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An Introduction to  
Bayesian Phylogenetics

• Bayesian inference in general 
• Markov chain Monte Carlo (MCMC) 
• Bayesian phylogenetics 
• Prior distributions 
• Bayesian model selection
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I. Bayesian inference in general
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Joint probabilities B = Black   S = Solid 
W = White  D = Dotted
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Conditional probabilities
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Bayes’ rule
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Probability of "Dotted"



Pr(D) is the marginal probability of being dotted 
To compute it, we marginalize over colors

Pr(B|D) =
Pr(B) Pr(D|B)

Pr(D)

=
Pr(D,B)

Pr(D,B) + Pr(D,W )
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Bayes' rule (cont.)
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Bayes' rule (cont.)

It is easy to see that Pr(D) serves as a normalization 
constant, ensuring that Pr(B|D) + Pr(W|D) = 1.0
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Joint probabilities
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B W

Pr(D,B)D

S Pr(S,B) Pr(S,W)

Pr(D,W)
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Marginalizing over colors
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B

W

Pr(D,B)

D

S

Pr(S,B) Pr(S,W)

Pr(D,W)

Marginal probability of 
being a dotted marble 
is the sum of all joint 

probabilities involving 
dotted marbles
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Marginal probabilities
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B W

Pr(D,B) + Pr(D,W)D

S Pr(S,B) + Pr(S,W)

Pr(S) = marginal probability 
of being solid

Pr(D) = marginal probability 
of being dotted
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Joint probabilities
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B W

Pr(D,B)D

S Pr(S,B) Pr(S,W)

Pr(D,W)
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Marginalizing over "dottedness"
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B W

Pr(D,B)

D

S

Pr(S,B) Pr(S,W)

Pr(D,W)

Marginal 
probability of 
being a white 

marble
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Bayes' rule (cont.)



Pr(✓|D) =
Pr(D|✓) Pr(✓)P
✓ Pr(D|✓) Pr(✓)
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Bayes' rule in Statistics

D refers to the "observables" (i.e. the Data) 
    refers to one or more "unobservables"  

(i.e. parameters of a model, or the model itself): 
– tree model (i.e. tree topology) 
– substitution model (e.g. JC, F84, GTR, etc.) 
– parameter of a substitution model (e.g. a branch length, a 

base frequency, transition/transversion rate ratio, etc.) 
– hypothesis (i.e. a special case of a model) 
– a latent variable (e.g. ancestral state)

✓



Posterior probability 
of hypothesis θ

Marginal probability 
of the data (marginalizing 

over hypotheses)

Prior probability of hypothesis θLikelihood of hypothesis θ

Pr(�|D) =
Pr(D|�) Pr(�)�
� Pr(D|�) Pr(�)
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Bayes’ rule in statistics
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Simple (albeit silly) paternity example

Possibilities θ1 θ2 Row sum

Genotypes AA Aa ---

Prior 1/2 1/2 1

Likelihood 1 1/2 ---

Prior X 
Likelihood 1/2 1/4 3/4

Posterior 2/3 1/3 1

θ1 and θ2 are assumed to be the only possible fathers, child has genotype Aa, 
mother has genotype aa, so child must have received allele A from the true 
father. Note: the data in this case is the child’s genotype (Aa)
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The prior can be your friend
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Suppose the test for a rare disease is 99% accurate.  

Pr(+|disease) = 0.99
Pr(+|healthy) = 0.01

datum hypothesis

(Note that we do not 
need to consider the case 
of a negative test result.)

It is very tempting to (mis)interpret the likelihood as a 
posterior probability and conclude that there is a 99% 
chance that I have the disease. 

Suppose further I test positive for the disease.  
How worried should I be?

Want to know Pr(disease|+), not Pr(+|disease)



Pr(disease|+) =
Pr(+|disease)

�
1
2

�

Pr(+|disease)
�

1
2

�
+ Pr(+|healthy)

�
1
2

�

=
(0.99)

�
1
2

�

(0.99)
�

1
2

�
+ (0.01)

�
1
2

� = 0.99
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The prior can be your friend
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The posterior probability is 0.99 only if the prior probability of having 
the disease is 0.5:

Pr(disease|+) =
(0.99)

�
1

1000000

�

(0.99)
�

1
1000000

�
+ (0.01)

�
999999
1000000

�

⇡ 0.0001

If, however, the prior odds against having the disease are 1 million to 
1, then the posterior probability is much more reassuring:
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An important caveat
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This (rare disease) example involves a tiny amount 
of data (one observation) and an extremely 
informative prior, and gives the impression that 
maximum likelihood (ML) inference is not very 
reliable. 

