The second half

» Pool-Sequencing in species without a genome
— What it is
— Validation
— An example from my lab

* RNA-Seq

— Things to think about for those working in non-model species



Ecological Context:
the abiotic environment & biological interactions

Diapause Immunity

Life Cycle
growth, development, life history
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« Find high quality candidate SNPs directly associated with
local adaptations

» Spend our effort studying functional effects of SNPs on
fitness in the lab and wild, not on finding the SNPs

e Learn how these adaptations are integrated



What's the genetic
difference?

In 2015, how should we
answer this?

Just sequence it!



What's the genetic
diftference?

What's the cheapest/easiest experimental design?

» Sequence the be-jesus out of each group
— >25 X genomic coverage of >50 haploid genomes per group

* Make a simple genome & map this data to it!
« Use good stats fo ask what regions are different

» Figure out what those regions are
— Invest your resources in these regions and their functional role



Pool-Seq approach in model species

Low pool (n=300) ;

ViElomden{=lalelnalsl” Call SNPs
High pool (n=300)

Scan genome for sig. allele
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61 SNPs show sig association with startle response
Huang et al. 2012 PNAS



1001 ways for your pipeline
to break

An overview of genomic pipeline
challenges

W

Christopher West Wheat 2
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Informatics and Biology

» We need to make sure we put the ‘bio’ into the bioinformatics
— Do results pass 1% principals tests
— Always double check data from your core facility or service company

— Use independent analyses as ‘controls’ on accuracy
e What are your + and - controls?
« Do independent methods converge?

* Need to re-assess our common mefrics for potential bias in the
genomic age
— Bootstraps on genomic scale data
— P-values, outlier analyses, demographic null models



» Transcriptome analyses in non-model species

—Walk through pipeline and highlight issues of
concern

—What is validation?

* Insights from candidate genes
—Can Second Gen methods get us there?



Sequencing

N

Tissue collection - Computer

Library preparation setup

ipeline Qverview

Gene
expression
analysis

N

De novo Mapping reads
assembly to a reference

& g SNP

BLA§T detection
comparison & & analysis
annotation \ ‘



Pipeline Overview




How can | study

my data using
open source?

Are 16 cores
enough?

What
software &
how do |
get it?

How much
HD space
is needed?
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Computer Infrastructure

RNAseq dataset:
4 conditions X 2 tissues X 3 families X 3 replicates = 72 X 10" reads

Raw files *gz (1.4 ~3 hours / file

Get ready for your data by
Raw files downloading similar sized
expanded dataset from the Short

VARSI Read Archive. Do not wait

Mapping till it arrives
(BAM)

Annotation ~6 — 12 days

Analysis <20 Mb ~< 1 hour

Visualization BAM files




Pipeline Overview

{ Sequencing :
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Statements from core facilities that are not true:

* Here is your data
* You can't do RNA-Seq without a genome

o We'll have your data back in < 1 month



Duplication levels in RNA-Seq data

e Common in transcriptome work

» Starting with lots of high quality RNA increases
— mRNA amount for sequencing
— Decreases need of core facility to PCR your sample

* Moderate amounts of PCR duplication are OK
— 7 20% expected
— > 50% perhaps problematic if correlated with experimental design
— (lone_filter program in STACKS is excellent assessing this



Pipeline Overview
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- fragmen-

tation .
= mRNA to contigs

mRNA RT

..........

vvvvvvv

‘‘‘‘‘‘‘‘

sequence library

_—
fragmen-

tation

short sequence reads

ACGCGATTCAGGTTACCACG
GCGATTCAGGTTACCACGCG
GATTCAGGTTACCACGCGTA
TTCAGGTTACCACGCGTAGC
CAGGTTACCACGCGTAGCGC
GGTTACCACGCGTAGCGCAT
TTACCACGCGTAGCGCATTA
ACCACGCGTAGCGCATTACA
CACGCGTAGCGCATTACACA
CGCGTAGCGCATTACACAGA
CGTAGCGCATTACACAGATT
TAGCGCATTACACAGATTAG

Consensus contig ACGCGATTCAGGTTACCACGCGTAGCGCATTACACAGATTAG

Aligned reads




Alternative splicing complicates everything

I ) Exon 1 Exon 2 Exon 3 Exon 4 Exon 5
DNA  DREMRERN D PDPDPPRP PO OREBMRENG P D DO DD DD DD DGR

