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A less complex model of the Prague Metro
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Which model is most useful?
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When do models matter in phylogenetics?

* Model-based methods including ML and Bayesian inference (typically)
make a consistent estimate of the phylogeny (estimate converges to true
tree as number of sites increases toward infinity)

... even when you're in the “Felsenstein Zone”

A C

(Felsenstein, 1978)
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In the Felsenstein Zone
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Why do models matter?
(continued)

Parsimony is inconsistent in the Felsenstein zone (and
other scenarios)

Likelihood is consistent in any “zone” (when certain
requirements are met)

But this guarantee requires that the model be specified
correctly! Likelihood can also be inconsistent if the
model is oversimplified

Real data always evolve according to processes more complex
than any computationally feasible model would permit, so we
have to choose “good” rather than “correct” models
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What is a “good” model?

A model that appropriately balances fit of the data with
simplicity (parsimony, in a different sense)

i.e., if a simpler model fits the data almost as well as a more
complex model, prefer the simpler one
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(r* =1.000)
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“The Principle of Parsimony” in the world of statistics

Burnham and Anderson (1998): Model Selection and

Inference

Parsimony lies between the evils of underfitting and

overfitting. The concept of parsimony
the sciences. Often this has been ex

nas a long history in in
oressed as “Occam’s

razor” —shave away all that is not necessary. Parsimony in
statistics represents a tradeoff between bias and variance as a
function of the dimension of the model. A good model is a
balance between under- and over-fitting.
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Why models don’t have to be perfect

Assertion: In most situations, phylogenetic inference is relatively
robust to model misspecification, as long as critical factors
influencing sequence evolution are accommodated

Caveat: There are some kinds of model misspecification that are
very difficult to overcome (e.g., “heterotachy”)

E.g.: A\_/C >_<
B D

B D
Half of sites Other half

Likelihood can be consistent in Felsenstein zone, but will be inconsistent
if a single set of branch lengths are assumed when there are actually two
sets of branch lengths (Chang 1996)
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GTR Family of Reversible DNA Substitution Models

(general time-reversible)

GTR
3 substitution types
(transversions, 2 transition classes) Equal base frequencies
(Tamura-Nei) TrN SYM
2 substitution types 3 substitution types
(transitions vs. (transitions,
transversions) 2 transversion classes)
(Hasegawa-Kishir.10-Yano) HKY85 K3ST (Kimura 3-subst. type)
(Felsenstein) F84 Equal base
frequencies

2 substitution types

Single substitution type (transitions vs. transversions)

(Felsenstein) F 81 K2P (Kimura 2-parameter)

Equal base frequencies Single substitution type

JC

Jukes-Cantor
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Modeling among-site rate heterogeneity

equal rates?

»
>

Lemur AAGCTTCATAG

Homo
Pan

AAGCTTCACCG
AAGCTTCACCG

Goril AAGCTTCACCG
Pongo AAGCTTCACCG

Hylo
Maca

AAGCTTTACAG
AAGCTTTTCCG

TTGCATCATCCA ..
TTGCATCATCCA ..
TTACGCCATCCA ..
TTACGCCATCCA ..
..GCAACCACCCTC

TTACGCCATCCT

TTACATTATCCG ..
TTACATTATCCG ..

TTACATCATCCA
TTACATCCTCAT
TTACATCCTCAT
CCCACGGACTTA

TGCAACCGTCCT
CGCAACCATCCT

® Proportion of invariable sites

Some sites extremely unlikely to change due to strong functional or structural
constraint (Hasegawa et al., 1985)

® Gamma-distributed rates
Rate variation assumed to follow a gamma distribution with shape parameter a
® Site-specific rates (another way to model ASRV)

Different relative rates assumed for pre-assigned subsets of sites
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Modeling ASRV with a gamma distribution (“+G”)
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For computational reasons we “discretize”
the gamma distribution

