustacks execution?

• Find the output of the genotypes program in the log.

• How many markers were identified?

• How many progeny genotypes were examined?

���11

• Why are corrections being made?

• Familiarize yourself with the output of each Stacks’ component:

• ustacks: *.tags.tsv, *.snps.tsv, *.alleles.tsv

• cstacks: batch_1.catalog.tags.tsv, batch_1.catalog.snps.tsv, batch_1.catalog.alleles.tsv

• sstacks: *.matches.tsv

7. View the result of the Stacks analysis through the web interface:

• http://instance-address.amazonaws.com/stacks/

• Explore the web interface

• What do the different types of markers mean?

• Why are some markers found in more progeny?

• Why are the number of genotypes sometimes less than the number of
progeny?

• Expand the details for locus #7. Click on Allele Depths to view additional
information.

• Click on “Column 37” and “Column 53” on the left-hand side to see
population genetic statistics.

• For sample pcr_1193.00, click on the alleles to see the actual stack that
corresponds to the catalog locus.

• Why does column 53 have a light blue background?

• Why do some nucleotides in the stack have a yellow background?

• What are the different roles played by primary and secondary reads?

• Compare the web interface data to the batch_1.haplotypes_1.tsv file.

• Use the cut and grep commands to view all loci from a particular progeny,
and all progeny from a particular locus.

• Is the same data contained in both sources?

8. Our goal now is to export a subset of loci for analysis in Structure, which analyzes the
distribution of multi-locus genotypes within and among populations in a Bayesian
framework to make predictions about the most probable population of origin for each
individual. The assignment of each individual to a population is quantified in terms of
Bayesian posterior probabilities, and visualized via a plot of posterior probabilities for
each individual and population. A key user defined parameter is the hypothesized
number of populations of origin which is represented by k. Sometimes the value of k is
clear from from the biology, but more often a range of potential k-values must be
explored and evaluated using a variety of likelihood based approaches to decide upon
the ultimate k. In the interest of time we won’t be exploring different values of k here,
but this will be a key step in any data analysis. In addition, at the moment Structure
can only handle a small number of loci because of the MCMC algorithms involved in

���12

the Bayesian computations, usually many fewer than are generated in a typical RAD
data set. We therefore want to randomly choose a random subset of loci that are well
represented in our three populations. Nonetheless, this random subset contains more
than enough information to define population structure.

• The final stage of the denovo_map.pl pipeline is to run the populations program to
calculate population genetic statistics for our data. We want to execute this program by
hand again, specifying filters that will give us only the most well represented loci.

• Run populations again, specifying that loci must be present in at least 80% of
individuals in all three populations. You will have to tell populations where to
find the output of the Stacks pipeline (this should be in the stacks output
directory).

• One final detail: Structure assumes that each SNP locus is independent, so we
don’t want to output multiple SNPs from the same RAD locus, since they are not
independent but are in linkage blocks within each RAD tag. We can achieve this
behavior by specifying the --write_single_snp parameter to populations.

9. Now we want to select 1,000 loci randomly from the results and save these loci into a
file. We can easily do this using the shell given a list of catalog IDs output in the
previous step. The batch_1.sumstats.tsv file gives a list of all polymorphic loci.
Use the cat, grep, cut, sort, uniq, shuf, and head commands to generate a list of
1000 random loci. Save this list of loci as a whitelist, that we can feed back into
populations. This operation can be done in a single shell command.

10. Now execute populations again, this time feeding back in the whitelist you just
generated. This will cause populations to only process the loci in the whitelist.
Specify that a Structure output file be included this time and again insist that only a
single SNP is output from each RAD locus. Finally, you will need to again specify the
population map that you generated above to populations so that this information is
passed into the Structure output file.

11. Create a new directory called structure and copy the Structure output file that
Stacks generated to this directory.

• Edit the Structure output file to remove the comment (first line in the file, starts with
“#”).

• The parameters to run Structure (including a value of k=3) have already been
prepared, you can find them here:

/stacks_data/denovo/mainparams and!

/stacks_data/denovo/extraparams

Copy them into your working directory as well.