Exon 1 Exon 2 Exon 3 Exon4 Exon 5
RNA ..AM.I AAd AL LALILL --IA-IW.AAA .ll..Al.'W‘ll‘l,l. A A A A Akl AAAAILAIAI AL AL AL L) AL AL LA AASAA A L
[ Alternative Splicing ]
2 3 4 5 1 2 4 5 1 2 3 5
mMRNA R S R S S = S
Translation Translation Translation

Protein A Protein B Protein C

H. sapiens: > 95% of multi-exonic genes are spliced



De novo transcritpome assembly

Reconstructs splice isoforms using PE
llumina data
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Expression quintiles

A) At 53M reads, median coverage of lowest 5% quintile is 88%
B) With 53 M reads, of the total genes expressed at the 5% quintile, 47% are in

the Oracle database and 36% were assembled full length by Trinity

Gabherr et al. 2011 Nature Biotech



BUT, when Trinity finishes ....




o Assessment metrics
— Non-biological
« N50, # of contigs

—Biologically informative
« # of orthologs identified
e Ortholog hit ratio (OHR)

a/PB: o/ B=

1 = complete
<1=%covered

Hornett & Wheat 2012; O'neil & Emrich 2013 BMC Genomics

Length = a

TA contig

Ortholog
Length =



Contig length (bp)
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o 5 different TAs

« TA2
— Best N50, fewest contigs

Hornett & Wheat 2012 BMC Genomics
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OHR graphs

e Shows the number of
unique orthologs hit

7000

e Distribution of their
reconstructed length
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Comparative OHR
« Compare longest contig per ortholog for two assemblies
e Plot them against each other

0 02 04 06 08 1.0
CRR TA Illpairs

Hornett & Wheat 2012 BMC Genomics



Pipeline Overview
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Blast: an alignment tool for identification

1) Input 2) Searches database

— DNAor protein sequence — Returns detailed matching
— Database of DNA or protein information

Max Total Query E

Ident Accession
score score cover value

Description

RecName: Full=Glucose-6-phosphate isomerase; Short=GPI; AltName: Full=Phosphoglucose isomerase;: Short=PGI; AltName: Full=Phosphohexose ison 885 885 99% 0.0 76% P52031.1

RecName: Full=Glucose-6-phosphate isomerase; Short=GPI; AltName: Full=Phosphoglucose isomerase: Short=PGl: AltName: Full=Phosphohexose ison 885 885 99% 0.0 76% P52030.1

RecName: Full=Glucose-6-phosphate isomerase; Short=GPI; AltName: Full=Phosphoglucose isomerase; Short=PGI; AltName: Full=Phosphohexose ison 882 882 98% 0.0 76% P52029.2

RecName: Full=Glucose-6-phosphate isomerase; Short=GPI; AltName: Full=Autocrine motility factor: Short=AMF: AltName: Full=Neuroleukin: Short=NLK: 839 839 98% 0.0 72% P08059.3

RecName: Full=Glucose-6-phosphate isomerase: Short=GPI; AltName: Full=Autocrine motility factor; Short=AMF: AltName: Full=Neuroleukin: Short=NLK: 836 836 98% 0.0 71% Q3zBD7.4

Query 7 PKVNLKQOQDPAYQKLOEYYNNNADKINILOQLFQODADRFIKYSLRIPTPNDGEILLDYSKN 186
P L Q+ A+QKLQEYY+++ +NI LF +DA RF KYSLR+ T NDGEILLDYSKN

Sbijct = PLPPLNQEAAFQKLOEYYDSSGKDLNIKDLFVKDAKRFSKYSLRLHTONDGEILLDYSKN 63

Query 187 RIDDTTFSLLLNLAKSRNVEKARDAMFAGEKINFTEDRAVLHVALRNROQNRPIMVNGKDV 366
RI+D + LLL LAK R V+ ARDAMF+G+ IN TE+RAVLH ALRNR P++V+ KDV

