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Outline	
  

• Heuristics and tree searches

• ML phylogeny inference and GARLI

• Using GARLI in practice

• Computer exercises



Heuristics	
  

Aim to optimize a function or solve some problem 
 

Finding a good solution is not guaranteed 

Deterministic and/or stochastic 

Many types (greedy hill climbing, GA, simulated 
annealing, etc.) 
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Heuristic	
  features	
  

Where does it start? 
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  features	
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Heuristic	
  features	
  

Where does it start? 

How are new values proposed? 

How does it move between proposed values? 



Heuristics:	
  choosing	
  a	
  new	
  value	
  

better 
worse 



Heuristics	
  

Few restrictions on how a heuristic can work 

Best choice likely problem-specific 



ML	
  phylogenetic	
  heuristics	
  

Goal: find tree with highest likelihood 

Difficulties: 
• Enormous number of trees to consider

• Significant computation needed to score each tree
(parameter optimization)

• Branch-length parameters aren’t equivalent on
different trees

• Optimal parameter values are strongly correlated



Phylogenetic	
  searches	
  

Think about moving through an abstract 
“treespace” 

Nearby points in this treespace are connected by 
NNI (nearest neighbor interchange) branch swaps 



Moving	
  through	
  treespace:	
  NNI	
  branch	
  swaps	
  

Break internal 
branch 

Reassemble 



Schoenberg	
  graph	
  –	
  edges	
  connect	
  NNI	
  neighbors	
  	
  
Schoenberg graph – edges connect NNI neighbors
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(figure courtesy of  Joe Felsenstein) 



NNI	
  Treespace	
  

NNI 



(SPR-­‐TBR	
  slide)	
  
Subtree Pruning Regrafting (SPR) and Tree Bisection
Reconnection (TBR)
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SPR maintains

subtree rooting

TBR tries all

possible rootings (figure courtesy of  Paul Lewis) 



SPR/TBR	
  moves	
  in	
  NNI	
  treespace	
  

X 
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GARLI	
  

Genetic Algorithm for Rapid Likelihood Inference 

Descendent of GAML (Lewis, 1998) 

Development goal: make ML phylogenetic searches feasible 
for large datasets 



GARLI	
  

Stochastic, genetic algorithm-like approach instead of 
deterministic hill climbing 
 
Gradually optimizes tree topology, branch lengths and model 
parameters 

Accurate ML tree inference on large datasets (hundreds of 
sequences) in hours 



The	
  Genetic	
  Algorithm	
  

Computational analogue of evolution by natural 
selection 

A few simple requirements: 
•  Measure of fitness 

•  Method of selection 

•  Mutation operators 
•  Recombination operators 



GA	
  terminology	
  

•  Individual  
(topology+model parameter values+branch length values) 

•  Population 
 
•  Fitness (log-likelihood) 

•  Selection function (fitness proportional) 

•  Generation 
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One	
  generation	
  

Apply stochastic 
mutations to individuals 

and/or recombine Use selection function 
to choose parents for the 

next generation 
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Maximized	
  likelihood:	
  pros	
  

By definition, our goal is to find the topology with 
the highest maximized likelihood 

If we calculate it for every tree we examine, we’ll 
always know which tree is the best 



Maximized	
  likelihood:	
  cons	
  

Fully optimizing a single branch length can require 
significant computation 

When one parameter changes, optimal values of all 
others also change 



Maximized	
  likelihood:	
  cons	
  

As optimization is applied (and applied, and applied, …), 
maximized likelihood only approached asymptotically 

This is the majority of the computation required in ML 
inference, and it grows quickly with the number of sequences  



Heuristic	
  runtimes	
  

Inference 
time = # of  topologies 

to evaluate 
time to 

evaluate each x 

Both are strongly a  
function of  

the # of  sequences 
when calculating  

maximized likelihood 

Modify 
topology 

Compare 
topology 
scores 

Evaluate 
new 

topology 

Select 
topology 

Starting 
topology 



Avoiding	
  the	
  maximized	
  likelihood	
  

We want to accurately judge the merits of 
topologies, as if we had the maximized likelihood 

 … but without actually calculating it 
 

We’ll explore the idea of an approximate likelihood 
score for topologies 



How	
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  does	
  a	
  tree	
  	
  
likelihood	
  estimate	
  need	
  to	
  be?	
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  does	
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  tree	
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  estimate	
  need	
  to	
  be?	
  	
  

L 

A B C 

Acceptable 
range of  
estimate         



L 

A B C 

How	
  accurate	
  does	
  a	
  tree	
  	
  
likelihood	
  estimate	
  need	
  to	
  be?	
  	
  

(when tree scores are more similar) 
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range of  
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How	
  important	
  are	
  branch-­‐length	
  values?	
  
(three	
  example	
  branches	
  in	
  a	
  speciRic	
  64-­‐taxon	
  tree)	
  	
  

Branch length 4x greater than optimum 
= entire topology 50 lnL worse! 



Branch	
  length	
  importance	
  

If even one branch length is far from optimal, the estimated 
likelihood will not be useful 

How can we get around optimizing every branch length on 
every tree? 



Using	
  topological	
  similarity	
  

Successive trees are created by slightly modifying an existing 
tree 

We can capitalize on this when dealing with branch-length 
parameters 



Searching	
  with	
  approximate	
  likelihoods	
  

Branch lengths are 
optimized on a starting 

topology 
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Scoring	
  and	
  optimizing	
  the	
  new	
  topology	
  

Branches 
“fused” 

 

Branch 
“split” 
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Where	
  do	
  optimal	
  branch	
  lengths	
  change?	
  