Note: due to an error in producing the workshop image, these files have a *.txt suffix.
Rename these two files to remove the suffix, otherwise Structure will refuse to
recognize them.

12. Execute Structure, saving the data into this new directory:

���13

 structure > structure/batch_1.structure.console!

13. Either download batch_1.structure.console and batch_1.structure.out_f
files and open them in Structure on your local machine, or open them in Structure on
the cloud if you have a graphical connection. Select the “File” menu and then “Load
structure results…” to load the Structure output. Choose the “Barplot” menu and then
“Show”.

• Are the three Oregon threespine stickleback populations related to one another? How
can you tell?

On your own outside of class	

1. Use the NEIGHBOR program from the Phylip package (installed in the cloud) to build
a neighbor-joining distance tree from the FST measures. Edit the
batch_1.fst_summary.tsv file to match the input format for NEIGHBOR:

 http://evolution.genetics.washington.edu/phylip/doc/distance.html

Find information on how to run NEIGHBOR here:

 http://evolution.genetics.washington.edu/phylip/doc/neighbor.html

2. Plot the resulting tree using FigTree: http://tree.bio.ed.ac.uk/software/figtree/

3. Explore the papers describing Structure (see the references at the end of this
document).

• What are the major parameters governing the Structure model and sampling
process. Try different values of K and alter the number of burning steps.

4. Run the Stacks programs (cstacks, ustacks and sstacks) separately on the data set
without using the Perl wrapper.

1. Can you tell what each program is doing?  

���14

Exercise III. Population genomics with a reference genome	

1. Population genetics is a very old field that has a rich mathematical theory and a core

set of statistical approaches for inferring parameters from genetic data. These statistics
are such things as nucleotide diversity (π), differentiation statistics (i.e. Fst), and
measures of genetic covariance such as Linkage Disequilibrium (D and D’). However,
because of methodological limitations, the majority of the theoretical, statistical and
empirical work in population genetics has focused on a small number of loci. With
the advent of second generation sequencing, tens or hundreds of thousands of genetic
markers can now be examined in dozens of individuals, allowing the field of
population genomics to truly come to fruition. An exciting new activity in population
genomics is the identification of signatures of selection in wild populations. Today you
will process RAD data from one oceanic and one freshwater population of threespine
stickleback from Middleton Island, which is located off the coast of Alaska. One set of
data comes from an ancestral oceanic population, whereas the other is from a derived
freshwater population that is likely less than 60 years old. We will align these data to
the stickleback reference genome using GSnap, and then feed the alignments into
Stacks. After Stacks determines the loci and associated alleles present in each
population, we will export the data and calculate several population genomic
statistics, including FST. Performing a study like this was nearly impossible before the
advent of next generation sequencing. For more information on population genomics,
see the papers listed in that section at the end of this document.	

2. 10 minute mini-lecture on diversity and divergence parameters, kernel smoothing, and
signatures.

3. Acquire and process DS3 (Middleton Island).

• In your ~/stacks workspace, create a directory called scan to contain all the data for
this exercise. Inside that directory, create three directories: samples, aligned, and
stacks. To save time, we have already cleaned and demultiplexed this data set and
will start from the cleaned samples stage.

• Unarchive DS3 from

 /stacks_data/scan/middleton_scan.tar

into the samples directory.

4. Align the stickleback sequences against the genome with GSnap.

• Run GSnap on the first freshwater sample: samples/s13_fw_01.fa.gz!

[Running GSnap could take 15-30 minutes total.]

• Running GSnap with the --help parameter will give you a list of all options.

• We only want to keep alignments that have a single, best alignment to the
genome. With the right combination of parameters, GSnap can do this natively.

Some hints for command line parameters: set GSnap to read gzipped input files;
allow a maximum of five mismatches in the alignment; set an indel penalty of
two; set the terminal threshold to a high number; allow only one path (a.k.a.

���15

alignment) for each read and if there is more than one path, suppress that read;
make sure you turn on multithreading and output SAM format. Name the output
file the same as the input file, with a “.sam” suffix instead of “.fa.gz”.