Boundaries are placed so that
1 - each category represents 1/4

‘ Boundary between 1st and 2nd categories of the distribution (i.e. 1/4 of
0.8

the area under the curve)
Boundary between 2nd and 3rd categories Slide from Paul
Lewis’s lecture
E .\-
0.4 : : Boundary between 3rd and 4th categories i

L NN N )

0.6

0.2| r,=0.137 & r, =0.477 i— r;=1.000 T — r, = 2.386
Sl 20 B 2 v
0 0.5 1 1.5 2 £

|

Can optionally also include an invariable
sites category ro =0 (“+1+G”)
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An aside on “+1+G” models

Models containing both gamma-distributed rates and invariable
sites can be problematic due to the correlation of a and piny

pooy1jaxi uj
pooy|ayi ul

My opinion: This does not invalidate the use of
the model, it just means that caution must be
used in interpreting the parameter values
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Performance of ML when its model is violated

Tree

< XX
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“Moderate” rate variation
Felsenstein zone
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“Moderate” rate variation
inverse-Felsenstein zone
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Model selection criteria

Likelihood ratio tests

Test statistic: O = —2(ln L,—1In L1)

If model Lg is nested within model Ly, 6 is
(asymptotically) distributed as X? with
degrees-of-freedom equal to difference in
number of free parameters
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Simulation under JC
Fitting JC and K2P

2
L

| / 0.05 and 0.01 critical values
u 3.84

6.64
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Model selection criteria

Akaike Information Criterion (AIC):

AIC, =-2InL, +2K

where K'is the number of free
parameters estimated

AlCc, = AIC; A R(A+]) (“corrected”)

N—-K -1
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Model selection criteria

Bayesian Information Criterion (AIC):

BIC,=—2InL +KInN

where N is the “sample
size” (typically number of sites)

Note than In N exceeds 2 when K= 8, so BIC
typically penalizes model complexity much more
heavily
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Partitioned Models

Up to now, we have been talking about homogeneous (unpartitioned)
models, but many authors have emphasized the importance of modeling
heterogeneity among genes or other subsets of the data appropriately

Buckley, T. R., Arensburger, P., Simon, C., & Chambers, G. K. (2002). Combined data,
Bayesian phylogenetics, and the origin of the New Zealand cicada genera.
Systematic Biology, 51(1), 4-18.

* Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference

under mixed models. Bioinformatics, 19(12), 1572—-1574.

« Suchard, M., Kitchen, C. M. R., Sinsheimer, J. S., & Weiss, R. E. (2003). Hierarchical
phylogenetic models for analyzing multipartite sequence data. Systematic Biology,
52(5), 649—-664.

« Pagel, M., & Meade, A. (2004). A phylogenetic mixture model for detecting pattern-
heterogeneity in gene sequence or character-state data. Systematic Biology, 53(4),
571-581.

« Brandley, M. C., Schmitz, A., & Reeder, T. W. (2005). Partitioned Bayesian analyses,

partition choice, and the phylogenetic relationships of scincid lizards. Systematic

Biology, 54(3), 373—-390.

... and many more recent papers

“...data partitioning is more an art than a
science, and it should rely on our
knowledge of the biological system...”

Yang and Rannala (2012; Nature Rev. Genet. 13:303-314)
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Ways to partition

® By gene
® By codon
® By gene/codon combination

® Stems vs. loops (probably not advisable—e.g.,
Simon et al., 2006)

® Coding vs. noncoding
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Naive partitioning

® Run ModelTest/JModelTest; estimate a
model (from the GTR+I+G family)
separately for each gene/subset

® Perform an ML/Bayesian analysis,
assigning the chosen models to each

Too many parameters! 1-10
parameters for each gene; amount
of data available to estimate each

parameter does not increase
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Over-Partitioning
Consider the following (contrived) example:
® Gene A: HKY+G, it = (0.26, 0.24, 0.23, 0.27), k=1.1, a=3.0

® Gene B: GTR, it = (0.25,0.24,0.25,0.26), (a,b,c,d,e)=(1.1, 1.2,
0.9, 1.1, 0.95)

® Gene C:JC+| (pinv=0.05)

These are all GTR models that are not far from
the Jukes-Cantor model, but they all have
different “names”

Better to estimate one GTR model (even with
54+3+1+1=10 parameters, estimated from all data) than
3 separate models with 2+5+1=8 parameters (but only

one gene’s worth of data for each model)
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How to find optimal partitionings?