Sbjct 64 RINDEVWDLLLALAKVRRVDAARDAMFSGQHINITENRAVLHTALRNRGTDPVLVDDKDV 123

Query 367 TPDVNGVLAHMKEFSTQVISGAWKGYTGKPITDVINIGIGGSDLGPLMVTEALKPYANHL 546
PDV LAHMKEF+ VISG W+G TGK ITDV+NIGIGGSDLGPLMVTEALKPY L

Sbijct 124 MPDVRAELAHMKEFTNMVISGVWRGCTGKQITDVVNIGIGGSDLGPLMVTEALKPYGKGL 183

Query 547 KVHFVSNIDGTHLAEVLKRLNPETALFIIASKTFTTQETITNATSAKTWFLEAAKDPAAV 726
HFVSNIDGTHLAEVLK++N ET LFI+ASKTFTTQETITNATSAKTW LE +K+P +V

Sbijct 184 HSHFVSNIDGTHLAEVLKKVNYETTLFIVASKTFTTQETITNATSAKTWLLEHSKEPESV 243

Query 727 SKHFVALSTNGEKVTAFGIDPKNMFGFWDWVGGRYSLWSAIGLSISLYIGFENFEKLLDG 906

+KHFVALSTN EKVT FGID NMFGFWDWVGGRYSLWSAIGLSI L IGFENFE+LLDG
Sbijct 244 AKHFVALSTNKEKVITEFGIDSTNMFGFWDWVGGRYSLWSAIGLSICLSIGFENFEQLLDG 303



Annotation

TA contigs
— DNA

— Search database
of known
proteins

BlastX

— Makes 6 frame
translation of

DNA into protein

— Searches DB 6
times

WWW
|

) BLAST resources
O Visualization features
<> Annotation steps

- 3 Annotation modules
WS 5 O Statistic modules
= Web Services
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Seq. color

Pathways

(_ pathvays )
W%

& vasi2oo

Yandell M, Ence D: A beginner's guide to eukaryotic genome annotation. Nat Rev Genet 2012,

13:329-342.



Gene Ontology: order in the chaos

« addresses the need for consistent descriptions of gene products
in different databases in a species-independent manner

* GO project has developed three structured controlled
vocabularies (ontologies) that describe gene products in terms
of their associated

— biological processes
— cellular components
— molecular functions

the Gene Ontology

http://www.geneontology.org/



Comparisons among

annotation tools

Molecular Function
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Radivojac et al.: A large-scale evaluation of computational protein function prediction. Nat
Meth 2013, 10:221-227.

Falda et al. Argot2: a large scale function prediction tool relying on semantic similarity of
weighted Gene Ontology terms. BMC Bioinformatics 2012, 13:514.




Pipeline Overview

Sequencing

Tissue collection - Computer - y C i . De novo Mapping reads
Library preparation setup ik < e i assembly to a reference

e

BLAST
comparison &
annotation




<= Whole gene level

Exon level
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Alternative Expression
splicing difference




De novo RNA-Seq: Do you need a genome?

No, but there are important biases & limitations
e TA mapping limitations
— No exon level resolution but this will change soon

— No coding information on identified SNPs unless you build
gene feature files on contigs

» TA mapping biases unique to if

— Spicing may cause mapping problems if locus is collapsed, but
generally OK to not assume a gene model

* TA mapping biases shared with genomic mapping

— SNP and indel effects
— gene duplication (are reads mapping fo the right place)



Map to TA vs. Genome:
which is better?

Template effects:

e Mismatch :
— SNPs (single nucleotide polymorphisms)
— Indels (insertion or deletion polymorphisms)

o Pseudo-inflation

— An increase in the copy number of a gene that arise from
genome assembly errors or TA errors

* Gene model errors
— |f the models in your genome are bad, this will affect results



Genome mapping

RNA-Seq mapping:
comparing genome vs. TA

You can generate high quality
data without a genome, for
much of the transcriptome

Hornett & Wheat 2012 BMC Genomics

Spearman’s p = 0.95, P < 0.0001

4000 -’

'
-
L/

1 35 1020 40 100 300 1000 10000
Summed TA mapping

YT

Contigs assigned to a given CCDS via BLASTn

CCDS




> De novo assembly analysis
Te m p | u'l'e —> Reads de Brujin graph Assembled contigs
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Does alignment software matter?