• The stickleback GSnap database is located within this directory:

/stacks_data/gsnap_db

the GSnap database is stored in several files, we will specify only the common
prefix of those files and GSnap will know how many files to read in.

• Use Samtools to convert the SAM output file to a BAM file. Delete the SAM file.

• What is a terminal alignment and why is it important for RAD data?

• Why do we convert the SAM file to a BAM file, what is the advantage?

• Why was our middleton_scan.tar file not also gzipped?

• Run GSnap again with the first oceanic sample: samples/s13_an_01.fa.gz and
convert it again to a BAM file using Samtools.

• To save time, the remaining 14 alignments can be found here:

/stacks_data/scan/s13_gsnap.tar!

Untar these remaining GSnap alignments into the aligned directory.

5. Create a new MySQL database called middleton_radtags and populate the tables
by loading the table definitions from:

 /usr/local/share/stacks/sql/stacks.sql!

If you view this file, you will see all the SQL commands necessary to create tables to
hold our Stacks data. We need to create the database and then feed these commands
to the MySQL server:

 % mysql --defaults-file=/usr/local/share/stacks/sql/mysql.cnf
! ! -e "CREATE DATABASE middleton_radtags"

 % mysql --defaults-file=/usr/local/share/stacks/sql/mysql.cnf
! middleton_radtags < /usr/local/share/stacks/sql/stacks.sql

6. We next want to run Stacks on the freshwater and anadromous population.

• Run the Stacks ref_map.pl pipeline program. This program will run pstacks,
cstacks, and sstacks on the members of the population, accounting for the
alignments of each read.

• Information on ref_map.pl and its parameters can be found online:

• http://creskolab.uoregon.edu/stacks/comp/ref_map.php

• Create a file in the working directory called popmap that is formatted like this:

 <sample file prefix><tab><population ID>!

Include all 16 samples in this file and specify which individuals belong to which
populations and specify it to the ref_map.pl program.

���16

• Specify each GSnap-aligned individual as a “sample” to ref_map.pl. Specify the
stacks directory as the output location. To save time, you will want to disable
database interaction this time.

• Once Stacks has completed running, investigate the output files. Notice that each locus
now has a chromosome/base pair specified in each of the *tags.tsv files and in the
catalog files.

• Examine the Stacks output through the web interface:

• http://instance-address.amazonaws.com/stacks/

 [The instructor will provide this address.]

Expand the details for one or more loci (click on a locus). Turn on the allele depths and
click on some alleles to see the actual stack that corresponds.

7. The program populations calculates population genetic statistics for each SNP in
the two populations for one level of population subdivision, as we have here. So, it
will calculate expected and observed heterozygosity, π, FIS, and it includes FST as a
measure of genetic differentiation between populations. It uses the same method for
calculating FST as was used in the human HapMap project.

• Now look at the output in the file batch_1.sumstats.tsv. There are a large
number of statistics calculated at each SNP, such as the frequency of the major allele
(P), and the observed and expected heterozygosity, and FIS. Use UNIX commands like
head, cat, cut, more, column, and sort to focus on the minimum and maximum
heterozygosity and FIS statistics. Are these statistics in the (roughly) same locations
within the genome between the two populations? How are these summary statistics
related to Hardy-Weinberg equilibrium?

• What are the population mean and standard error for π in the two populations (check
the batch_1.sumstats_summary.tsv file).

• Examine catalog locus 65 in the web interface (place the locus number in the catalog
filter at the top of the web page). Use grep to extract locus 65 from the
batch_1.sumstats.tsv file. The sumstats file provides a measure of P, the most
frequent allele present in the population. Verify that for the two SNPs in locus 65 that P
properly corresponds to the number of alleles present in the web interface.

8. Because RAD produces so many genetic markers, and because we have a reference
genome sequence, we can examine population genetic statistics like FST as continuous
distributions along the genome. The populations program does this using a kernel-
smoothing sliding window approach.