However, in phylogenetics, we often have lots of 
data and use much less informative priors, so in 
phylogenetics ML inference is generally very 
reliable.
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Discrete vs. Continuous

• So far, we've been dealing with discrete 
hypotheses (e.g. either this father or that 
father, have disease or don’t have disease) 

• In phylogenetics, substitution models represent 
an infinite number of hypotheses (each 
combination of parameter values is in some 
sense a separate hypothesis) 

• How do we use Bayes' rule when our 
hypotheses form a continuum?



Likelihood Prior probability 
density

Marginal probability 
of the data

Posterior probability 
density

f(✓|D) =
f(D|✓)f(✓)R
f(D|✓)f(✓)d✓
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Bayes’ rule: continuous case
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If you had to guess...

0.0 ∞

1 meter 

Not knowing anything  
about my archery abilities, 
draw a curve representing 
your view of the chances of  
my arrow landing a distance 
d from the center of the target 
(if it helps, I'm standing 50 
meters away from the target)

d
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Case 1: assume I have talent

0.0

1 meter

20.0 40.0 60.0 80.0
distance in centimeters from target center

An informative prior 
(low variance) that 
says most of my  
arrows will fall within 
20 cm of the center 
(thanks for your 
confidence!)
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Case 2: assume I have a talent for missing the 
target! 

0.0

1 meter

20.0 40.0 60.0
distance in cm from target center

Also an informative prior, 
but one that says most of  
my arrows will fall within 
a narrow range just 
outside the entire target!
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Case 3: assume I have no talent

0.0

1 meter

20.0 40.0 60.0 80.0
distance in cm from target center

This is a vague prior: 
its high variance reflects 
nearly total ignorance 
of my abilities, saying  
that my arrows could  
land nearly anywhere!
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A matter of scale

∞

Notice that I haven't provided a scale for 
the vertical axis. 

What exactly does the height of this 
curve mean? 

For example, does the height of the dotted 
line represent the probability that my  
arrow lands 60 cm from the center  
of the target?

0.0 20.0 40.0 60.0

No.
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Probabilities are associated with intervals

Probabilities are attached to intervals 
(i.e. ranges of values), not individual values 

The probability of any given point (e.g.  
d = 60.0) is zero! 

However, we can ask about the probability  
that d falls in a particular range  
e.g. 50.0 < d < 65.0

0.0 20.0 40.0 60.0
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Probabilities vs. probability 
densities

Probability density function 

Note: the height of this curve does not represent a  
probability (if it did, it would not exceed 1.0)
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Densities of various substances

Substance Density (g/cm3)

Cork 0.24

Aluminum 2.7

Gold 19.3

Density does not equal mass 
mass = density × volume

Note: volume is appropriate for objects of dimension 3 or higher 
For 2-dimensions, area takes the place of volume 
For 1-dimension, linear distance replaces volume.
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Gold on 
this end

Aluminum 
this end

distance from left end

de
ns

it
y

Density varies
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Integration of densities

The density curve is scaled so  
that the value of this integral 
(i.e. the total area) equals 1.0
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density.ai

Integration of a probability density 
yields a probability

Area under the density 
curve from 0 to 2 is the 
probability that θ is less 

than 2
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Archery Priors 
Revisited

0 10 20 30 40 50 60

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

mean=1.732 
variance=3

mean=60 
variance=3

mean=200 
variance=40000

These density curves are 
all variations of a gamma 
probability distribution. 

We could have used a 
gamma distribution to 

specify each of the prior 
probability distributions 
for the archery example. 

