Lies, damn lies, and ....
genomics
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Goal of this lecture

» Present a non-typical view of ecological genomics

* Make you uncomfortable by sharing my
nightmares

» Encourage you to critically assess your results in
light of publication biases






How would that
affect your

expectations
and work?




If the biomedical science has the

most money and oversight, then ...

Their findings should be reasonably robust:

— Repeatable effect sizes
e The same in different labs
e The same over time



Publication replication failures

* Biomedical studies
— 0f 49 most cited clincal studies, 45 showed intervention was effective
— Most were randomized control studies (robust design)

— 0Of the 34 that were later replicated, 41% were directly contradicted
or had much lower effect sizes.

* Mouse cocaine effect study, replicated in three cities
— Highly standardized study

— Average movement was 600 cm, 701 cm, and > 5000 cm in the three
study sites

Lehrer 2010
loannidis 2005 JAMA



Assessing reality using RNA-Seq data
funnel plofs

Sex ratio in birds
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Publication bias increases effect size

® Published study
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Fluctuating asymmetry and mate preference:
a correlation between effect size and sample size

under-reported e sex trait
0.8 x human face
, o ordinary trait
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What if there is no replication?

What is most likely to publish?
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Why Most Published Research Findings Are False

A research finding is less likely to be true when:

<,

/he studies conducted in a field have a small sample size

/

when there is a greater number of tested relationships using fests
:nith a priori selection

vhen effect sizes are small

W where there is greater flexibility in designs, definitions, outcomes,
/qnd analytical modes

4 _when there is greater financial and other interest and prejudice

“/" when more teams are involved in a scientific field, all chasing after
statistical significance by using different tests

loannidis 2005 Plos Med.



There are lies, damn lies,

and ...

Are datasets too big to fail?
What do follow-up studies reveal?

How can we gain confidence in our work?



o What is the genomic architecture of phenotypes?

o What is the power of molecular tests of selection?

o What does the dissection of a classic comparative
genomics study reveal?



Non — adaptive Adaptive

.
o in >
disease, aging, height, etc. salinity, color, resistance, etc.
l generally ... ‘
1000’s of loci, each of One or several loci of large
small effect size effect

Is this a publication bias?

Will your trait have 1000’s of small effect
genes, or a few genes of large effect?

Sear (2010) ... Is bigger always better? Rockman (2011) ... All that’s gold does not glitter



Metabolic Pathways

R

 Publications using moleculur tests demonstrate we can sequence e
our way to answers

Current paradigm: =

Sequence, map, find sig. patterns, make causal story, moveon
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What is the architecture of a causal variant?

Enhancer2 TATA box
Enhancer 1 and GC box

, Start codon ?é%%n Polyadenylation

Transcription site
initiation




How predictable are
adaptations?

Plants Animals

Coding' 71 163
Cis-regulatory 26 48
Other? 16 7 0
Total 113 1983 1986 1989 1992 1995 1998 2001 2004 2007
Null® 67 32 Year of Publication

50 1 cis-regulatory

Cumulative Number of Mutations

Morphology Physiology Behavior

Coding’ 62 170
Cis-regulatory 43 29
Other* 3 20

Total
Null® 41 58

Stern & Orgogozo 2008 Evolution



How do we identify the genes that matter?

* Molecular tests of selection are popular, but ...
— What are their assumptions and power?

» What are these tests detecting?

—What is a footprint of selection?

* How are they formed?
* How large are they?

* How long do the last?



Finding the genes: [ fmesese

a decision free .~ o

Number of Populations I | Knowledge of substitution class
one multip yes

- Many publications
Mode of Selection | tion rates

positive balancing each use > 50% Of
v \‘ these tests, then

Tyoe of Sween argue which are

soft

Important

i+ nucleotide diversity () :
: -+ allele frequency spectrum :
(Tajima’s D)

Hohenlohe et al. 2010 Int. J. Plant Science



What power do we

have to detect What is

bu|uncing statistical

: .
selection? power

Power is the probubilin{lthui the test will re||'1eci the
null hypothesis when the alternative hypothesis is

TRUE

Using a t-test, you want power > 90% af reasonable
sample size, right?



