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Overview of the session

* Explaining diversity: Transcriptional regulation
— A short story from our recent work
* RNA Sequencing
— The different BLA-Seq libraries. A common theme

— Read mapping (alignment): Placing short reads in the genome

— Quantification:
* Assigning scores to regions

* Finding regions that are differentially represented between two or
more samples.

* How much depth?
_ R o Finding ¢ . | . el I
* RNA-SeqVignette: non-coding RNA evolution



Why do organisms look the way that they do!?




Why do different cell types do what they do!

However, all this diversity arises from the same genome sequence!
Proteins are very conserved across vertebrates, what is the driving force of variability?



Cell identity is determined by gene regulation

Positive Feedback Between PU.1
and the Cell Cycle Controls
Myeloid Differentiation

Hao Yuan Kueh,'* Ameya Champhekar,® Stephen L. Nutt,?
Michael B. Elowitz, Ellen V. Rothenberg™*
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And their epigenetic state

Dissecting neural differentiation regulatory
networks through epigenetic footprinting

Michael J. Ziller"***, Reuven Edri**, Yakey Yaffe*, Julie Donaghey"*?, Ramona Pop"*?, William Mallard"*, Robbyn Issner’,
Casey A. Gifford"??, Alon Goren'>®, Jeffrey Xing', Hongcang Gu', Davide Cacchiarelli’, Alexander M. Tsankov"??,
Charles Epsteinl, John L. Rinn">?, Tarjei S. Mikkelsen', Oliver Kohlbacher’, Andreas Gnirke', Bradley E. Bernstein™>°,
Yechiel Elkabetz*§ & Alexander Meissner'??§
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Transcription factors regulate gene programs. Epigenome informs (determines?)
potential for expression



Multicellular development requires complex regulation
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Indeed Enhancers are both species and cell type specific

Chromatin stretch enhancer states drive cell-specific
gene regulation and harbor human disease
) risk variants

=@ Stephen C. J. Parker®", Michael L. Stitzel*", D. Leland Taylor?, Jose Miguel Orozco?, Michael R. Erdos?,
" Jennifer A. Akiyama®, Kelly Lammerts van Bueren®, Peter S. Chines?, Narisu Narisu®, NISC Comparative Sequencing
Program?, Brian L. Black$, Axel Visel®, Len A. Pennacchio™9, and Francis S. Collins®?

LETTERS

Histone modifications at human enhancers reflect
global cell-type-specific gene expression

Nathaniel D. Heintzman"**, Gary C. Hon'**, R. David Hawkins'*, Pouya Kheradpour®, Alexander Stark>®,
Lindsey F. Harp®, Zhen Ye!, Leonard K. Lee!, Rhona K. Stuart!, Christina W. Ching?, Keith A. Ching!,

Jessica E. Antosiewicz-Bourget’, Hui Liu®, Xinmin Zhang®, Roland D. Green®, Victor V. Lobanenkov’, Ron Stewart’,
James A. Thomson”'°, Gregory E. Crawford'!, Manolis Kellis>® & Bing Ren'*

Enhancer elements are poorly conserved, are cell type specific, How do we find them?



DNA

is not naked

Nuclear
position

Higher-order
chromatin

Structural RNA

Nucleosome

Histone modifications

DNA methylation ' Histone variants

Nature Reviews | Molecular Cell Biology



Nucleosomes interact with nuclear factors through tails

2
‘©
o
Q
C
o
)
L
I

S Y i (
§ ) s ¢ LY
. ANy V™
/.br Y s
L \‘uv,.,4
A%,
- QSR AN
1\
0 T " gan
4 : 3 2 -
=y \ h v

Wikipedia



Cell identity is determined by its epigenetic state

Histone post-translational Remodelling Histone Non-coding
DNA methylation modification complexes variants RNAs
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Which controls the genome functional elements

Active promote

H3K36me3
H3K79me2
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Active transcription

Intron | Exon

H3K4me2
Hg%

Active enhancer

Intron

H3K27me3

H3K9me?2
H3K9me3

Repressive marks

Zhou, Goren Berenstein, Nature Rev. Genetics 2011



Dissecting a gene regulatory network

Human
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Comparative genomics — measure constraint
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* new methods

» models of transcriptional
regulation

* models of epigenetic
interactions

» perturbations

RNA-Protein
interactions

We want to ultimately understand the cell circuits of the cell



Understanding innate immunity

Non-lymphoid tissues Draining lymph nodes

|
\
\
| Danger )

\ signal A Ty1 bias
\

\

\

|

/

@)
@)
oO

Activated

Foreign antigens
DC 9 g

00
oO

\

Danger
signal B

Danger-signal-
induced migration

Ty2 bias

[

[

[

[

[

[

[

[

Immature [
dendritccell -~~~ -~~~ -~ - - — - — = = —

[

[

[

[

[

[

[

[

[

Tolerance

MHC I . Deletion
presentation

/ Regulatory
cells
o

o_©O

Quiescent O
DC Self-antigens

00
OO

\

\

! \ [

| cD8 Deletion
\

\

\

Steady-state
migration

MHC |
Cross- T cell Regulatory

presentation cells

Shortman and Liu, Nat. Reviews Immunology 2002



Q)
@
S
0
®
X
5
=
®
n
ol
O
S
i
=
O
09
)
el )
3
w»m
=
R
D
(72
Y
®)
-
wn
@
c—
@)
—
-
N

©
14 o0

Input Bacteria Viruses Late

Immediate

Intermediate

A |
il ‘ m \\ L] ‘\ r

Differentially Expressed Genes

Anti-bacterial Anti-viral
Output program program
(inflammation) (interferon)

LPS (TLR4 receptor) stimulation as it elicits the most broad gene
expression response.



