An Introduction to Bayesian Phylogenetics 30 January 2015

Paul O. Lewis

Department of Ecology \& Evolutionary Biology UCDNN

An Introduction to Bayesian Phylogenetics

- Bayesian inference in general
- Markov chain Monte Carlo (MCMC)
- Bayesian phylogenetics
- Prior distributions
- Bayesian model selection

I. Bayesian inference in general

Joint probabilities

Conditional probabilities

Bayes’ rule

Probability of "Dotted"

Bayes' rule (cont.)

$$
\begin{aligned}
\operatorname{Pr}(B \mid D) & =\frac{\operatorname{Pr}(B) \operatorname{Pr}(D \mid B)}{\operatorname{Pr}(D)} \\
& =\frac{\operatorname{Pr}(D, B)}{\operatorname{Pr}(D, B)+\operatorname{Pr}(D, W)}
\end{aligned}
$$

$\operatorname{Pr}(D)$ is the marginal probability of being dotted To compute it, we marginalize over colors

Bayes' rule (cont.)

It is easy to see that $\operatorname{Pr}(D)$ serves as a normalization constant, ensuring that $\operatorname{Pr}(B \mid D)+\operatorname{Pr}(W \mid D)=1.0$

$$
\begin{aligned}
\operatorname{Pr}(B \mid D) & =\frac{\operatorname{Pr}(D, B)}{\operatorname{Pr}(D, B)+\operatorname{Pr}(D, W)} \longleftarrow \operatorname{Pr}(D) \\
\operatorname{Pr}(W \mid D) & =\frac{\operatorname{Pr}(D, W)}{\operatorname{Pr}(D, B)+\operatorname{Pr}(D, W)} \longleftarrow \operatorname{Pr}(D) \\
\operatorname{Pr}(B \mid D)+\operatorname{Pr}(W \mid D) & =\frac{\operatorname{Pr}(D, B)+\operatorname{Pr}(D, W)}{\frac{\operatorname{Pr}(D, B)+\operatorname{Pr}(D, W)}{}}=1
\end{aligned}
$$

Joint probabilities

B
W

Marginalizing over colors

Marginal probabilities

B

$\operatorname{Pr}(\mathrm{S})=$ marginal probability of being solid

Joint probabilities

B
W

Marginalizing over "dottedness"

B
 W

Bayes' rule (cont.)

$$
\begin{aligned}
& \operatorname{Pr}(B \mid D)=\frac{\operatorname{Pr}(B) \operatorname{Pr}(D \mid B)}{\operatorname{Pr}(D, B)+\operatorname{Pr}(D, W)} \\
& \quad=\frac{\operatorname{Pr}(B) \operatorname{Pr}(D \mid B)}{\operatorname{Pr}(B) \operatorname{Pr}(D \mid B)+\operatorname{Pr}(W) \operatorname{Pr}(D \mid W)} \\
& \quad=\frac{\operatorname{Pr}(B) \operatorname{Pr}(D \mid B)}{\sum_{\theta \in\{B, W\}} \operatorname{Pr}(\theta) \operatorname{Pr}(D \mid \theta)}
\end{aligned}
$$

Bayes' rule in Statistics

$$
\operatorname{Pr}(\theta \mid D)=\frac{\operatorname{Pr}(D \mid \theta) \operatorname{Pr}(\theta)}{\sum_{\theta} \operatorname{Pr}(D \mid \theta) \operatorname{Pr}(\theta)}
$$

D refers to the "observables" (i.e. the Data)
θ refers to one or more "unobservables"
(i.e. parameters of a model, or the model itself):

- tree model (i.e. tree topology)
- substitution model (e.g. JC, F84, GTR, etc.)
- parameter of a substitution model (e.g. a branch length, a base frequency, transition/transversion rate ratio, etc.)
- hypothesis (i.e. a special case of a model)
- a latent variable (e.g. ancestral state)

Bayes’ rule in statistics

Simple (albeit silly) paternity example

θ_{1} and θ_{2} are assumed to be the only possible fathers, child has genotype $A a$, mother has genotype aa, so child must have received allele A from the true father. Note: the data in this case is the child's genotype (Aa)
Possibilities
θ_{1}
θ_{2}
Row sum
Genotypes
AA
Aa
Prior
Likelihood
1/2
1/2
1
Prior X
Likelihood
1/2
1/4
3/4
Posterior
$2 / 3$
1/3
1

The prior can be your friend

Suppose the test for a rare disease is 99% accurate.