Width of window (bp)

What power do we 200 1000
have to detect 356 902 028 935 83
balancing selection?

Tajima’s D
% finding selection of 5000 simulations

* For Drosophila melanogaster, power = 50% with window size of 200 bp,
using 24 diploid individuals.

« For species with larger population size, power likely lower

* Recombination and gene conversion destroy ‘footprint’ rather quickly

Nordborg and Innan 2003 Genetics
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expectations of hard
selection

Population genomics has been
dominated by developing
methods to defect hard sweeps
for past two decades

— But a ‘null model’ has been
elusive, resulting in many
false positives

Storz 2005 Mol. Ecology




Strong Positive Selection
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* There are many molecular tests of selection
— Each performs better under a specific set of conditions

e Their power is very low under a range of realistic biological
conditions

* Their false positive rate can be very high across a range of
realistic biological conditions



Hard selection case example:
threespine stickleback fish

Freshwater

ST«
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* 9.0x coverage
O 2.3x coverage




Threespine stickleback fish

(Gasterosteus aculeatus)

e Has body armor in the ocean

e Loses almost all armor in lakes

Invaded
fresh water
lake

Natural selection




Parallel adaptation in fresh

water lakes via hard sweeps

Marine population

Locus 1 Locus 2 Locus 3 Locus 4
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Individual genome sequencing: powerful insights
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Euclidean distance to freshwater centroid

2-5 X per individual, sliding 2500 bp window, 500 bp step Jones et al. 2012 Nature



What regions are important? Coding or expression?

EDA

ChrUn Jones et al. 2012 Nature



How common are such hard
selective sweeps?

| N
] >

Time in generations

Does your favorite test for selection rely a” ‘”

upon one or many sweep events?
— MK-test needs repeated events
— Fst outlier, EHH, Tajima’s D, etc.
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Storz 2005 Molecular Ecology



Hard vs. soft or incomplete sweeps in populations

Hard Sweep

Oceanic
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Image courtesy of W. Cresko



How common were hard sweeps in our history?

* “we argue that soft sweeps might be the dominant mode of
adaptation in many species”

Messer and Petrov 2013 TREE

How common were hard sweeps in our history?

e “classic sweeps were not a dominant mode of human adaptation
over the past 250,000 years”

* “much local adaptation has occurred by selection acfing on existing

variation rather than new mutation”
1000 Genomes PC 2010 Science

Hernandez et al. 2011 Science



How common are soft sweeps in your species?

Thought experiment:
Do most species respond to selection in the lab? Yes
Why? existing variation in population
If populations have variation, can selection act on it? Yes
What does this tell us about frequency of soft selection in wild?

We have not been studying
the dominant form of
selection in the wild &

cannot reliably detect it




Age and type of selection matters

Novel mutation, large mutation, hard sweep selected to fixation
— High probability of detection

Old mutation, polygenetic, soft sweep of incomplete fixation
— Very low probability of detection

Finding the causal mechanism
— Coding > expression
— SNPs > more complex mutations (indel, TE, CNV)
— Ongoing gene flow & grouping by phenotype across replicate populations helps a lot

What is the relative frequency of these?
— What will be the architecture of your phenotype?
— What does your method have the highest power to detect?



Get ready, here come the
1000" genomes

— plans to sequeg

* Many other larg §5k
An unprecedented

opportunity for
large scale errors?

Futionships
— Genome evolution

— Functional insights into genes and genomic
features (e.g. requlation and inheritance)



Classic study: Evolution of genes and genomes
on the Drosophila phylogeny

D. melanogaster

D. sechellia

D. simulans

melanogaster group D. yakuba

D. erecta

D. ananassae
Sophophora
subgenus

obscura group D. pseudoobscura

D. persimilis

willistoni group D. willistoni
. willistoni

repleta group D. mojavensis

D. virilis
virilis group
Drosophila
subgenus

o . D. grimshawi
Hawaiian Drosophila

| I S S S S S E— Specialist species
70 60 50 40 30 20 10 O
Divergence in Myr

Drosophila 12 Genomes Consortium 2007 Nature



D. simulans

Q.

