
ML	
 phylogenetic	
 inference	
 and	
 GARLI

Derrick Zwickl
University of Arizona

(and University of Kansas)

Workshop on Molecular Evolution 2015

Outline	

• Heuristics and tree searches

• ML phylogeny inference and GARLI

• Using GARLI in practice

• Computer exercises

Heuristics	

Aim to optimize a function or solve some problem

Finding a good solution is not guaranteed

Deterministic and/or stochastic

Many types (greedy hill climbing, GA, simulated
annealing, etc.)

A	
 likelihood	
 surface	

Parameter
values

L
ik

e
lih

o
o

d

A	
 likelihood	
 surface	
 (from	
 above)	

peaks

valleys

parameter
values

local
optima

global
optimum

Heuristic	
 features	

Where does it start?

Heuristics:	
 starting	
 point	

?

?
?

?

Heuristic	
 features	

Where does it start?

How are new values proposed?

Heuristics:	
 proposing	
 new	
 values	

?

Heuristic	
 features	

Where does it start?

How are new values proposed?

How does it move between proposed values?

Heuristics:	
 choosing	
 a	
 new	
 value	

better
worse

Heuristics	

Few restrictions on how a heuristic can work

Best choice likely problem-specific

ML	
 phylogenetic	
 heuristics	

Goal: find tree with highest likelihood

Difficulties:
• Enormous number of trees to consider

• Significant computation needed to score each tree
(parameter optimization)

• Branch-length parameters aren’t equivalent on
different trees

• Optimal parameter values are strongly correlated

Phylogenetic	
 searches	

Think about moving through an abstract
“treespace”

Nearby points in this treespace are connected by
NNI (nearest neighbor interchange) branch swaps

Moving	
 through	
 treespace:	
 NNI	
 branch	
 swaps	

Break internal
branch

Reassemble

Schoenberg	
 graph	
 –	
 edges	
 connect	
 NNI	
 neighbors	
 	

Schoenberg graph – edges connect NNI neighbors

D B
C E
A

C E
D A
B D C

A E
B

A C
D E
B

E B
C D
A B C

D E
A

C B
D E
A

A B
D E
C

E B
D C
A

E C
B D
A

B D
C E
A

B C
E D
A

A B
E C
D

C D
B E
A D B

E C
A

(figure courtesy of Joe Felsenstein)

NNI	
 Treespace	

NNI

(SPR-­‐TBR	
 slide)	

Subtree Pruning Regrafting (SPR) and Tree Bisection
Reconnection (TBR)

C

I

D

E
F

G
H

A

B

C

I

D

E

F

G

H

A

B

C I

D

E

FG

H

AB

C I

D

E

FH

G

AB

C I

D

E

FG

H

AB

C I

D

E

HG

F

AB

C

I

D

E

A

B

F

G
H

SPR maintains

subtree rooting

TBR tries all

possible rootings (figure courtesy of Paul Lewis)

SPR/TBR	
 moves	
 in	
 NNI	
 treespace	

X

NNI SPR TBR

GARLI	

Genetic Algorithm for Rapid Likelihood Inference

Descendent of GAML (Lewis, 1998)

Development goal: make ML phylogenetic searches feasible
for large datasets

GARLI	

Stochastic, genetic algorithm-like approach instead of
deterministic hill climbing

Gradually optimizes tree topology, branch lengths and model
parameters

Accurate ML tree inference on large datasets (hundreds of
sequences) in hours

The	
 Genetic	
 Algorithm	

Computational analogue of evolution by natural
selection

A few simple requirements:
•  Measure of fitness

•  Method of selection

•  Mutation operators
•  Recombination operators

GA	
 terminology	

•  Individual
(topology+model parameter values+branch length values)

•  Population

•  Fitness (log-likelihood)

•  Selection function (fitness proportional)