Suppose further I test positive for the disease. How worried should I be?
(Note that we do not need to consider the case of a negative test result.)

It is very tempting to (mis)interpret the likelihood as a posterior probability and conclude that there is a 99\% chance that I have the disease.

Want to know $\operatorname{Pr}($ disease $\mid+$), not $\operatorname{Pr}(+\mid$ disease $)$

The prior can be your friend

The posterior probability is 0.99 only if the prior probability of having the disease is 0.5 :

$$
\begin{aligned}
\operatorname{Pr}(\text { disease } \mid+) & =\frac{\operatorname{Pr}(+\mid \text { disease })\left(\frac{1}{2}\right)}{\operatorname{Pr}(+\mid \text { disease })\left(\frac{1}{2}\right)+\operatorname{Pr}(+\mid \text { healthy })\left(\frac{1}{2}\right)} \\
& =\frac{(0.99)\left(\frac{1}{2}\right)}{(0.99)\left(\frac{1}{2}\right)+(0.01)\left(\frac{1}{2}\right)}=0.99
\end{aligned}
$$

If, however, the prior odds against having the disease are 1 million to 1 , then the posterior probability is much more reassuring:

$$
\begin{aligned}
\operatorname{Pr}(\text { disease })+) & =\frac{(0.99)\left(\frac{1}{1000000}\right)}{(0.99)\left(\frac{1}{1000000}\right)+(0.01)\left(\frac{999999}{1000000}\right)} \\
& \approx 0.0001
\end{aligned}
$$

An important caveat

This (rare disease) example involves a tiny amount of data (one observation) and an extremely informative prior, and gives the impression that maximum likelihood (ML) inference is not very reliable.

However, in phylogenetics, we often have lots of data and use much less informative priors, so in phylogenetics ML inference is generally very reliable.

Discrete vs. Continuous

- So far, we've been dealing with discrete hypotheses (e.g. either this father or that father, have disease or don't have disease)
- In phylogenetics, substitution models represent an infinite number of hypotheses (each combination of parameter values is in some sense a separate hypothesis)
- How do we use Bayes' rule when our hypotheses form a continuum?

Bayes’ rule: continuous case

Posterior probability density

Marginal probability of the data

If you had to guess...

Not knowing anything about my archery abilities, draw a curve representing your view of the chances of my arrow landing a distance d from the center of the target (if it helps, I'm standing 50 meters away from the target)

Case 1: assume I have talent

Case 2: assume I have a talent for missing the target!

Case 3: assume I have no talent

A matter of scale

Notice that I haven't provided a scale for the vertical axis.

What exactly does the height of this curve mean?

For example, does the height of the dotted line represent the probability that my arrow lands 60 cm from the center of the target?

0.0

Probabilities are associated with intervals

Densities of various substances

Substance	Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
Cork	0.24
Aluminum	2.7
Gold	19.3

Density does not equal mass

$$
\text { mass }=\text { density } \times \text { volume }
$$

Note: volume is appropriate for objects of dimension 3 or higher For 2-dimensions, area takes the place of volume For 1-dimension, linear distance replaces volume.

Coin-flipping

$y=$ observed number of heads
$n=$ number of flips (sample size)
$p=$ (unobserved) proportion of heads

$$
\operatorname{Pr}(y \mid p)=\binom{n}{y} p^{y}(1-p)^{n-y}
$$

Note that the same formula serves as both the:

- probability of y (if p is fixed)
- likelihood of p (if y is fixed)

The posterior is (almost always) more informative than the prior

Beta(2,2) prior is vague but not flat

Posterior probability of p between 0.45 and 0.55 is 0.223

Usually there are many parameters...

II. Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC)

For more complex problems, we might settle for a good approximation
to the posterior distribution

MCMC robot's rules

(Actual) MCMC robot rules

Cancellation of marginal likelihood

When calculating the ratio R of posterior densities, the marginal probability of the data cancels.

$$
\begin{aligned}
& \frac{f\left(\theta^{*} \mid D\right)}{f(\theta \mid D)}=\frac{\frac{f\left(D \mid \theta^{*}\right) f\left(\theta^{*}\right)}{f(D)}}{\frac{f(D \mid \theta) f(\theta)}{f(D)}}=\frac{f\left(D \mid \theta^{*}\right) f\left(\theta^{*}\right)}{f(D \mid \theta) f(\theta)} \\
& \begin{array}{c}
\text { Posterior } \\
\text { odds }
\end{array} \\
& \begin{array}{c}
\text { Likelihood } \\
\text { ratio }
\end{array} \text { Prior odds }
\end{aligned}
$$

Target vs. Proposal Distributions

Target vs. Proposal Distributions

Target vs. Proposal Distributions

MCRobot (or "MCMC Robot")

Free apps for Windows or iPhone/iPad available from http://mcmcrobot.org/
(note: iOS 8 has caused some problems)
Android: hopefully by summer
Mac version: maybe some day
(but see John Huelsenbeck's iMCMC app for MacOS:
http://cteg.berkeley.edu/software.html)

Tradeoff

- Taking big steps helps in jumping from one "island" in the posterior density to another
- Taking small steps often results in better mixing
- How can we overcome this tradeoff? MCMCMC

Metropolis-coupled Markov chain Monte Carlo (MCMCMC)

- MCMCMC involves running several chains simultaneously
- The cold chain is the one that counts, the rest are heated chains
- Chain is heated by raising densities to a power less than 1.0 (values closer to 0.0 are warmer)

Geyer, C. J. 1991. Markov chain Monte Carlo maximum likelihood for dependent data. Pages 156-163 in Computing Science and Statistics (E. Keramidas, ed.).

Heated chains act as scouts for the

Back to MCRobot...

The Hastings ratio

If robot has a greater tendency to propose steps to the right as opposed to the left when choosing its next step, then the acceptance ratio must counteract this tendency.

Suppose the probability of proposing a spot to the right is twice that of proposing a spot to the left

In this case, the Hastings ratio
decreases the chance of accepting moves to the right by half, and increases the chance of accepting moves to the left (by a factor of 2), thus exactly compensating for the asymmetry in the proposal distribution.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97-109.

Example where MCMC
Robot proposed moves to the right 80% of the time, but Hastings ratio was not used to modify acceptance probabilities

Hastings Ratio

$$
R=\left[\frac{f\left(D \mid \theta^{*}\right) f\left(\theta^{*}\right)}{f(D \mid \theta) f(\theta)}\right]\left[\frac{q\left(\theta \mid \theta^{*}\right)}{q\left(\theta^{*} \mid \theta\right)}\right]
$$

Note that if $q\left(\theta \mid \theta^{*}\right)=q\left(\theta^{*} \mid \theta\right)$, the Hastings ratio is 1

III. Bayesian phylogenetics

So, what's all this got to do with phylogenetics?

1

1

0

1

Imagine pulling out trees at random from a barrel. In the barrel, some trees are represented numerous times, while other possible trees are not present. Count 1 each time you see the split separating just A and C from the other taxa, and count 0 otherwise. Dividing by the total trees sampled approximates the true proportion of that split in the barrel.