Tempo and mode of chromosome evolution
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D. melanogaster
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D. melanogaster

e > 70 My, chromosomal order completely reshuffled in Diptera

Drosophila 12 Genomes Consortium 2007 Nature




Total no. of protein- coding  Coding sequence/

genes (per cent with D. intron (Mb)
° melanogaster homologue)
G e n 0 m e evo U 'I'l 0 n D. melanogaster 13,733 (100%) 38.9/218
D. simulans 15,983 (80.0%) 458/19.6
D. sechellia 16,884 (81.2%) 479/219
. D. yakuba 16,423 (82.5%) 50.8/22.9
D Froso p h | | - 1 2 G enomes D. erecta 15,324 (86.4%) 49.1/22.0
D. ananassae 15,276 (83.0%) 57.3/22.3
: D. pseudoobscura 16,363 (78.2%) 49.7/24.0
Consortium 2007 Nature D. persimils 17325 (72.6%) 54.0/219
D. willistoni 15,816 (78.8%) 65.4/23.5
D. virilis 14,680 (82.7%) 57.9/21.7
D. melanogaster —: D. mojavensis 14,849 (80.8%) 57.8/21.9
D. grimshawi 15,270 (81.3%) 549/22.5
D. simulans M&:
D. sechellia 1 ]
D. yakuba M&
D. erecta
|/ g '/
D. ananassae M@ ‘D )
D. pseudoobscura A&%
D. persimilis | — I
D, Wi O 7 | T |
4
D. virilis Mg%
M—fi—:
D. mojavensis
D. grimshawi —:::
0 5,000 10,000 15,000 20,000 25,000

Number of gene models

® Single-copy orthologues @ Conserved homologues B Patchy homologues (with mel.)

O Patchy homologues (no mel.) 0 Lineage specific



Selection dynamics across functional categories

Catabolic process -

lon transport <

Protein metabolic process -

Protein transport -

Carbohydrate metabolic process

Generation of precursor metabolites and energy =
Cellular localization -

Transport -

Biosynthetic process -

Amino acid and derivative metabolic process -
Translation -

Cell—cell signalling -

Vesicle-mediated transport -~

B -log(probability of positive selection)
oo

* 33.1% of single-copy orthologues have experienced positive
selection on at least a subset of codons.

Drosophila 12 Genomes Consortium 2007 Nature



Gene Family Evolution across 12
Drosophila Genomes

* One fixed gene gain/ loss
across the genome every

60,000 yr

e 17 genes are estimated to be
duplicated and fixed in @
genome every million years

Drosophila 12 Genomes Consortium 2007 Nature
Hahn et al. 2007 Plos Genetics



Comparative Genomics : a house of cards?

» Data scale is too large to thoroughly assess errors ...
— lis likely 50% of what we think we know is wrong |

e All conclusions, at some stage, rest upon
— Simple bioinformatics
— Assumptions that get incorporated into seemingly unbiased methods

» Exploring two pillars of these studies, their error and
repercussions

— Gene alignments in detecting positive selection
— Calibrations in temporal analysis



Established studies allow ...

Follow up studies to reveal limitations

Robust findings to emerge with age



Catabolic process

lon transport

Protein metabolic process

Protein transport

Carbohydrate metabolic process

Generation of precursor metabolites and energy
Cellular localization

Transport

Biosynthetic process

Amino acid and derivative metabolic process
Translation

Cell—cell signalling

Vesicle-mediated transport

0.00

B -log(probability of positive selection)
oo

33.1% of single-copy orthologues
have experienced positive selection
on at least a subset of codons.

How robust are these conclusions?