•  Generation

One	
 generation	

T, p1, p2, p3, p4, …

T, p1, p2, p3, p4, …

T, p1, p2, p3, p4, …

T, p1, p2, p3, p4, …

Create initial
population

of individuals

One	
 generation	

Apply stochastic
mutations to individuals

and/or recombine

T, p1, p2, p3, p4, …

T, p1, p2, p3, p4, …

T, p1, p2, p3, p4, …

T, p1, p2, p3, p4, …

Create initial
population

of individuals

One	
 generation	

Apply stochastic
mutations to individuals

and/or recombine

T, p1, p2, p3, p4, …

T, p1, p2, p3, p4, …

T, p1, p2, p3, p4, …

T, p1, p2, p3, p4, …

lnL

lnL

lnL

lnL

Create initial
population

of individuals

Partially optimize
and score mutated

individuals

One	
 generation	

Apply stochastic
mutations to individuals

and/or recombine Use selection function
to choose parents for the

next generation

T, p1, p2, p3, p4, …

T, p1, p2, p3, p4, …

T, p1, p2, p3, p4, …

T, p1, p2, p3, p4, …

T, p1, p2, p3, p4, …

T, p1, p2, p3, p4, …

T, p1, p2, p3, p4, …

T, p1, p2, p3, p4, …

Partially optimize
and score mutated

individuals

Repeat many, many times

Create initial
population

of individuals

lnL

lnL

lnL

lnL

Maximized	
 likelihood:	
 pros	

By definition, our goal is to find the topology with
the highest maximized likelihood

If we calculate it for every tree we examine, we’ll
always know which tree is the best

Maximized	
 likelihood:	
 cons	

Fully optimizing a single branch length can require
significant computation

When one parameter changes, optimal values of all
others also change

Maximized	
 likelihood:	
 cons	

As optimization is applied (and applied, and applied, …),
maximized likelihood only approached asymptotically

This is the majority of the computation required in ML
inference, and it grows quickly with the number of sequences

Heuristic	
 runtimes	

Inference
time = # of topologies

to evaluate
time to

evaluate each x

Both are strongly a
function of

the # of sequences
when calculating

maximized likelihood

Modify
topology

Compare
topology
scores

Evaluate
new

topology

Select
topology

Starting
topology

Avoiding	
 the	
 maximized	
 likelihood	

We want to accurately judge the merits of
topologies, as if we had the maximized likelihood

 … but without actually calculating it

We’ll explore the idea of an approximate likelihood
score for topologies

How	
 accurate	
 does	
 a	
 tree	
 	

likelihood	
 estimate	
 need	
 to	
 be?	
 	

L

A B C

Maximized
likelihood

How	
 accurate	
 does	
 a	
 tree	

likelihood	
 estimate	
 need	
 to	
 be?	
 	

L

A B C

Acceptable
range of
estimate

L

A B C

How	
 accurate	
 does	
 a	
 tree	
 	

likelihood	
 estimate	
 need	
 to	
 be?	
 	

(when tree scores are more similar)

Acceptable
range of
estimate

How	
 important	
 are	
 branch-­‐length	
 values?	

(three	
 example	
 branches	
 in	
 a	
 speciRic	
 64-­‐taxon	
 tree)	
 	

Branch length 4x greater than optimum
= entire topology 50 lnL worse!

Branch	
 length	
 importance	

If even one branch length is far from optimal, the estimated
likelihood will not be useful

How can we get around optimizing every branch length on
every tree?

Using	
 topological	
 similarity	

Successive trees are created by slightly modifying an existing
tree

We can capitalize on this when dealing with branch-length
parameters

Searching	
 with	
 approximate	
 likelihoods	

Branch lengths are
optimized on a starting

topology

1 2

Altering	
 the	
 tree:	
 subtree	
 pruning-­‐regrafting	
 (SPR)	

1 2

Altering	
 the	
 tree:	
 subtree	
 pruning-­‐regrafting	
 (SPR)	

1 2

Altering	
 the	
 tree:	
 subtree	
 pruning-­‐regrafting	
 (SPR)	

1 2

Scoring	
 and	
 optimizing	
 the	
 new	
 topology	

Branches
“fused”

Branch
“split”

1 2

Scoring	
 and	
 optimizing	
 the	
 new	
 topology	

Other changes
in optimal

branch lengths?

?

?

?

?

?

Where	
 do	
 optimal	
 branch	
 lengths	
 change?	

Optimal branch lengths
only change here

This radius is not
strongly dependent

on tree size!

GARLI’s	
 post-­‐swap	
 optimization	

Optimization rules:

1.  Optimize the 3 proximal branches
until near their optimal values

2.  “Propagate” optimization outward to
other branches

3.  If a branch length is far from
optimum, continue to propagate
outward

4.  After propagation, return to changed
branches for another optimization
pass

Topology	
 evaluation	
 times	

(normalized	
 with	
 respect	
 to	
 #	
 of	
 site	
 patterns)	

Topology	
 evaluation	
 times	

(normalized	
 with	
 respect	
 to	
 #	
 of	
 site	
 patterns)	

Conclusions	

GARLI’s localized method makes branch-length optimization
largely independent of the number of sequences

Several other fast ML heuristics also owe much of their speed
to localized optimization (PHYML, RAxML)

Using	
 GARLI	
 in	
 practice	

Performance comparisons (brief)

Allowed models

Search strategies

Performance	
 comparisons	
 against	
 other	

software	

More subjective than one would like:

•  What constitutes comparable analyses?