Note that higher variance 
means less informative
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Coin-flipping

y = observed number of heads 
n = number of flips (sample size) 
p = (unobserved) proportion of heads

Note that the same formula serves as both the:  
• probability of y (if p is fixed) 
• likelihood of p (if y is fixed)
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The posterior is (almost always) more 
informative than the prior

p

uniform prior density

posterior density

= posterior probability (mass)
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Beta(2,2) prior is vague but not flat

Beta(2,2) prior density

posterior density

Posterior probability of p between 0.45 and 0.55 is 0.223



f(✓,�|D) =
f(D|✓,�) f(✓)f(�)R

✓

R
� f(D|✓,�) f(✓)f(�) d✓d�
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Usually there are many parameters...

Likelihood

Marginal probability of dataPosterior 
probability 

density

Prior probability 
densityA 2-parameter example

An analysis of 100 sequences under the simplest 
model (JC69) requires 197 branch length parameters. 
The denominator is a 197-fold integral in this case! 

Now consider summing over all possible tree topologies! 
It would thus be nice to avoid having to calculate the 

marginal probability of the data...
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II. Markov chain Monte Carlo 
(MCMC)
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Markov chain Monte Carlo (MCMC)

For more complex problems, we might settle for a 

good approximation
to the posterior distribution
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MCMC robot’s rules

Uphill steps are  
always accepted

Slightly downhill steps 
are usually accepted

Drastic “off the cliff” 
downhill steps are almost 
never accepted

With these rules, it  
is easy to see why the 

robot tends to stay near  
the tops of hills
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(Actual) MCMC robot rules

Uphill steps are  
always accepted 
because R > 1

Slightly downhill steps 
are usually accepted 
because R is near 1

Drastic “off the cliff” 
downhill steps are almost 
never accepted because 
     R is near 0

Currently at 1.0 m 
Proposed at 2.3 m 
R = 2.3/1.0 = 2.3

Currently at 6.2 m 
Proposed at 5.7 m 
R = 5.7/6.2 =0.92 Currently at 6.2 m 

Proposed at 0.2 m 
R = 0.2/6.2 = 0.03

6

8

4

2

0

10

The robot takes a step if it draws  
a Uniform(0,1) random deviate 
that is less than or equal to R



=
f(D|�⇤)f(�⇤)

f(D)

f(D|�)f(�)
f(D)
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Cancellation of marginal likelihood

When calculating the ratio R of posterior densities, the marginal 
probability of the data cancels.

f(�⇤|D)
f(�|D)

Posterior 
odds

=
f(D|�⇤)f(�⇤)
f(D|�)f(�)

Likelihood 
ratio Prior odds
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Target vs. Proposal Distributions

Pretend this proposal 
distribution allows good 
mixing. What does good 

mixing mean?
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Trace plots

“White noise” 
appearance is a sign of 
good mixing

I used the program Tracer to create this plot: 
http://tree.bio.ed.ac.uk/software/tracer/ 

AWTY (Are We There Yet?) is useful for 
investigating convergence: 

http://king2.scs.fsu.edu/CEBProjects/awty/
awty_start.php

lo
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Target vs. Proposal Distributions

Proposal distributions 
with smaller variance...

Disadvantage: robot takes  
smaller steps, more time  
required to explore the 
same area

Advantage: robot seldom 
refuses to take proposed 
steps
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If step size is too 
small, large-scale 
trends will be 
apparentlo

g(
po

st
er

io
r)
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Target vs. Proposal Distributions

Proposal distributions 
with larger variance...

Disadvantage: robot  
often proposes a step 
that would take it off 
a cliff, and refuses to 
move

Advantage: robot can 
potentially cover a lot of  
ground quickly
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Chain is spending long periods of time 
“stuck” in one place

“Stuck” robot is indicative of  step sizes 
that are too large (most proposed steps 
would take the robot “off the cliff”)

lo
g(

po
st
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io

r)
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MCRobot (or "MCMC Robot") 

Free apps for Windows or iPhone/iPad available 
from http://mcmcrobot.org/ 

(note: iOS 8 has caused some problems) 

Android: hopefully by summer 

Mac version: maybe some day 
(but see John Huelsenbeck's iMCMC app for MacOS: 

http://cteg.berkeley.edu/software.html) 
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Tradeoff

• Taking big steps helps in jumping from one 
“island” in the posterior density to another 

• Taking small steps often results in better 
mixing 

• How can we overcome this tradeoff? MCMCMC
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Metropolis-coupled Markov chain Monte Carlo 
(MCMCMC)