Codon based tests of selection

Neutral evolution

Positive selection f.ex. pseudogenes

f.ex. effector genes

1 po
1 ne
1 pu

VAN | I V4

Purifying selection
f.ex. housekeeping genes

dS
sitive sel.
utral
rifying sel. IMPRS workshop,

Comparative Genomics



Evolution of genes and genomes on the
Drosophila phylogeny

melanogaster group

Sophophora

subgenus obscura group

willistoni group

repleta group

virilis group
Drosophila
subgenus
Hawaiian Drosophila

70 60 50 40 30 20
Divergence in Myr

D. melanogaster

D. sechellia

D. simulans

D. yakuba

D. erecta

D. ananassae

D. pseudoobscura
D. persimilis

D. willistoni

D. mojavensis

D. virilis

D. grimshawi

Specialist species

Drosophila 12 Genomes Consortium 2007 Nature



dN/dS estimates &
by aligner [

* 6690 orthologs

e 5 alignment
methods

* Alignment
methods affect
dN/dS estimates

Markova-Raina & Petrov 2011 Genome Biology



Comparing results across methods is responsible

Since we can't look at our data, we need approaches that
allow 1+ principal assessments
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Aligner tool has a larger effect than biology

12 genomes, 12 genomes, 12 genomes, M7/8, Melanogaster
M7/8 M1la/2a with removed gaps group, M7/8

Aligner  95% (a) 99% (b) 95% (c) 99% (d) 95% (e) 99% (f) 95%(g) 99% (h)

AMAP 817 213 256 110 558 104 973 257
MUSCLE 1043 306 379 192 764 155 1134 366
ProbCons 1013 281 346 180 801 182 1128 371
T-Coffee 1290 479 612 353 824 173 1248 (909) 463 (218)
ClustalW 902 261 244 117 666 112 1269 453
Totalin5 1902 673 799 441 1562 384 1737 (1723) 652 (620)
PRANK 468 49 49 16 258 42 581 70

Number of significant genes in
common across 1,2 3, 4, or all
5 of the alignment methods

Markova-Raina & Petrov 2011 Genome Biology



Alignment results highlight importance of alignment score!
—Tcoffee finds 3 selected sites indicated by arrows
—ProbCons identifies region with low alignment score, not used
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ProbCons

Markova-Raina & Petrov 2011 Genome Biology



Temporal inference:




» Direcily affects rate estimates

» Deriving unbiased dates from molecular data
— Large field of software development

» Bayesian methods, while potentially informative
and unbiased

— Can be easily, and are routinely, abused
Wheat and Wahlberg 2013 TREE



&8 Kauai
S 5,100,000 years
ag WG
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Hawaiian . S0 e

Islands 0 - 200060 yeors

Calibration: Kauai age ‘c’)f 5.1
my for divergence of two
Hawaiian species

1. No phylogeny

2. Fixed clock rate

3. Between 3 —-64 genes in
pairwise comparisons

Temporal patterns in fruitflies
(Tamura et al. 2004 MBE)

pseudoobscura / persimilis 0.85 + 0.29 (7)

simulans / mauritiana 0.93 + 0.49 (5) ﬁ‘ ﬂ
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Evolution of genes and genomes on the
Drosophila phylogeny

melanogaster group

Sophophora

subgenus obscura group

willistoni group

repleta group

virilis group
Drosophila
subgenus
Hawaiian Drosophila
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Divergence in Myr

D. melanogaster

D. sechellia

D. simulans

D. yakuba

D. erecta

D. ananassae

D. pseudoobscura
D. persimilis

D. willistoni

D. mojavensis

D. virilis

D. grimshawi

Specialist species

Drosophila 12 Genomes Consortium 2007 Nature



Tephritoidea

Schizophora other

\ families

Calyptratae

S, Cyclorrhapha
2 \ Ephydroidea
¥ Eremoneura Pipunculidae
! Syrphidae
\ \ Platypezoidea