Moving through treespace

The Larget-Simon move Step 1:
Pick 3 contiguous edges randomly, defining two subtrees, X and Y
*Larget, B., and D. L. Simon. 1999. Markov chain monte carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16: 750-759. See also: Holder et al. 2005. Syst. Biol. 54:

Moving through treespace

The Larget-Simon move

Step 1:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected 3-edge segment by a random amount

Moving through treespace

The Larget-Simon move

Step 1:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y
Step 2:
Shrink or grow selected 3-edge segment by a random amount

Moving through treespace

The Larget-Simon move

Step 1:
Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected
3-edge segment by a
random amount
Step 3:
Choose X or Y randomly, then reposition randomly

Moving through treespace

The Larget-Simon move

Step 1:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected
3-edge segment by a
random amount
Step 3:
Choose X or Y randomly, then reposition randomly

Moving through treespace

Current tree
\log-posterior $=-34256$

Proposed tree
log-posterior $=-32519$ (better, so accept)

Moving through parameter space

\longmapsto if new value falls in this region, excess reflected back into valid range

Using k (ratio of the transition rate to the transversion rate) as an example of a model parameter.

Proposal distribution is the uniform distribution on the interval ($\mathrm{k}-\mathrm{\delta}, \mathrm{k}+\delta$)

The "step size" of the MCMC robot is defined by δ : a larger δ means that the robot will attempt to make larger jumps on average.

Putting it all together

- Start with random tree and arbitrary initial values for branch lengths and model parameters
- Each generation consists of one of these (chosen at random):
- Propose a new tree (e.g. Larget-Simon move) and either accept or reject the move
- Propose (and either accept or reject) a new model parameter value
- Every k generations, save tree topology, branch lengths and all model parameters (i.e. sample the chain)
- After n generations, summarize sample using histograms, means, credible intervals, etc.

Marginal Posterior Distribution of κ

Histogram created from a sample of 1000 kappa values.

IV. Prior distributions

Common Priors

- Discrete uniform for topologies
- exceptions becoming more common
- Beta for proportions
- Gamma or Log-normal for branch lengths and other parameters with support $[0, \infty)$
- Exponential is common special case of the gamma distribution
- Dirichlet for state frequencies and GTR relative rates

Discrete Uniform distribution for topologies

$\frac{1}{15}$

$\frac{1}{15}$

$\frac{1}{15}$
$\frac{1}{15}$

$\frac{1}{15}$

$\frac{1}{15}$

$\frac{1}{15}$

$\frac{1}{15}$

$\frac{1}{15}$

$\frac{1}{15}$

Yule model provides joint prior for both topology and divergence times

The rate of speciation under the Yule model (λ) is constant and applies equally and independently to each lineage. Thus, speciation events get closer together in time as the tree grows because more lineages are available to speciate.

Gamma (a, b) distributions

*Note: be aware that in many papers the Gamma distribution is defined such that the second (scale) parameter is the inverse of the value b used in this slide! In this case, the mean and variance would be a / b and a / b^{2}, respectively.

Log-normal distribution

If X is log-normal with parameters μ and $\sigma . .$.

...then $\log (X)$ is normal with mean μ and standard deviation σ.

Important: μ and σ do not represent the mean and standard deviation of X : they are the mean and standard deviation of $\log (X)$!

To choose μ and σ to yield a particular mean (m) and variance (v) for X, use these formulas:

$$
\begin{aligned}
\mu & =\log \left(m^{2}\right)-\log (m)-\frac{\log \left(v+m^{2}\right)-\log \left(m^{2}\right)}{2} \\
\sigma^{2} & =\log \left(v+m^{2}\right)-\log \left(m^{2}\right)
\end{aligned}
$$

Beta(a,b) gallery

Dirichlet (a, b, c, d) distribution

Used for nucleotide relative frequencies:

$$
\mathrm{a} \rightarrow \pi_{A}, \mathrm{~b} \rightarrow \pi_{C}, \mathrm{c} \rightarrow \pi_{G}, \mathrm{~d} \rightarrow \pi_{T}
$$

Flat prior:

 $\mathrm{a}=\mathrm{b}=\mathrm{c}=\mathrm{d}=1$(no scenario discouraged)

Informative prior: $\mathrm{a}=\mathrm{b}=\mathrm{c}=\mathrm{d}=300$

(equal frequencies strongly encouraged)
(stereo pairs)
Dirichlet(a,b,c,d,e,f) used for GTR exchangeability parameters.