Chip-Seq + RNA-Seq to map and relate components
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Sequencing libraries allow us to map output, state and the circuit of the cell



Late induced

Intermediate Immediate early

Repressed

Transcription factors control specific pathways
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Specific factors control amplitude of expression
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How different is the regulation of different expression patterns?



Different control of early vs. late induced genes
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Factors that control early induced genes are more redundant
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Conclusions and considerations

* A large fraction of binding exist prior to stimulus

* Immediate vs. late regulation is drastically different:
— Early induced genes regulators are more redundant
— Late induced regulators are less redundant
— Are the early inflammation pathways evolutionary more malleable?

* Factors act in layers, consistent with previous reports

* Genomic approaches like this are applicable to many
systems

— Protocols can handle smaller input material (Alon Goren, Oren
Ram, Amit)

* Test models using a genome wide genetic screens
* Map TFs with no available antibodies



Sequencing: applications

Counting applications

Profiling

— microRNAs

— Immunogenomics

— Transcriptomics
Epigenomics

— Map histone modifications
— Map DNA methylation

— 3D genome conformation

Nucleic acid Interactions

Polymorphism/mutation discovery

— Bacteria
— Genome dynamics
— Exon (and other target) sequencing
— Disease gene sequencing
Variation and association studies
Genetics and gene discovery

Cancer genomics

— Map translocations, CNVs,
structural changes

— Profile somatic mutations
Genome assembly
Ancient DNA (Neanderthal)
Pathogen discovery
Metagenomics




Sequencing libraries to probe the genome

. RNA-Seq
— Transcriptional output
— Annotation
— miRNA

— Ribosomal profiling
« ChlIP-Seq

— Nucleosome positioning
— Open/closed chromatin

— Transcription factor binding

» CLIP-Seq

— Protein-RNA interactions
. Hi-C

— 3D genome conformation



RNA-Seq libraries |:“Standard” full-length

* “Source:intact, high qual. RNA (polyA selected or
ribosomal depleted)

* RNA = ¢cDNA - sequence

* Uses:
— Annotation. Requires high depth, paired-end sequencing. ~50 mill

— Gene expression. Requires low depth, single end sequence, ~
5-10 mill

— Differential Gene expression. Requires ~ 5-10 mill, at least 3
replicates, single end



RNA-Seq libraries |ll: End-sequence libraries

* Target the start or end of transcripts.
* Source: End-enriched RNA

— Fragmented then selected

— Fragmented then enzymatically purified

* Uses:
— Annotation of transcriptional start sites
— Annotation of 3’ UTRs
— Quantification and gene expression
— Depth required 3-8 mill reads
— Low quality RNA samples
— Single cell RNA sequencing



RNA-Seq libraries lll: Small RNA libraries

100 nt =
90

* Source: size selected RNA =
* Uses:miRNA, piRNA annotation and 7%
uantification 28n
q . 20—2‘4 :. . . e
— Short single end 30-50 bp reads a8

— Depth: 5-10 mill reads

l Size-select small RM

to clone and sequen

Malonne et al. CSHL protocols, 2011



When you need both annotation and quantification

* Attempt three replicates per condition

Pool libraries to obtain ~15 mill reads per replicate
* Sequence using paired ends

* Analysis:

— Merge replicate alignments for annotation

— Split alignments for differential expression analysis



RNA-Seq libraries: Summary

Poly-A selected RNA

m7G (A)n
m7G (A)n
Zn-based
fragmentation
P
mMG—~__— ~—" P T —_ (),
P—\_/P
P g P\_/_'mn\
~——" m7G-—\_/
/ \
Exo-CAGE 3’-end-Seq sP‘e)IIZé\tion
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~ 2

Library Construction



ChlIP-Seq libraries:

* Crosslinked, immunoprecipitated DNA
 DNA - sequence

¢ Uses:
— Mapping nucleosomes (huge depth required)
— Mapping histones with specific tails
— Mapping transcription factor sites

— Requires ~ 5-10 mill, at least 2-3 replicates, single end



ChlIP-Seq protocol

Histone tails

Histones

Purify DNA i

End repair and i
adapter ligation
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Sequencing on NGS platforms

Kidder et al. Nature Immunology, 2011



CLIP-Seq libraries and ribosome footprinting:

* Crosslinked, immunoprecipitated RNA
* RNA-> cDNA ->sequence
* Uses:

— Mapping RNA/protein interactions
— Find miRNA regulated transcripts CLIP-Seq

— Mapping translation rates
— Annotate ORFs — Ribosomal profiling




Analysis of counting data requires 3 broad tasks

* Read mapping (alignment): Placing short reads in the
genome

e (Quantification:
* Assigning scores to genes/transcripts

 Determining whether a gene is expressed

* Normalization

* Finding genes/transcripts that are differentially
represented between two or more samples.