• MCMCMC involves running several chains 
simultaneously 

• The cold chain is the one that counts, the rest 
are heated chains 

• Chain is heated by raising densities to a power 
less than 1.0 (values closer to 0.0 are warmer)

Geyer, C. J. 1991. Markov chain Monte Carlo maximum likelihood for dependent data. Pages 156-163 in Computing Science and 
Statistics (E. Keramidas, ed.).
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Heated chains act as scouts for the 
cold chain

54

cold

heated

Cold chain robot can easily 
make this jump because it is 
uphill

Hot chain robot can also 
make this jump with high 

probability because it is only 
slightly downhill
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cold

heated

Hot chain and cold chain 
robots swapping places

Swapping places means 
both robots can cross 
the valley, but this is 

more important for the 
cold chain because its 
valley is much deeper
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Back to MCRobot...

56
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The Hastings ratio
If robot has a greater tendency  
to propose steps to the right as  
opposed to the left when choosing  
its next step, then the  
acceptance ratio must  
counteract this  
tendency.

Suppose the probability of 
proposing a spot to the right  

is twice that of proposing a spot  
to the left 

In this case, the Hastings ratio  
decreases the chance of accepting moves to the right by half, and 

increases the chance of accepting moves to the left (by a factor of 2), 
thus exactly compensating for the asymmetry in the proposal distribution.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97-109.
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The Hastings ratio
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Example where MCMC 
Robot proposed moves to the 
right 80% of the time, but 
Hastings ratio was not used 
to modify acceptance 
probabilities
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Hastings Ratio

Note that if q(θ|θ*) = q(θ*|θ), the Hastings ratio is 1

Acceptance 
ratio Posterior ratio Hastings ratio
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III. Bayesian phylogenetics
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So, what’s all this got to do with 
phylogenetics?

Imagine pulling out trees at random from a barrel. In the barrel, some 
trees are represented numerous times, while other possible trees are not 
present. Count 1 each time you see the split separating just A and C from 
the other taxa, and count 0 otherwise. Dividing by the total trees 
sampled approximates the true proportion of that split in the barrel.
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Moving through treespace

62

The Larget-Simon move

*Larget, B., and D. L. Simon. 1999. Markov chain monte carlo algorithms 
for the Bayesian analysis of phylogenetic trees. Molecular Biology and 
Evolution 16: 750-759. See also: Holder et al. 2005. Syst. Biol. 54: 
961-965.

Y

X Step 1: 
Pick 3 contiguous edges 
randomly, defining two 
subtrees, X and Y 



Paul O. Lewis (2015 Czech Republic Molecular Evolution Workshop)

Moving through treespace
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The Larget-Simon move

Y

X

Step 2: 
Shrink or grow selected 
3-edge segment by a 
random amountY

X
Step 1: 
Pick 3 contiguous edges 
randomly, defining two 
subtrees, X and Y 
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Moving through treespace
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The Larget-Simon move

Step 2: 
Shrink or grow selected 
3-edge segment by a 
random amountY

X
Step 1: 
Pick 3 contiguous edges 
randomly, defining two 
subtrees, X and Y 
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Moving through treespace
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The Larget-Simon move

Step 2: 
Shrink or grow selected 
3-edge segment by a 
random amount

Step 1: 
Pick 3 contiguous edges 
randomly, defining two 
subtrees, X and Y 

Step 3: 
Choose X or Y randomly, 
then reposition 
randomly

Y
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Moving through treespace
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The Larget-Simon move

Step 2: 
Shrink or grow selected 
3-edge segment by a 
random amount

Step 1: 
Pick 3 contiguous edges 
randomly, defining two 
subtrees, X and Y 

Step 3: 
Choose X or Y randomly, 
then reposition 
randomly

Proposed new tree:  
3 edge lengths have changed and 
the topology differs by one NNI rearrangement
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Moving through treespace

67

Current tree Proposed tree

log-posterior = -34256 log-posterior = -32519
(better, so accept)
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Moving through parameter space
Using κ (ratio of the transition rate to  
the transversion rate) as an example  
of a model parameter. 