4 » > D
0 Ba emosta Ba emosta Ba emo

Arra 100|100 99 |81 |79 (80|82 |82 (82|64 | 60|61 |85|84|84|65|60|62|84|84)|83|64|60|62

100(100| 80 | 78 | 78 | 82 | 81 | 81 | 63 | 58 | 59 | 84 | 84 | 83 | 63 | 58 | 60 | 84 | 83 [ 83 | 62 | 58 | 60
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100|199 (99|66 |66 |66 | 83|79 |79 |69 |67 |67 |86 (82|83 |68 |67 |67 |84 |80 |81 0.8

100| 65 |64 |64 | 83| 80|80 |68 |66 |66 |86 |84 |84 |67 |66 | 66 | 84 | 82 | 82

100|166 | 65| 65|83 |80 |80 |68 |67 |66 |86 |84 |84 |68 |66 |66 | 84 | 82 | 82

100(100(100| 78 | 77 | 79 | 94 | 94 | 94 | 71 | 69 | 70 | 98 | 98 | 98 | 76 | 74 | 75
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0 4 4 0 4 8 0 0 -4 0 4 8 0 0 0 0 0 0

Nookaew et al. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with
microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Research 2012, 40:10084—-10097.



Mappers don’t appear to matter

Wrong

» Genomic scale data can hide widespread biases that unless
you specifically look, are hard to find

» Mapping programs differ in their settings and design

— DNA to DNA vs. RNA to DNA

— Are usually compared using species without much genetic
variation

— Indels, splicing, SNPs all affect mapper performance



SNP effects can be large
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Nookaew et al. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with

microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Research 2012, 40:10084—-10097.




Insertions & deletions (indels) have large effects

* B EH E B H B Named gene
YHLOOSC
=0 - H Chemostat Coverage from Gsnap (xyplot)
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T/TTGGCATAA O13585:T/TT 01356 : TCCTCCTAT 01359:GA/G 01362 :CTC/C 01368 :CCGTGAGCCTA/C 0
] . ] 1 » ]
01357 : T/TATCCCTCACARATGT 01360 :C/COGACGTCTCC 04363:G/6CA 01369:T/TTGAGCCCTTC
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Nookaew et al. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with

microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Research 2012, 40:10084—-10097.




15 mapping results

Dramatic differences in ability to
handle a 2 bp insertion in
reference compared o reads

TopHat, SpliceMap, Bowtie and
Soap
— do not identify indels

— they fail to accurately align
reads to these regions

Grant GR, Farkas MH, Pizarro A, Lahens N, Schug J, Brunk B, Stoeckert CJ, Hogenesch JB, Pierce EA: Comparative Analysis of RNA-Seq Alighment
Algorithms and the RNA-Seq Unified Mapper (RUM). Bioinformatics 2011, doi:10.1093/bioinformatics/btr427.



Allelic bias in read mapping

O
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NGM (GPU)
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— Bowtie2
— BWA-SW

Stampy
— BWA
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runtime [min]

divergence [%] divergence [%]

» Essentially identical to allele specific PCR bias ... but on a scale
you can’t detect unless you care fo look

* Do your genes of interest have more than 3 SNPs / 100 bp?

Sedlazeck et al. 2013 Bioinformatics



100 bp window with 4 —5 SNPs differing

from reference

106 bp

4,040 bp 4,060 bp 4,080 bp 4,100 bp 4,120 bp
| | | | | | |

AGCAAC TAAATAC TCACAC T ACACGA T CA TACAGCAC CCCCATC T T AGCC ACCAAC CAGC.,




Mapping reads in outbred species

Average genome polymorphism levels (ignores indels)
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Homo sapiens

Species grouped by phylum

Leffler et al. 2012 Plos Biol



Sig. expression differences by method

A: Stampy mapping
B: Cuftditf analysis
(: Likely error source




Real world example

2 factor analysis with family effects



Save
energy,
live long
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Experimental design

7 full-sib families FIJ F2“ ............................

seasonal temperature +20°C +27°C

food stress No food limitation _ No food limitation _
use 2 body parts

2 seasonal x 2 food stress x 2 body parts = 8 conditions
7 families with n = 2 - 3 per condition = 144 RNA libraries
10 million reads / library



Vicencio Qostra

body part # libraries # CIeaP reads (per # nuclfeotldes (per GC content
library) library)
abdomen 72 15,261,019 3,052,203,767 45%
thorax 72 15,633,416 3,126,683,150 46%
total 144 2,224,399,290 444,879,858,000 45%
4 14 samples: one from each family, thorax and
abdomen 69,075 contigs

edgeR [ Bioconductor

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

# reads ~ season + stress + family +
season*stress + season*family + stress*family
season*stress*family




Looks OK, but
can | detect
any biases?