• Run the populations program again, this time turning on kernel smoothing for FST.
Also, turn on filters so we only include loci available in both populations that are
found in 75% of individuals of each population, and use a p-value correction to
exclude insignificant FST measures. Be sure to again specify the population map you
created previously and turn on multithreading.

���17

• The output file batch_1.fst_summary contains the mean FST measure between
populations. What is the mean FST between the marine and freshwater populations?

• The output file batch_1.fst_1-2.tsv contains FST , a measure of genetic
differentiation between the two populations. What is the maximum value of FST at any
SNP? How many SNPs reach this FST value?

• Look at the genomic distribution of FST in the file batch_1.fst_1-2.tsv. Use
UNIX commands like cut and sort to find the genomic regions that show the highest
levels of population differentiation.

• What does the p-value generated by Fisher’s exact test tell you about a particular FST

score? How about the LOD score?

• Now plot FST over a single linkage group. First use grep to produce a new FST file
with only data for Linkage Group IV (labeled groupIV), call it
batch_1.fst_1-2_lg4.tsv. Now plot this file using gnuplot.

• Copy the Gnuplot script to the stacks directory:

 /stacks_data/scan/fst_groupIV.gnuplot

• Cat the file to see what it does.

• Execute Gnuplot:

 % gnuplot < fst_groupIV.gnuplot!

• Download the resulting PDF file and open it. The red crosses represent the raw FST

measures while the green line is the kernel-smoothed average value.

!

���18

Citations and Readings 	

Core readings in preparation for the lecture and workshop
Amores, A., et al. 2011. Genome evolution and meiotic maps by massively parallel DNA

sequencing. Genetics 188:799-808.
Arnold, B. et al. 2013. RADseq underestimates diversity and introduces genealogical biases due

to nonrandom haplotype sampling. Molecular Ecology 22: 3179–3190.
Catchen, J. et al. 2011. Stacks: building and genotyping loci de novo from short-read sequences.

G3: Genes, Genomes and Genetics 1:171-182.
Catchen, J. et al. 2013a. The population structure and recent colonization history of Oregon

threespine stickleback determined using restriction-site associated DNA-sequencing.
Molecular Ecology, 22:2864–2883.

Catchen, J. et al. 2013b. Stacks: an analysis tool set for population genomics. Molecular Ecology
22:3124–3140.

Davey, J. W., et al. 2011. Genome-wide genetic marker discovery and genotyping using next-
generation sequencing. Nature Reviews Genetics 12:499-510.

Davey, J. W. et al. Special features of RAD Sequencing data: implications for genotyping.
Molecular Ecology 22: 3151–3164.

Etter, P. D., et al. 2011. SNP Discovery and Genotyping for Evolutionary Genetics using RAD
sequencing. in Molecular Methods in Evolutionary Genetics, Rockman, M., and Orgonogozo,
V., eds.

Ekblom, R., and J. Galindo. 2010. Applications of next generation sequencing in molecular
ecology of non-model organisms. Heredity 107:1-15.

Hohenlohe, P. A. et al. 2010. Population genomics of parallel adaptation in threespine
stickleback using sequenced RAD tags. PLoS Genetics 6: 1-23.

NGS population genomics background, concepts and statistical considerations
Cariou, M. et al. 2013. Is RAD-seq suitable for phylogenetic inference? An in silico assessment

and optimization. Ecol Evol 3, 846–852.
Gompert, Z., and C. A. Buerkle. 2011a. A hierarchical Bayesian model for next-generation

population genomics. Genetics 187:903-917.
Hohenlohe, P. A., et al. 2010. Using population genomics to detect selection in natural

populations: Key concepts and methodological considerations. International Journal of Plant
Sciences 171:1059-1071.

Luikart, G.,et al. 2003. The power and promise of population genomics: from genotyping to
genome typing. Nature Reviews Genetics 4:981-994.

Lynch, M. 2009. Estimation of allele frequencies from high-coverage genome-sequencing
projects. Genetics 182:295-301.

Nielsen, R., et al. 2005. Genomic scans for selective sweeps using SNP data. Genome Research
15:1566-1575.