Proposal distribution is the uniform 
distribution on the interval (κ-δ, κ+δ)

The “step size” of the MCMC robot 
is defined by δ: a larger δ means  
that the robot will attempt to make 
larger jumps on average.
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Putting it all together
• Start with random tree and arbitrary initial  

values for branch lengths and model parameters 

• Each generation consists of one of these (chosen at 
random): 
– Propose a new tree (e.g. Larget-Simon move) and either accept 

or reject the move 

– Propose (and either accept or reject) a new model parameter 
value 

• Every k generations, save tree topology, branch lengths 
and all model parameters (i.e. sample the chain) 

• After n generations, summarize sample using  
histograms, means, credible intervals, etc.
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Marginal Posterior Distribution of κ

95% credible interval

Histogram created 
from a sample of  
1000 kappa values.

upper = 3.604

mean = 3.234

lower = 2.907

Data from Lewis, L., and Flechtner, V. 2002. Taxon 51: 443-451.
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IV. Prior distributions
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Common Priors

• Discrete uniform for topologies 
– exceptions becoming more common 

• Beta for proportions 
• Gamma or Log-normal for branch lengths 

and other parameters with support [0,∞) 
– Exponential is common special case of the 

gamma distribution 

• Dirichlet for state frequencies and GTR 
relative rates

72
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Discrete Uniform distribution for 
topologies
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Yule model provides joint prior for both topology 
and divergence times

74

The rate of speciation under the Yule model (λ) is constant and applies 
equally and independently to each lineage. Thus, speciation events get closer 
together in time as the tree grows because more lineages are available to 
speciate.
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Gamma(a,b) distributions

Exponential(1)  
= Gamma(1,1)

Gamma(0.1, 10)
Gamma(400, 0.01)

peak > 0 if a > 1

shoots off to infinity  
if a < 1

hits y-axis at b  
if a = 1

Gamma distributions 
are ideal for 
parameters that range 
from 0 to infinity (e.g. 
branch lengths) 

a = shape 
b = scale 
mean* = ab 
variance* = ab2

*Note: be aware that in many papers the Gamma distribution is defined such that the second (scale) parameter is the inverse of 
the value b used in this slide! In this case, the mean and variance would be a/b and a/b2, respectively. 



µ = log(m2)� log(m)� log(v + m2)� log(m2)
2
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Log-normal distribution

76

If X is log-normal with parameters 
µ and σ...

µ

σ

...then log(X) is normal with mean µ 
and standard deviation σ.

Important: µ and σ do not represent the mean and standard deviation of X: they are 
the mean and standard deviation of log(X)!

X
log(X)

mode = eµ�⇥2 mode = µ

median = µmedian = eµ

mean = eµ+⇥2/2 mean = µ

variance = �2variance = e2µ+⇥2
(e⇥2

� 1)

To choose µ and σ to yield a particular mean (m) and variance (v) for X, use these 
formulas: 

�2 = log(v + m2)� log(m2)
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Beta(a,b) gallery

Beta(10,10)

Beta(1,1)

Be
ta

(1
.2

,2
)

Beta(0.8,2)
leans left if a < b 
mean = a/(a+b) = 

0.286 symmetric if a = b 
mean = a/(a+b) = 0.5

flat if a = b = 1

Beta distributions 
are appropriate for 
proportions, which 
are constrained to 
the interval [0,1]. 

mean = a/(a+b) 
variance = 
  ab/[(a+b)2(a+b+1)]
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Flat prior: 
a = b = c = d = 1

Informative prior: 
a = b = c = d = 300

(stereo pairs)

 Dirichlet(a,b,c,d) distribution

a→πA, b→πC, c→πG, d→πT
Used for nucleotide relative frequencies:

(equal frequencies strongly encouraged)

(no scenario discouraged)

Dirichlet(a,b,c,d,e,f) used for 
GTR exchangeability parameters.

(Thanks to Mark Holder for suggesting the use of a tetrahedron)
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Prior Miscellany
- priors as rubber bands 
- running on empty 
- hierarchical models 
- empirical bayes
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This Gamma(4,1) prior ties down its 
parameter at the mode, which is at 3, and 

discourages it from venturing too far in either 
direction. For example, a parameter value of 
10 would be stretching the rubber band fairly 

tightly

The mode of a 
Gamma(a,b) distribution 

is (a-1)b 
(assuming a > 1)
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This Gamma prior also has a mode at 3, but 
has a variance 40 times smaller. Decreasing 

the variance is tantamount to increasing the 
strength of the metaphorical rubber band. 