Apystomyiidae
Brachycera Empidoidea

Asiloidea

Stratiomyomorpha
Hilarimarphidae

Drosophila clade: oo

_ SChlZOphora Nemestrinidae
constrained to

maximum of 70 Ma

— Without constraint, .
goes to 115 Ma PhhopIanaas -

Tipulomorpha

Bibionomorpha

Perissommatidae

Culicomorpha

Nymphomyiidae
Deuterophlebiidae

l I .:———1__1-—4__ illion years ago
What is reality? 2w il years 2

Episodic radiations in the fly tree of life
(Wiegmann et al. 2011 PNAS)



D. hemipeza

Determining

objective priors
is challenging

(O'ahu)
D. differens
Maui Kaua'i
(Maui) . 502424 O'ahu
D. silvestris é 4.32-3.54 .
i'i oloka'i
{aensai) ‘ 2.58—1.80
D. heteroneura &= o
(Hawai'i) 700Kkm “ 2.15-+1.37
a
— D. biseriata )
(O'ahu) ¢

(a)

D. mitchelli

(Moloka'i)
‘ D. hystricosa

E (Hawai'i) 4 Y 4

) R A D. hetroneurs
>°1 T & * Priors in Bayesian rel. clock analysis:
é § B ——i -
S Mu = lab observed mutafion rate
8 3 . . .
& S A12 = geological calibration, small Ne

i (1,2 = geological calibration, large Ne

50 160 150 2;0

Drosophila-Sophophora | Mya

Obbard et al. 2012 Mol. Biol. Evol.
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Prior
distributions |
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Prior
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* Integrative science is

challenging g
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* Discuss or
collaborate with
experts fo evaluate
your approach.
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Wheat and Wahlberg 2013 Trends Ecology & Evolution



How do we gain dating confidence
when we are in the dark?

* Fossils and DNA are likely to rarely agree

* How can we assess the temporal signal in the DNA
in a robust manner?

— Reducing prior biases and using lots of DNA data, while
modeling likely violations of analysis models

i Wheat and Wahlberg 2013

Trends Ecology & Evolution




Post-genomics challenge

“What we can measure is by definition uninteresting and what we are
interested in is by definition unmeasureable”
- Lewontin 1974

“What we understand of the genome is by definition uninteresting
and what we are interested in is by definition very damn difficult to

sequence and assemble and annotate and quantify”
-Wheat 2015

For example:
-indels & inversions
- gene family dynamics
- evolutionary dynamics



What does a
good
P-value
really tell
you?

Are you
chasing a

s method
mismatched
to
mechanism?

What does a
bad
P-value
really tell
you?




Significant P-values

Tests of Robust understanding requires validation:
selection . . .
» Genetic manipulation

* Field study manipulations



Goal of this lecture

» Present a non-typical view of ecological genomics

— So you have a more complete view of the field
* Make you uncomfortable

— Provide a context for understanding your results

» Encourage you to rethink the reality presented by
publication biases

— Overcoming this bias is a continual challenge



JOURNAL OF NEGATIVE RESULTS

- ECOLOGY & EVOLUTIONARY BIOLOGY -

http://www.jnr-eeb.org/index.php/jnr



Previous examples were at deep evolutionary time
scales

Surely such problems don't exist at the within genera
level ..... Right?



Recombination violates dN/dS tests

1 1 No recombination o
O

rectly

Codeml S 09
inferred T
selection: 3
o

False s rho = 0.01

positives can  E
. c

increase to s

&~ 05
over 30% 0

0.7 0.8

Cut-off, P

e 13% of sites simulated at omega = 2.5
° Sumple size = 30 Sequences Anisimova 2003 Genetics



Posterior distribution estimates of
substitution rates from mitochondrial
control region from Beringian bison

Age range
(kyr before present)
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Ho et al. 2007 Systematic Biology



Time dependent rates of molecular evolution

Significant implications for phylogeographic studies that use
fixed rates to assess demographic with environmental change

Spontaneous
mutation rate
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(changes/site/year)

Evolutionary substitution rate

Time before present (years)

Ho et al. 2011 Molecular Ecology



... and now for pt. 2
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