Nielsen, R., et al. 2011. Genotype and SNP calling from next-generation sequencing data.
Nature Reviews Genetics 12:443-451.

Rubin, B. E. R. et al. 2012. Inferring Phylogenies from RAD Sequence Data. PLoS ONE 7,
e33394–e33394.

Stapley, J., et al. 2010. Adaptation genomics: the next generation. Trends in Ecology and
Evolution 25:705-712.

���19

!
Empirical studies using RRL and RAD sequencing

Altshuler, D., et al. 2000. An SNP map of the human genome generated by reduced
representation shotgun sequencing. Nature 407:513-516.

Baxter, S. W., et al. 2011. Linkage mapping and comparative genomics using next-generation
RAD sequencing of a non-model organism. PLoS ONE 6:e19315.

Chutimanitsakun, Y., et al. 2011. Construction and application for QTL analysis of a Restriction
Site Associated DNA (RAD) linkage map in barley. BMC Genomics 12: 1-13.

Emerson, K. J., et al. 2010. Resolving postglacial phylogeography using high-throughput
sequencing. Proceedings of the National Academy of Sciences 107:16196-16200.

Gore, M. A., et al. 2009. A first-generation haplotype map of maize. Science 326:1115-1117.
Richards, P. M. et al. 2013. RAD-Seq derived markers flank the shell colour and banding loci of

the Cepaea nemoralis supergene. Molecular Ecology 22, 3077–3089. !
RAD-seq genotyping methodology

Baird, N. A., et al. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD
markers. PLoS ONE 3:e3376.

Etter, P. D., et al. 2011. Local De Novo Assembly of RAD Paired-End Contigs Using Short
Sequencing Reads. PLoS ONE 6:e18561

Hohenlohe, P. A., et al. 2011. Next-generation RAD sequencing identifies thousands of SNPs for
assessing hybridization between rainbow and westslope cutthroat trout. Molecular Ecology
Resources 11 Suppl 1:117-122.

Miller, M. R., et al. 2007. Rapid and cost-effective polymorphism identification and genotyping
using restriction site associated DNA (RAD) markers. Genome Research 17:240-248.

Willing, E. M., et al. 2011. Paired-end RAD-seq for de novo assembly and marker design without
available reference. Bioinformatics 27:2187-2193. !

Related reduced representation library (RRL) methodologies
Andolfatto, P., et al. 2011. Multiplexed shotgun genotyping for rapid and efficient genetic

mapping. Genome Research 21:610-617.
Elshire, R. J., et al. 2011. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High

Diversity Species. PLoS ONE 6:e19379.
Peterson, B. K. et al. 2012. Double digest RADseq: an inexpensive method for de novo SNP

discovery and genotyping in model and non-model species. PLoS ONE 7, e37135.
Rigola, D., et al. 2009. High-Throughput Detection of Induced Mutations and Natural Variation

Using KeyPoint™ Technology. PLoS ONE 4:e4761.
van Orsouw, N. J., et al. 2007. Complexity reduction of polymorphic sequences (CRoPS): a

novel approach for large-scale polymorphism discovery in complex genomes. PLoS ONE
2:e1172.

van Tassell, C. P., et al. 2008. SNP discovery and allele frequency estimation by deep sequencing
of reduced representation libraries. Nature Methods 5:247-252

Wang, S. et al. 2012. 2b-RAD: a simple and flexible method for genome-wide genotyping.
Nature Methods 9, 808–810. !

���20

Useful links	

!
1. Quality scores

1. http://en.wikipedia.org/wiki/FASTQ_format

2. http://en.wikipedia.org/wiki/Phred_quality_score

3. http://www.phrap.com/phred/

4. http://www.illumina.com/truseq/quality_101/quality_scores.ilmn

!
2. Basic Unix and PERL commands

1. http://mally.stanford.edu/~sr/computing/basic-unix.html

2. http://korflab.ucdavis.edu/Unix_and_Perl/

!
3. Stacks download and tutorials

1. http://creskolab.uoregon.edu/stacks/

!
4. Great site for information on next gen sequencing

1. http://seqanswers.com/

���21