Stress

(anfea d4)6oj

10

log(counts per million)
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Dimension 2
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Effect of filtering, mapping to Trinity contigs

71 zero-read samples

allowed
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Effect of filtering when
using sum method:
whole gene expression

predicted genes from H. melpomene

0 zero-read samples 3 zero-read samples 32 zero-read samples | 71 zero-read samples
allowed allowed allowed allowed
CPM = = || e " =7
3 = =z E e i e . i S o
>5 = - e - S

Dimensicn 1




season x treatment
x family

116

GLM results

* Plastic responses:

— Effects without any

interaction with Family 115

seasonal
x family

stress
x family

® Genetic response:
o Eftects that have an interaction with family
o Potential targets of natural selection

season + stress + family + season*stress +

reads ~ . . :
season*family + stress*family + season*stress*family



Assembly 2.0
Contig_57178

Contig_6821
Contig_1004
Contig_20226
Contig_27720
Contig_5260
Contig_27110
Contig_27390
Contig_26901
Contig_4713
Contig_20081
Contig_9982
Contig_15387
Contig_25362
Contig_36071

Blastx

Bombyx mori
Whole genome sequence,
pmﬁf: s

cted gene set

Bmori06 PepEd90
BGIBMGA002704

BGIBMGA003247
BGIBMGA003248
BGIBMGA003248
BGIBMGA003248
BGIBMGA003249
BGIBMGA004806
BGIBMGA004806
BGIBMGAO004865
BGIBMGA004866
BGIBMGA005329
BGIBMGAO006733
BGIBMGA008859
BGIBMGA008859
BGIBMGA008859

320 My

Blastp

Drosophila melanogaster
omic &
functional resources

Extensive

CG33126
CG6519
CG6519
CG6519
CG6519
CG6519

CG33126

CG33126

CG33126

CG33126
CG3149
CG6783
CG4178
CG4178
CG4178

D. melanogaster
lacks an orthologous
reproductive

physiology

Gene Set Enrichment analysis
using Gene Ontology database

Fatiscan Analysis

over-represented NN
UNDER-represented -

% of annetated genes

(4 20 40 60 80 100

cofactor binding |IEEEEEG——

yxidoreductase activity _

hydrolzse activity |
[

pratein binding
nuclaic acid binding |




Most studies are
annotation limited

e What is the biological
meaning of the top P-value
genes?

* Low P-value or expression
genes are certainly important

* Gene set enrichments are key
fo insights

— Thus, annofation is very
important

Uniprot
QSVMHS

Description
Oxidoreductase.
Hypothetical protein.
SD27140p.

Q8SXX2
SD01790p. QS5TI3
Electron-transfer-flavoprotein | QOKHZ6
Qow282
Hypothetical protein. Q3VGX0
CG14686-PA (RE68889p). QSVGX0
Chromosome 11 SCAF14979, wk Q8T058

Pseudouridylate synthase.

, complete genome. (EC 1.6.5.5

RNA-binding protein.
Hypothetical protein. Q9VPL4
Peptidoglycan recognition-like

Angiotensin-converting-relatec Q8SXX2
QSI7H7
Secretory component. Q9VVKS

Putative adenosine deaminase Q9VVKS

Lachesin, putative.

7 of 20 (35%) no Uniprot ID

-log10P

7.087008
6.993626
6.315473
6.300667
5.316371
5.1425
4.784378
4.750469
4.650051
4.506043
4.470413
4.445501
4.374033
4.369727
4.206247
4.172776
4.056174
3.981175
3.980728
3.95787




Sources of error

Transcriptome assembly can

e huge source of bias:

» Fragmentation creates multiple contigs of same gene
* SNPs and alternative splicing generates more contigs
* 1 locus = frag. X SNPs X alt. splicing = many contigs

We can observe effects in expression analyses:
— Family effect mapping bias
— Pseudo-inflation in Gene Set Enrichment Analyses



Put the BIQ in your informafics!!