Optimal branch lengths 
only change here 



This radius is not 
strongly dependent 

on tree size! 



GARLI’s	
  post-­‐swap	
  optimization	
  

Optimization rules: 

1.  Optimize the 3 proximal branches 
until near their optimal values 

2.  “Propagate” optimization outward to 
other branches 

3.  If  a branch length is far from 
optimum, continue to propagate 
outward 

4.  After propagation, return to changed 
branches for another optimization 
pass 



Topology	
  evaluation	
  times	
  
(normalized	
  with	
  respect	
  to	
  #	
  of	
  site	
  patterns)	
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Conclusions	
  

GARLI’s localized method makes branch-length optimization 
largely independent of the number of sequences 
 
Several other fast ML heuristics also owe much of their speed 
to localized optimization (PHYML, RAxML) 



Using	
  GARLI	
  in	
  practice	
  

Performance comparisons (brief) 

Allowed models 

 

Search strategies 



Performance	
  comparisons	
  against	
  other	
  
software	
  

More subjective than one would like: 

•  What constitutes comparable analyses? 

•  What criteria should be used to compare methods? 

•  Models and likelihood values often not exactly 
comparable 

•  Most software can be “tuned” to perform better on any 
particular dataset 

•  Simulated datasets are far too easy to analyze 



Performance	
  comparison:	
  
228	
  taxon	
  x	
  4811	
  nucleotide	
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ML	
  tree	
  inference	
  software	
  

Some of the most used (alphabetically): GARLI, PAUP*, 
PHYML, RAxML 
 
For small datasets (< 50 taxa), all of the ML tree inference 
programs perform well 
 
For large datasets (hundreds of sequences): 

•  PAUP* is very rigorous, but slowest 

•  RAxML is generally the fastest 

•  GARLI often has a slight edge over RAxML in optimality 
(although often more variability) 

 
RAxML is very efficient for huge datasets (1000+ sequences) 



ML	
  tree	
  inference	
  software	
  

NOTE: There can be substantial differences in which program 
performs best depending on the specific dataset! 



Search	
  strategies	
  in	
  GARLI	
  

Multiple search replicates must ALWAYS be done 

If variable results across search replicates seen: 
•  Make changes to improve the search 

•  and/or do more search replicates 



Search	
  repeatability	
  and	
  multiple	
  replicates	
  



Search	
  repeatability	
  and	
  multiple	
  replicates	
  



Search	
  difRiculty	
  

On average: 
•  More sequences = worse 

•  More characters (signal) = better 

# parsimony informative sites better indicator of 
signal than total # of sites 



Tuning	
  search	
  intensity	
  

Tradeoff between search intensity and runtimes 

Not always a direct relationship between search intensity and 
solution optimality 

Given a certain amount of time, how can we best use it?  



Balancing	
  search	
  intensity	
  and	
  runtimes	
  

H hours 

3 thorough searches 

6 fast searches 

Per run, more likely 
to find global 

optimum 

May be more likely 
to find global 

optimum 
within H hours 



Practical	
  search	
  recommendations	
  

Search repeatability is an indicator of how analyses are going 
(much like convergence of independent MCMC runs) 

Saturating the search space (lots of searches) may be better 
than very long searches 

On some large datasets, unlikely to find the same tree twice 



How	
  else	
  can	
  I	
  speed	
  up/improve	
  searches?	
  

Eliminate identical sequences! 

Constrained tree searches won’t help (in GARLI) 

Starting tree 
•  Providing a decent (potentially unresolved) starting 

tree can help on large datasets 



What	
  about	
  bootstrapping?	
  

GARLI can run multiple search replicates per bootstrap 
reweighting, with the best scoring tree saved 
 
More intense searches add up quickly when bootstrapping 

Find fastest settings that give consistent results on full data, 
use those for bootstrap searches 



Evolutionary	
  models	
  

GARLI is geared toward model flexibility and rigorous 
parameter estimation 
 
Model types 

•  Any GTR submodel for nucleotides 

•  Various common amino acid models 

•  Simple codon models 

•  Non-sequence data (Mk and Mkv) 
•  Partitioned models 

•  Indel models (unreleased) 

 



How/when	
  to	
  partition	
  

PartitionFinder may prove to be a great approach to 
partitioned model selection 

Smaller subsets increase sampling error, lead to parameter 
estimation difficulties and model breakdown 

Over-partitioning may have serious consequences in ML 
inference, less in Bayesian 



Non-­‐bifurcating	
  trees	
  

GARLI returns trees with polytomies when branches have an 
optimal length of zero, but  some programs do not 
 
This can become very important in low divergence 
phylogenomic studies 



Assorted	
  GARLI	
  features	
  

Single data file may be analyzed at the nucleotide, amino acid 
and codon levels without making changes to it 

Multithreaded version for multiple CPU cores 

MPI version simplifies bootstrapping on clusters 

Full checkpointing 

Topological constraints (positive, negative, backbone) 



Other	
  assorted	
  GARLI	
  features	
  

Specification and fixation of model parameter values 

Site-likelihood output for all models including partitioned, for 
input into CONSEL, etc. 

Ancestral state reconstruction for all models 

Eventually: Beagle GPU version 



Computer exercises 