Prior Miscellany

- priors as rubber bands
- running on empty
- hierarchical models
- empirical bayes

This Gamma $(4,1)$ prior ties down its parameter at the mode, which is at 3 , and discourages it from venturing too far in either direction. For example, a parameter value of 10 would be stretching the rubber band fairly tightly

The mode of a Gamma (a, b) distribution is $(a-1) b$ (assuming $a>1$)

This Gamma prior also has a mode at 3, but has a variance 40 times smaller. Decreasing the variance is tantamount to increasing the strength of the metaphorical rubber band.

Now you (or the likelihood) would have to tug on the parameter fairly hard for it to have a value as large as 4. has shape 91.989 and scale 0.032971

Example: Internal Branch Length Priors

Separate priors applied to internal and external branches

External branch length prior is exponential with mean 0.1

Internal branch length prior is exponential with mean 0.1

This is a reasonably vague internal branch length prior

Internal branch length prior mean 0.01

(external branch length prior mean always 0.1)

Internal branch length prior mean 0.001

Internal branch length prior mean 0.0001

\footnotetext{
40 Cyanophora paradoxa

Internal branch length prior mean 0.00001

[^0]
Internal branch length prior mean 0.000001

The internal branch length prior is calling the shots now, and the likelihood must obey.

Prior Miscellany

- priors as rubber bands
- running on empty
- hierarchical models
- empirical bayes

Prior Miscellany

- priors as rubber bands
- running on empty
- hierarchical models
- empirical bayes

In a non-hierarchical model, all parameters are present in the likelihood function

Prior: Exponential, mean=0.1

Hierarchical models add hyperparameters not present in the likelihood function

μ is a hyperparameter governing the mean of the edge length prior
hyperprior

Prior: Exponential, mean μ

During an MCMC analysis, μ will hover around a reasonable value, sparing you from having to decide what value is appropriate. You still have to specify a hyperprior, however.

Prior Miscellany

- priors as rubber bands
- running on empty
- hierarchical models
- empirical bayes

Empirical Bayes

Empirical Bayes uses the data to determine some aspects of the prior, such as the prior mean.

Pure Bayesian approaches choose priors without reference to the data.

An empirical Bayesian would use the maximum likelihood estimate (MLE) of the length of an average branch here

Prior: Exponential, mean=MLE

V. Bayesian model selection

AIC is not Bayesian. Why?

$A I C=2 k-2 \log \left(\max _{\uparrow} L\right)$

number of free (estimated) parameters maximized log likelihood
AIC is not Bayesian because the prior is not considered (and the prior is an important component of a Bayesian model)

$$
f(\theta \mid D)=\frac{f(D \mid \theta) f(\theta)}{\int f(D \mid \theta) f(\theta) d \theta}
$$

The marginal likelihood (denominator in Bayes' Rule) is commonly used for Bayesian model selection

Represents the (weighted) average fit of the model to the observed data (weights provided by the prior)

An evolutionary distance example

- Let's compare models JC69 vs. K80
- Parameters:
- v is edge length (expected no. substitutions/site)
- free in both JC69 and K80 models
- k is transition/transversion rate ratio
- free in K80, set to 1.0 in JC69

Likelihood Surface when K80 true

Based on simulated data:

```
sequence length = 500 sites
true branch length = 0.15
true kappa = 5.0
```

Assume joint prior is flat over the area shown.

Likelihood Surface when JC true

Based on simulated data:

sequence length	$=500$ sites
true branch length	$=0.15$
true kappa	$=1.0$

Assume joint prior is flat over the area shown.