Use independent analyses as ‘controls’ on accuracy
— What are your + and - controls?

Analysis#1  Analysis#2  Analysis # 3

Mapper TopHat2 STAR ?
Normalization none RPKM TPM
Analysis PCA RSEM EDGER

Should independent methods converge?




Interrogate your results

» This will give you confidence
— Bring freedom to your findings (no waterboarding)

* Graph your results
— PCA plot or similar
— P-value distributions

« Assess gene copy number in gene set enrichment analyses
(GSEA)

— Do these levels fit to 1+ principals expectations?
— Do you have extra copies due to your Transcriptome assembly?



i

Normalization ' WH:

& Analysis “S@Fl]

Equivalent library sizes / Presence of high count genes

A
Y
S

0.20
|

False-positive rate
010
]

0.00
|




Lite after your RNA-Seq experiment

—What are you likely to learn?

» By measuring other aspects of the phenotype, you can validate
and solidify your transcriptome insights

—What may limit your insights?
» Single gene analyses can be restrictive

— Stafistically: FDR is very conservative

—Biologically: genes work in networks varying in expression and
direction across pathways

—Possible solutions

» Gene set enrichment analysis: harness the functional network

* Collect additional data relevant fo your phenotype and organism
—Don't hesitate to make your own enrichment set



A major challenge for Ecological Genomics

 What causes natural selection in the wild?

— How does genefic variation at one region of the genome interact with its
environment (genomic, abiotic, and biofic)

* DNA alone can't tell us about selection dynamics in the wild
— Molecular tests are very weak and uninformative about selection dynamics

* Research community is demanding actual demonstration of natural
selection when making claims of adaptive role

To address these we need to develop functional Eenomic insights in
species with well understood ecologies that can be manipulated in the lab

and in the field



Genomics of full of adaptive stories

. Functional and field validation of
SNPs effects are needed to discern
facts from fictions

Storz & Wheat 2010 Evolution Barrett & Hoekstra 2011 Nat Rev Genet §



Model adaptation:
the Fda gene

Causes loss in body armor
— Field association
— QTL mapping

Fst (Freshwater vs.

— Gain-of-function assay

Ac Gain-of-function

Low morph Transgenic

Eda

Position along chromosome 4




Back to nature:
do we know what we think we know?

. * % 4 eplicate freshwater ponds

e Is low armor really adapfive in fresh o7
water? | ?

o
(&)

« Lefs replay the selection event ® °  Whatis evolution?

— Equal frequency £da alleles in fresh
water ponds

©
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Studies in the field can uncover
unexpected and complex selection g S¥ N8
dynamics ~

— Linked effect of other genes in the .
inversion on LG4? S F— -
F1juveniles — F1adults — F2juveniles

— Is Eda the target of selection? A——




Adaptation by natural selection

Insights at one
level can be tested

at other levels

repeats every
generation

Feder &
Watt 1992



Common mistakes

Blindly trusting bioinformaticians: look at your data!!!

Mapping reads to a very divergent genome
— Only most conserved genes map: bias due to divergence and mapping threholds

Not accurately assessing a TA
— Your template determines quality of results

Not enough reads, replication, or statistical power
— Large amounts of data to not change fundamental stafistics (never pool unless necessary)

Not assessing likely biases in analyses
— Try different mapping thresholds & analysis methods to assess convergence of biological
signal
— Assess alternative splicing and duplication potential in findings
Data size and computational power are demanding
— Download data and work with it before your real data comes.



RNAseq Resources

Papers

Oshlack A, Robinson MD, Young MD: From RNA-seq reads to differential expression results.
Genome Bio/2010, 11:1-10.

Haas BJ, Zody MC: Advancing RNA-Seq analysis. Nof Biotechno/ 2010, 28:421-423.

Grant GR, Farkas MH, Pizarro A, Lahens N, Schug J, Brunk B, Stoeckert CJ, Hogenesch JB, Pierce EA: Comparative
Analysis of RNA-Seq Alignment Algorithms and the RNA-Seq Unified Mapper (RUM).
Bioinformatics 2011, doi:10.1 093?bioinformatics/ hrd27.