Now you (or the likelihood) would have to tug 
on the parameter fairly hard for it to have a 

value as large as 4.

This gamma distribution 
has shape 91.989 and 

scale 0.032971



0.1
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2 Taxus baccata
5 Dicksonia antarctica

4 Psilotum nudum
6 Sphagnum palustre

3 Huperzia lucidula
7 Anthoceros formosae

8 Marchantia polymorpha
12 Nitellopsis obtusa
11 Lychnothamnus barbatus

10 Lamprothamnium macropogon
9 Chara connivens
14 Tolypella int prolifera

13 Nitella opaca
18 Coleochaete sieminskiana
17 Coleochaete irregularis

16 Coleochaete soluta 32d1
15 Coleochaete orbicularis

20 Chaet oval
19 Chaet globosum SAG2698

27 Mougeotia sp 758
25 Mesotaenium caldariorum

26 Zygnema peliosporum 45
24 Spirogyra maxima 2495

22 Cosmocladium perissum
21 Onychonema sp

23 Gonatozygon monotaenium
30 Klebsormidium nitens
29 Klebsormidium subtilissimum

28 Klebsormidium flaccidum
31 Entransia fimbriata

32 Chlorokybus atmosphyticus
34 Mesostigma viride NIES
33 Mesostigma viride

36 Chlamydomonas reinhardtii
35 Volvox carteri

37 Paulschulzia pseudovolvox
38 Pteromonas angulos

39 Nephroselmis olivacea
40 Cyanophora paradoxa
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Internal branch length prior is 
exponential with mean 0.1

This is a reasonably vague 
internal branch length prior

Example: Internal Branch Length Priors

Separate priors applied to 
internal and external branches

External branch length prior is 
exponential with mean 0.1
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Internal branch length prior mean 0.01
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3 Huperzia lucidula
6 Sphagnum palustre

7 Anthoceros formosae
8 Marchantia polymorpha

12 Nitellopsis obtusa
11 Lychnothamnus barbatus

10 Lamprothamnium macropogon
9 Chara connivens

14 Tolypella int prolifera
13 Nitella opaca

18 Coleochaete sieminskiana
17 Coleochaete irregularis
16 Coleochaete soluta 32d1

15 Coleochaete orbicularis
20 Chaet oval
19 Chaet globosum SAG2698
27 Mougeotia sp 758

25 Mesotaenium caldariorum
26 Zygnema peliosporum 45

24 Spirogyra maxima 2495
22 Cosmocladium perissum
21 Onychonema sp

23 Gonatozygon monotaenium
30 Klebsormidium nitens

29 Klebsormidium subtilissimum
28 Klebsormidium flaccidum

31 Entransia fimbriata
32 Chlorokybus atmosphyticus

34 Mesostigma viride NIES
33 Mesostigma viride

36 Chlamydomonas reinhardtii
35 Volvox carteri

37 Paulschulzia pseudovolvox
38 Pteromonas angulos

39 Nephroselmis olivacea
40 Cyanophora paradoxa

(external branch length prior mean always 0.1)
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Internal branch length prior mean 
0.001
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Internal branch length prior mean 
0.00001
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Internal branch length prior mean 
0.000001

The internal branch length prior is 
calling the shots now, and the 

likelihood must obey.
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Prior Miscellany
- priors as rubber bands 
- running on empty 
- hierarchical models 
- empirical bayes
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#NEXUS 

begin data; 
  Dimensions ntax=4 nchar=1; 
  Format datatype=dna missing=?; 
  matrix 
    taxon1 ? 
    taxon2 ? 
    taxon3 ? 
    taxon4 ? 
  ; 
end; 

begin mrbayes; 
  set autoclose=yes; 
  lset rates=gamma; 
  prset shapepr=exponential(10.0); 
  mcmcp nruns=1 nchains=1 printfreq=1000; 
  mcmc ngen=10000000 samplefreq=1000; 
end;

Running on empty

You can use the program Tracer to show the estimated density: 
http://tree.bio.ed.ac.uk/software/tracer/