•  What criteria should be used to compare methods?

•  Models and likelihood values often not exactly
comparable

•  Most software can be “tuned” to perform better on any
particular dataset

•  Simulated datasets are far too easy to analyze

Performance	
 comparison:	

228	
 taxon	
 x	
 4811	
 nucleotide	
 dataset	

-122060

-122055

-122050

-122045

-122040

-122035

-122030

-122025

 0 1 2 3 4

lo
g-

lik
el

ih
oo

d

runtime (hours)

GARLI-GAMMA
RAxML-GAMMA

RAxML-CAT

Several GARLI
runs 100’s worse

ML	
 tree	
 inference	
 software	

Some of the most used (alphabetically): GARLI, PAUP*,
PHYML, RAxML

For small datasets (< 50 taxa), all of the ML tree inference
programs perform well

For large datasets (hundreds of sequences):

•  PAUP* is very rigorous, but slowest

•  RAxML is generally the fastest

•  GARLI often has a slight edge over RAxML in optimality
(although often more variability)

RAxML is very efficient for huge datasets (1000+ sequences)

ML	
 tree	
 inference	
 software	

NOTE: There can be substantial differences in which program
performs best depending on the specific dataset!

Search	
 strategies	
 in	
 GARLI	

Multiple search replicates must ALWAYS be done

If variable results across search replicates seen:
•  Make changes to improve the search

•  and/or do more search replicates

Search	
 repeatability	
 and	
 multiple	
 replicates	

Search	
 repeatability	
 and	
 multiple	
 replicates	

Search	
 difRiculty	

On average:
•  More sequences = worse

•  More characters (signal) = better

parsimony informative sites better indicator of
signal than total # of sites

Tuning	
 search	
 intensity	

Tradeoff between search intensity and runtimes

Not always a direct relationship between search intensity and
solution optimality

Given a certain amount of time, how can we best use it?

Balancing	
 search	
 intensity	
 and	
 runtimes	

H hours

3 thorough searches

6 fast searches

Per run, more likely
to find global

optimum

May be more likely
to find global

optimum
within H hours

Practical	
 search	
 recommendations	

Search repeatability is an indicator of how analyses are going
(much like convergence of independent MCMC runs)

Saturating the search space (lots of searches) may be better
than very long searches

On some large datasets, unlikely to find the same tree twice

How	
 else	
 can	
 I	
 speed	
 up/improve	
 searches?	

Eliminate identical sequences!

Constrained tree searches won’t help (in GARLI)

Starting tree
•  Providing a decent (potentially unresolved) starting

tree can help on large datasets

What	
 about	
 bootstrapping?	

GARLI can run multiple search replicates per bootstrap
reweighting, with the best scoring tree saved

More intense searches add up quickly when bootstrapping

Find fastest settings that give consistent results on full data,
use those for bootstrap searches

Evolutionary	
 models	

GARLI is geared toward model flexibility and rigorous
parameter estimation

Model types

•  Any GTR submodel for nucleotides

•  Various common amino acid models

•  Simple codon models

•  Non-sequence data (Mk and Mkv)
•  Partitioned models

•  Indel models (unreleased)

How/when	
 to	
 partition	

PartitionFinder may prove to be a great approach to
partitioned model selection

Smaller subsets increase sampling error, lead to parameter
estimation difficulties and model breakdown

Over-partitioning may have serious consequences in ML
inference, less in Bayesian

Non-­‐bifurcating	
 trees	

GARLI returns trees with polytomies when branches have an
optimal length of zero, but some programs do not

This can become very important in low divergence
phylogenomic studies

Assorted	
 GARLI	
 features	

Single data file may be analyzed at the nucleotide, amino acid
and codon levels without making changes to it

Multithreaded version for multiple CPU cores

MPI version simplifies bootstrapping on clusters

Full checkpointing

Topological constraints (positive, negative, backbone)

Other	
 assorted	
 GARLI	
 features	

Specification and fixation of model parameter values

Site-likelihood output for all models including partitioned, for
input into CONSEL, etc.

Ancestral state reconstruction for all models

Eventually: Beagle GPU version

Computer exercises