Estimating the marginal likelihood

Estimating the marginal likelihood

Remember that $f(D)$ is the normalizing constant that turns the posterior kernel into a posterior density.

$$
\frac{f(D)}{f(D)}=\int \frac{f(D \mid \theta) f(\theta)}{f(D)} d \theta
$$

$$
1=\iint \overbrace{\substack{\text { posterior } \\ \text { density }}}^{f(\theta \mid D)} d \theta
$$

$f(D)$ is the marginal likelihood
Estimating $f(D)$ is equivalent to estimating the area under the curve whose height is, for every value of θ, equal to $f(D \mid \theta) f(\theta)_{101}$

Estimating the marginal likelihood

Sample evenly from a box with known area A that completely encloses the curve.

Area under the curve is just A times the fraction of sampled points that lie under the curve.

While not a box, the prior $f(\theta)$ does have area 1.0 and completely encloses the curve:

$$
\begin{gathered}
1.0=\int f(\theta) d \theta \\
f(D)=\int \underset{\uparrow}{f(D \mid \theta) f(\theta) d \theta}
\end{gathered}
$$

Estimating the marginal likelihood

MCMC provides a way to sample from any distribution. The orange points are values of θ drawn from the Beta(2,2) prior.

The fraction of dots inside the unnormalized posterior is an estimate of this ratio:

Would work better if unnormalized posterior represented a larger fraction of the area under the prior...

This fraction is an estimate of this ratio

How many "stepping stones" (i.e. ratios) are needed?

Is steppingstone sampling accurate?

- rbcL data
- 10 green plants - GTR+G model -1000 samples/ steppingstone

How about the harmonic mean method?

- rbcL data
- 10 green plants
- GTR+G model -1000 samples/ steppingstone

The problem that DP models help solve

Red depicts sites with, for example:

- an unusually high or low rate
- unusual equilibrium base (or amino acid) frequencies
- an unusually high or low nonsynon./synon. rate ratio
- some other unusual feature

Desired: a prior model that:

- classifies sites into meaningful categories
- discourages large numbers of categories
- assigns reasonable parameter values to each of the categories
- does all this automatically

Imagine you have a collection of objects (e.g. sites, codons) labeled A, B, C, ...

B can either be added to A's group or form its own group

The parameter α determines the propensity for forming a new group

Paul O. Lewis (2015 Czech Republic Molecular Evolution Workshop)

Dirichlet Process Priors

- To encourage few, large groups, use a small alpha value
- To encourage lots of small groups, use a large alpha value
- In practice, hierarchical models are often used (i.e. alpha is a hyperparameter that is estimated, so you need not worry about choosing the appropriate value for alpha)
- Bottom line: DP models are very nice for automatically grouping sites into clusters that have some property in common

The End

[^0]: 40 Cyanophora paradoxa
 39 Nephroselmis olivacea

 - 38 Pteromonas angulos

 37 Paulschulzia pseudovolvox
 35 Volvox carteri
 34 Mesostigma viride NIES

 - 34 Mesostigma viride NIES - 32 Chlorokybus atmosphyticus
 - 23 Gonatozygon monotaenium - 22 Cosmocladium perissum 30 Klebsormidium nitens
 29 Klebsormidium subtilissimum
 - 21 Onychonema sp

 27 Mougeotia sp 758
 24 Spirogyra maxima 2495
 26 Zygnema peliosporum 45 - 25 Mesotaenium caldariorum

 31 Entransia fimbriata

 - 19 Chaet globosum SAG2698
 - 20 Chaet oval

 28 Klebsormidium flaccidum

 - 15 Coleochaete orbicularis
 - 17 Coleochaete irregularis
 - 16 Coleochaete soluta 32d1

 18 Coleochaete sieminskiana

 - 13 Nitella opaca
 - 14 Tolypella int prolifera
 - 12 Nitellopsis obtusa
 - 11 Lychnothamnus barbatus
 - 9 Chara connivens
 - 10 Lamprothamnium macropogon
 - 8 Marchantia polymorpha

 7 Anthoceros formosae

 - 7 Anthoceros formo
 - 6 Sphagnum palustre

 44 Psilotum nudum 5 Dicksonia antarctica