Solid line: prior density 
estimated from MrBayes 
output 

Dotted line: exponential(10) 
density for comparison

BEAST and MrBayes 3.2 
both make it easy to 

ignore the data without 
having to resort to 

creating fake data sets
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Prior Miscellany
- priors as rubber bands 
- running on empty 
- hierarchical models 
- empirical bayes
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A

A

A T

C

C

Prior: Exponential, mean=0.1

In a non-hierarchical model, all parameters 
are present in the likelihood function
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µ is a hyperparameter 
governing the mean of 
the edge length prior

Prior: Exponential, mean µ

Hierarchical models add hyperparameters  
not present in the likelihood function

For example, see Suchard, Weiss and Sinsheimer. 
2001. MBE 18(6): 1001-1013.

hyperprior

During an MCMC analysis, µ will hover around a reasonable 
value, sparing you from having to decide what value is 

appropriate. You still have to specify a hyperprior, however.
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Prior Miscellany
- priors as rubber bands 
- running on empty 
- hierarchical models 
- empirical bayes



Paul O. Lewis (2015 Czech Republic Molecular Evolution Workshop) 94

Empirical Bayes

Prior: Exponential, mean=MLE

An empirical Bayesian 
would use the maximum 
likelihood estimate (MLE) of 
the length of an average 
branch here 

Empirical Bayes uses the data to 
determine some aspects of the 
prior, such as the prior mean.  

Pure Bayesian approaches choose 
priors without reference to the 

data.



Paul O. Lewis (2015 Czech Republic Molecular Evolution Workshop) 95

V. Bayesian model selection



AIC = 2k � 2 log(maxL)

Paul O. Lewis (2015 Czech Republic Molecular Evolution Workshop)

AIC is not Bayesian. Why?

96

number of free (estimated) parameters maximized log likelihood

AIC is not Bayesian because the prior is not considered 
(and the prior is an important component of a Bayesian model)

f(✓|D) =
f(D|✓)f(✓)R
f(D|✓)f(✓)d✓

The marginal likelihood (denominator in Bayes’ Rule) is 
commonly used for Bayesian model selection

Represents the (weighted) average fit of the model to the 
observed data (weights provided by the prior)
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An evolutionary distance example

– Let's compare models JC69 vs. K80 
– Parameters: 

•  ν is edge length (expected no. substitutions/site) 
– free in both JC69 and K80 models 

•  κ is transition/transversion rate ratio 
– free in K80, set to 1.0 in JC69

X Y
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Likelihood Surface when K80 true

JC69 model (just this 1d line)

K80 model (entire 2d space)sequence length = 500 sites 
true branch length = 0.15 
true kappa = 5.0

K80 wins

Based on simulated data:


(branch length)(trs/trv rate ratio)

⌫

Assume joint prior is 
flat over the area 

shown.
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Likelihood Surface when JC true

sequence length = 500 sites 
true branch length = 0.15 
true kappa = 1.0

JC69 model (just this 1d line)

K80 model (entire 2d space)

JC69 wins

Based on simulated data:


(branch length)(trs/trv rate ratio)

⌫

Assume joint prior is 
flat over the area 

shown.
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Estimating the marginal likelihood

100

f(D) is the marginal likelihood 

Estimating f(D) is equivalent to estimating 
the area under the curve whose height is, 
for every value of θ, equal to f(D|θ) f(θ)
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Estimating the marginal likelihood

101

f(D) is the marginal likelihood 

Estimating f(D) is equivalent to estimating 
the area under the curve whose height is, 
for every value of θ, equal to f(D|θ) f(θ)

Remember that f(D) is the normalizing 
constant that turns the posterior kernel 
into a posterior density.

posterior kernel

posterior 
density
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Estimating the marginal likelihood

102

Sample evenly from a box with 
known area A that completely 
encloses the curve. 

Area under the curve is just A 
times the fraction of sampled 
points that lie under the 
curve.

Note: multiplying each f(θ) by a number less than 1

While not a box, the prior f(θ) 
does have area 1.0 and 
completely encloses the curve:
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Estimating the marginal likelihood

103

Prior

Unnormalized posterior

MCMC provides a way to sample from any 
distribution. The orange points are values of 
θ drawn from the Beta(2,2) prior. 