Wolf JBW: Principles of transcriptome analysis and ?ene expression quantification: an
RNA-seq tutorial. Molecular Ecology Resources 2013, doi:10.1111/1755-0998.12109.

Nookaew I, Papini M, Pornputtapong N, Scalcinati G, Fagerberg L, Uhlen M, Nielsen J: A comprehensive
comparison of RNA-Seq-based transcriptome analysis from reads to differential gene
expression and cross-comparison with microarrays: a case study in Saccharomyces
cerevisiae. Nucleic Acids Research 2012, 40:10084-10097.

De Wit P, Pespeni MH, Ladner JT, Barshis DJ, Seneca F, Jaris H, Therkildsen NO, Morikawa M, Palumbi SR: The simple
fool's guide to population /ﬂenomics via RNA-Seq: an introduction to high-throughput
sequencing data analysis. Moleculor Ecology Resources 2012, 12:1058-1067.

o Websites

hitp://www.rna-seqblog.com/

—  Google anything that comes to mind

Workshops
—  hitp://evomics.org/

EBI online
http://www.ebi.ac.uk/training/online/course/ebi-nexi-generation-sequencing-practical-course/rna-sequencing/rna-seq-analysis-transcriptome

(olleagues
—  Email colleagues and ask questions early, rather than late.
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Home Guide Scripts Test-Files RNA-Buffer Publications Links

Navigate through the pipeline by clicking on any step in the flow chart

Gene
expression
analysis

Computer | De novo |
setup | assembly |

BLAST
comparison &
annotation

http://sfg.stanford.edu/guide.html




Flowchart

-

Copy .FASTQ files to your working folder.

-

e ¥
Quality trimming

P: fastq_quality_ trimmer (fastx toolkit)

S: Trimclip.sh

I: "YOURFILE. fastq"

O: "YOURFILE_trimmed.fastq"

P: Program called
S: Script file

I: Input file

0: Output file

Contig >

Short reads =

.

consig 1

Cowerage

il

A great place to start, but not stop

A—

S: Trimclip.sh
I: "YOURFILE_trimmed.fastq"
O: "YOURFILE trimmed clipped.fastq"

Collapse FASTQ and count duplicate reads

P: fastx_collapser (fastx toolkit)

S: CollapseDuplicateCount.sh

I: "YOURFILE_trimmed clipped.fastq"

O: "YOURFILE collapsed.txt"
"YOURFILE duplicateCount.txt"

\ .
|
e ¥

P: fastx_quality stats (fastxtoolkit)
S:Qualitystats.sh

I: "YOURFILE_trimmed clipped.fastq"
O: "YOURFILE_qualstats.txt"

Ap—

Use GALAXY (http://main.g2 bxpsu.edu)
look under NGS: QC and manipulation.

Draw quality score boxplot and nucleotide
distribution chart.

Table 1. Programs, modules, toolkits, and packages required in order to run through this
pipeline in its full mode. If you want to carry out this pipeline on a Windows platform, you
will need to have a Unix portal, such as Cygwin, installed or run Linux in addition to
Windows. If you do not intend to go through all steps, some software might not be needed.

For Paired-End samples, sort FASTQ files and
remove orphan reads to a separate file.

P: fastxcombinepairedend.py

S: PECombiner.sh

I: YOURFILE_trimmed clipped.fastq

o.

YOURFILE_trimmed clipped stillpaired.fastg
YOURFILE trimmed clipped singles.fastq

Software Description Where to find it Step(s) that

Name require(s)

this software

Ubuntu Ubuntu is one of many Linux versions. (Mac OS X or PC) All (not

Linux The advantage of Ubuntu, and many http://www.ubuntu.com/ needed on
other Linux distributions, is that it can be Mac)
easily installed and removed on a
Windows PC or a Mac, without need of
reformatting your hard drive.

CygWin CygWin is a Unix-environment portal that | (Windows only) All (not
allows you to run most of the Unix- http://www.cygwin.com/ needed on
formatted software described here on a Mac)

PC.

Xcode Xcode is a suite of application tools from | (Mac OS X only) All
Apple that includes a modified GNU Xcode3 or4
Compiler Collection (supports basic http://developer.apple.com/xc
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