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‘ calculate the probability that we wait the time interval « until a coalescent

‘ calculate the probability of the particular coalescent event

‘ multiply these probabilities for all time intervals



— Waiting time for coalescent event

— Probability of coalescent event

‘ calculate the probability that we wait the time interval « until a coalescent
‘ calculate the probability of the particular coalescent event

‘ multiply these probabilities for all time intervals
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Extensions of the basic coalescence
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‘ Population growth (2 paramete), fluctuations, bottlenecks

‘ Migration among populations (2 to many, potentially thousands, parameters)
‘ Population splitting (2 to many parameters)

‘ Recombination (2 parameters)



Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more

general approaches.
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general approaches.

‘ In a small population lineages coalesce quickly

This leaves a signature in the data. We can exploit this and estimate the
population growth rate g jointly with the current population size ©.



Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more
general approaches.

‘ In a small population lineages coalesce quickly

‘ In a large population lineages coalesce slowly

This leaves a signature in the data. We can exploit this and estimate the
population growth rate g jointly with the current population size ©.
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Populations are rarely completely stable through time
and attempts have been made to model population

growth or shrinkage using linear,
general approaches. For example exponential growth

could be modeled as
AN
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For constant population size we found

k(1) )2
p(GlO) = He_“J 1
Relaxing the constant size to exponential

growth and using g = r/u leads to

; k(k 1) 2
@ One—8t
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Present

Problems with the exponential model: Even
with moderately shrinking populations, it is
possible that the sample lineages do not
coalesce. With growing populations this
problem does not occur. This discrepancy
leads to an upwards biased estimate of the
growth rate for a single locus. Multiple locus
estimates improve the results.
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Expansion of Pelophylax lessonae in Europe
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can handle such scenarios.

skyride
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parametric approach for its skyline plots that has the tendency to smooth the

fluctuations too much, compared to beast.
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Random fluctuations of the population size are most often ignored. BEAST

(and to some extent MIGRATE)
a full parametric approach
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Comparison of the skyline
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The single population coalescence rate is

k(k —1)
AN

Changes for two populations to

ki(ki — 1) ko(ko — 1)
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Structured populations Migration

Locations of samples [377 microsatellites]

A total of 70 individuals from 7 populations analyzed for 377 microsatellite loci:
Mutation model is Brownian motion approximation to the single-step mutation
model



Structured populations

H,: One panmictic population
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Structured populations Migration

H,: Tangled mess
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Structured populations Migration
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Structured populations Migration

H,: Out of Africa, indecision anywhere else
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Structured populations Migration

- imal model




Structured populations Migration

H,: South-Asia is cradle of humans
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Structured populations Migration




\ Model order and probability using Bayes factors

1\ > all other models: 0.0
N A Minimal model 1.0

H;: Minimal model
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co-estimation of divergence
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Not all datasets can
separate migration from
divergence, and multiple
loci are helpful.






If we consider only a single individual that is today in population A. We also know
that its ancestor was a member of population B then it will be only a matter of
time to change the population label, but when?

Today Past
S

(Palczewski, Ashki, and Beerli [in prep.] An alternative population fission model to the isolation with
migration model.) 41 of 63 — ©2015 Peter Beerli



Looking backwards in time we could think about the risk of A turning into B
which becomes larger and larger the further back in time the lineage goes. In
the coalescence framework we are well accustomed to that thinking: we use the
risk of a coalescent or the risk of a migration event. This risk can be expressed
using the hazard function (or failure rate). Here we use the hazard function of

the Normal distribution.

Today Past

(Palczewski, Ashki, and Beerli [in prep.] An alternative population fission model to the isolation with
migration model.) 42 of 63 — ©2015 Peter Beerl



One lineage is easy, but what about the genealogy? Each lineage is at risk

of being in the ancestral population, thus we need to consider coalescences,
migration events, and population label changing events. This results in
genealogies that are realizations of migration and population splitting events.

1




Population splitting

0.32 ! ! ! ! ! ! ! ! ! ! P
0.24} Lee

.

2

0.16} PRRZ ]
P
\““

0.12f R e |

-
0.08} e 1
-
06} - e i
0.06 e

0.04} -
0.03} -

0.02F -

R

0.01v y i

.
.
.
.
.
.
R
.

Estimated divergence time
\
\

!
[
|

0.005}.."

®

®

’ | | | | | | | | | |

005 0.01 0.02 0.030.04 0.060.08 0.120.16 0.240.32
Simulated divergence time

(Palczewski, Ashki, and Beerli [in prep.] An alternative population fission model to the isolation with migration model.)
44 of 63 — ©2015 Peter Beerli



Population splitting
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Population splitting

0-32 ! ! ! ! ! ! ! ! ! !

-5
0.24_ "g‘gg = ]
0.16f PR A .
PR
- e .
0.12 o
"“"
0.08} . e’ i
v - ”,g'
é 0-06 B _ ~ - "“‘\g, P n
. ’
v 0.04} _-o 8, §
£ 0.03 -~ & 7
» - \—/ N
o _--" 8 . o7 oo e oo o060
il - K
B - ' 4 i
g 0.02f __- S ,
- — ot y2
-O “\
© g \\\\\ /,
£ 0.01f ‘o ’ !
* V4
= ® ’
= ’
n
w 0.005}. ‘
]
I
1
7
® ]
o
’ | | | | | | | | | |
0.005 0.01 0.02 0.030.04 0.060.08 0.120.16 0.240.32

Simulated divergence time

(Palczewski, Ashki, and Beerli [in prep.] An alternative population fission model to the isolation with migration model.)
46 of 63 — ©2015 Peter Beerli



Population splitting
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Estimation of splitting dates of 6 subspecies
of pygmy rattle snakes using MIGRATE (data

from Kubatko et al. 2011)
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S. m. miliaris
S. m. barbouri
S. m. streckeri

S. c. tergeminus

S. c. edwardsii >. C. catenatus
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ES’[‘IF{T{'a’[IOhQ of “épllttlng dates of 6 subspecies
of pygmy rattle snakes using MIGRATE (data
from Kubatko et al. 2011)
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The evil reviewer says: “You shall not use method/program X because your data
does not fit the assumptions for...”

‘ Required samples

‘ Recombination

‘ Population size fluctuation

‘ Divergence



sizes.

‘ The time to the most recent common ancestor is robust to different sample

‘ Simulated sequence data from a single population have shown that after 8

individuals you should better add another locus than more individuals.
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~500 simulated datasets
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~500 simulated datasets
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The standard coalescent assumes neutral mutations and also exchangeable
number of offspring, loci under selection will violate both tenets. In the allele
frequency spectrum literature recently there is a strong push on looking at
signals of selection, which seems still very difficult in "traditional’ coalescence
approaches.

‘ A new mutation that has a positive effect will replace some of the variability
present in the population. All linked sites will suffer a drop in effective
population size.

‘ A new mutation that has a negative effect and will be most likely removed ,
also resulting in a reduction of variability (and population size)

This is used in genome-wide selection scans, but influence of population growth,
population structure on such estimates are not well studied.



‘ MIGRATE; If you are interested in MIGRATE talk to me during the lab time this
afternoon, | will be here until Thursday morning 08:00 AM.

‘ (On the http://popgensc.fsu.edu website, check out “Bayes factors”
and“Parallel migrate”)