Marginal likelihood 
(area under the unnormalized 
posterior)

1.0 
(area under prior density)

The fraction of dots inside the unnormalized 
posterior is an estimate of this ratio:

Would work better if 
unnormalized posterior 

represented a larger 
fraction of the area under 

the prior...
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Stepping-stone method

104

c1.0

c0.0
=

✓
c1.0

c0.9

◆ ✓
c0.9

c0.8

◆ ✓
c0.8

c0.7

◆ ✓
c0.7

c0.6

◆ ✓
c0.6

c0.5

◆ ✓
c0.5

c0.4

◆ ✓
c0.4

c0.3

◆ ✓
c0.3

c0.2

◆ ✓
c0.2

c0.1

◆ ✓
c0.1

c0.0

◆

Sample from this distribution

See what fraction of samples are 
under this density curve

This fraction is an 
estimate of this ratio

(estimates a series of ratios that each 
represent smaller jump)
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How many “stepping stones”  
(i.e. ratios) are needed?

K (number of ratios)

-6623

Xie, W.G., P.O. Lewis, Y. Fan, L. Kuo and M.-H. Chen. 2011. Improving 
Marginal Likelihood Estimation for Bayesian Phylogenetic Model 
Selection. Systematic Biology 60(2):150-160. 

(see also followup paper describing more efficient generalized 
stepping-stone method: 
Fan, Y., Wu, R., Chen, M.-H., Kuo, L., and Lewis, P. O. 2011. Molecular 
Biology and Evolution 28(1):523-532)

Error bars based on 1 standard error computed 
using 30 independent analyses.

• rbcL data  
• 10 green plants 
• GTR+G model 
•1000 samples/
steppingstone

Stepping-stone method

105
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Is steppingstone sampling accurate?

• rbcL data  
• 10 green plants 
• GTR+G model 
•1000 samples/
steppingstone

Lartillot, N., and H. Philippe. 2006. Computing bayes factors using 
thermodynamic integration. Systematic Biology 55(2): 195-207. 

See for comparison of SS and TI: 
Baele G., Lemey P., Bedford T., Rambaut A., Suchard M.A., Alekseyenko 
A.V. 2012. Molecular Biology  and Evolution 29(9):2157–2167

Error bars based on 1 standard error computed 
using 30 independent analyses.

Thermodynamic integration 
(also called path sampling)

Stepping-stone method

-6623

106

K (number of ratios)
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How about the harmonic mean 
method?

• rbcL data  
• 10 green plants 
• GTR+G model 
•1000 samples/
steppingstone

Thermodynamic integration

Stepping-stone method

Harmonic mean method
-6589
-6623

107

Newton, M. A., and A. E. Raftery. 1994. Approximate Bayesian 
inference with the weighted likelihood bootstrap (with discussion). 
J. Roy. Statist. Soc. B 56:3-48.

K (number of ratios)

Note that the harmonic 
mean method is biased, 
and the bias does not go 

away with increased 
sampling
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The problem that DP models help solve

108

gene

Red depicts sites with, for example: 
- an unusually high or low rate 
- unusual equilibrium base (or amino acid) frequencies 
- an unusually high or low nonsynon./synon. rate ratio 
- some other unusual feature

Desired: a prior model that: 
- classifies sites into meaningful categories 
- discourages large numbers of categories 
- assigns reasonable parameter values to each of the categories 
- does all this automatically
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AB

A B

A

Imagine you have a collection of objects (e.g. sites, 
codons) labeled A, B, C, ...

B can either be added to A’s group or form its own group

The parameter α determines the propensity for forming 
a new group
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ABC

AB C

AC B

BCA

A B C

AB

A B

A

1
� + 2

�

� + 2

The third object C can either be 
added to an existing group...

...or form its own group
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After all objects have been 
considered, you can follow 
paths to determine 
the probability of 
different final 
configurations

Remember that 
this is a prior, so  
the data have a 
(usually big) say in how 
many clusters there are and 
what parameter values are assigned to each.
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favor few, 

large groups
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Dirichlet Process Priors
• To encourage few, large groups, use a small alpha value 
• To encourage lots of small groups, use a large alpha 

value 
• In practice, hierarchical models are often used (i.e. 

alpha is a hyperparameter that is estimated, so you 
need not worry about choosing the appropriate value for 
alpha) 

• Bottom line: DP models are very nice for automatically 
grouping sites into clusters that have some property in 
common
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The End