Consider a data
set with 3 genes,
A, B, and C:

>
®

Jok
0@®@®00

=
oW

For each partitioning scheme, evaluate some set
of models from the GTR+I+G (e.g., 56 models)
according to AIC or BIC

Choose a combination of partitioning scheme and
model for subsequent partitioned-model analyses

Rob Lanfear’s PartitionFinder (http://www.robertlanfear.com/partitionfinder/)
automates this process; method now also available in PAUP* test versions
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How many partitionings?

In general, the

number of

partitionings on n

subsets is a “Bell

number”

Clearly, there are too many partitioning
schemes to evaluate them all for more
than a few subsets.
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Greedy algorithm when there are too many

@ O0®0D @ D® O
@ D® O B O® O

i N

ABDOO /7/ CD®®

AB00 | EGEOG&D
B CDOD®
1+ n(n?-1)/6 =11 schemes |
For 1265 genes, there would still (A" B C D)
be 337,380,561 schemes to e ot
evaluate!

Y
Biology and Evolution, 29(6), 1695-1701
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How to partition thousands of genes (or other subsets)?

Cluster analysis

e Li, Lu, and Orti (2008)

Estimate unlinked model parameters using a shared model;
similar subsets will have similar parameter estimates and will
cluster together.

Problem? Similar models (in the sense of predicting similar site pattern

frequencies), can have different parameter MLEs. Also must use same
model for all subsets.

e Lanfear et al. (most recent PartitionFinder)

Compute single-site likelihood values; cluster sites that have similar
site likelihoods into larger subsets.

Problem? Site likelihood is more determined by rate than anything else.
Evolutionary rates will have more to do with the clusterings than differences in
substitution pattern, state frequencies, etc.
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A possible solution?

Cluster based on expected site-pattern frequencies

one site pattern

A TAATGG
B CATGA
C . lchGea ...
D CATGG
E AECGA

® Estimate an ML model for each subset

e Compute expected frequency of each possible site pattern

according to chosen model

In general, too many to use them all (4" for DNA). Koch and Holder (2012) have an
algorithm for calculating the probability that a site will be a member of a particular
class of character patterns (number of parsimony steps plus nucleotides present);
use this to objectively pool sites.

e Cluster together those subsets that have similar site-pattern-

frequency spectra.

Site pattern frequencies constitute a discrete probability distribution, so natural
dissimilarity measure is the Kullback-Leibler divergence.
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Clustering on Kullback-Leibler divergences
Can’t use simple K-means algorithm (KL

divergences are non-symmetric and violate
the triangle inequality)

' r
.
'] . !
1 J ' o
o .
b @ { 2B ®
L J
. -
| S, A ) A

0 2 i b 5 1 12 14 16 18 0 2 1 6 5 10 12 14

Fig. 1. Clusterings obtained by minimizing Euclidean (left) and Kullback-Leibler
(right) potential. The centroids are shown as black dots.

Nock, Luosto, and Kivinen (2008). Mixed Bregman Clustering with Approximation Guarantees, p. 154-169 in
Machine Learning and Knowledge Discovery in Databases (Daelemans, Goethals, and Morik, eds.), Springer.
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Clustering partition subsets by
Kullback-Leibler divergence

® Tricky—standard K-means does not work;
need to use k-medians or k-medoids instead;

had to write custom code.

® Preliminary results: No change for
elasmobranch phylogeny (still get “wacky”

tree)

® Method needs to be validated using
computer simulation before | will be satisfied

that it works (in progress).
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