 Reconstruction: Finding the regions that originated the
reads



Once sequenced the problem becomes computational

sequencer Sequenced
cells reads

J

read
coverage

I W N

genome




Analysis of counting data requires 3 broad tasks

* Read mapping (alignment): Placing short reads in the
genome



The sequencing era alignment problem

* Finding 100,000s of small (30-500 bp) sequence ina 10 -
10000 million bp genome.

* Sequences are error prone (~1% error rate)
* Reference and sequence may not be the same haplotype

* Many techniques are great at finding perfect
matches



Short read alignment strategies

Breaks reads into “seeds” that can be perfectly matched

* Create an easily searchable genome (index)
— Hash table: address map of small words (k-mers)
— Suffix Arrays: Efficient way to look up words

— FA indices (i.e. Burrows Wheelers)

* Seed search using the index:
— Matching of smaller portions (seeds) of the read
— Grouping and prioritizing seeds

* Extending seed alignments

— Use algorithms that handle mismatches and gaps



Spaced seed alignment — Hashing the genome

G:

a

ccgattgactgaatg

J

Store spaced seed positions
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Spaced seed alignment — Mapping reads

G:

accgattgactgaatgq

accg

accg
accg
* k% % %

* Kk kK

* Kk Kk X

ccga
ccga
ccga
* k% Kk X%
* Kk Kk X%

* Kk kK
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* Kk kK

* Kk kK
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* Kk Kk X
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*x kX Kk Kk
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ttga

* Kk kK
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actg

* Kk kK
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* Kk Kk K
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* Kk kK

ctga

* Kk kK

ctga

* Kk kK

ctga

*x Kk Kk Kk
* Kk Kk Kk
aatg
* X k%
aatg
aatg

* % k% %
* Kk k% %
atgg
* Kk Kk %

atgg
atgg

bdddad

bdy ol

NS X X

XX XXX X

accgattgactgaatg

gccttaaggggtcctagttgcgagacacatgctgaccgtgggattgaatagy...

q. accg atag accg aatg

accgtgggattgaatg

2 missmatches 5 missmatches

Report position O

But, how confidence are we in the placement?
q,s = —10log,, P(read is wrongly mapped)



Mapping quality

What does  ¢,,; = —10log,, P(read is wrongly mapped) mean?

Lets compute the probability the read originated at genome position i

q. accg atag accg aatg

q,: 30 40 25 30 30 20 10 20 40 30 20 30 40 40 30 25

q.[k]=-10log,, P(sequencing error at base k), the PHRED score. Equivalently:

. s [k]
P(sequencing error at base k) = 10~ 10

So the probability that a read originates from a given genome position i is:

P(q|1G,i) = H P(q,good call) H P(q,bad call) = n P(g,bad call)

J match J missmatch j missmatch

In our example
P(q1G,0) = [(1 ~107)°1 =101 -10")*(1 - 10-2)2] [10-‘10-2] =[0.97]1*[0.001] = 0.001



Mapping quality

What we want to estimateis  g,,; = —10log,, P(read is wrongly mapped)

That is, the posterior probability, the probability that the region starting at i was
sequenced given that we observed the read g:

P(qli)P@i) _ P(qli)P@)

P@lg)= =
== SP1))

Fortunately, there are efficient ways to approximate this probability (see
Li, H genome Research 2008, for example)

qys =—10log,(1-P(ilq))



Considerations

* Trade-off between sensitivity, speed and memory

— Smaller seeds allow for greater mismatches at the cost of more
tries

— Smaller seeds result in a smaller tables (table size is at most 4¥),
larger seeds increase speed (less tries, but more seeds)



Considerations

* BWT-based algorithms rely on perfect matches for speed

* When dealing with mismatches, algorithms “backtrack” when
the alignment extension fails.

* Backtracking is expensive

* As read length increases novel algorithms are required



Short read mapping software for ChlP-Seq
Seed-extend BWT

Short indels Use base qual Use Base qual

Maq No YES BWA YES
RMAP Yes YES Bowtie NO
SeqMap Yes NO Stampy” YES
SHRIMP Yes NO Bowtie2® (NO)

*Stampy is a hybrid approach which first uses BWA to map reads then uses seed-extend only to
reads not mapped by BWA
*‘Bowtie2 breaks reads into smaller pieces and maps these “seeds” using a BWT genome.



The RNA-Seq alignment problem

RNA (1000 b) —_——— —

AAAAAAA

Genome
(100000 bp)

100s bp  10s kb

Challenges:

Genes exist at many different expression levels, spanning several orders of
magnitude.

Reads originate from both mature mRNA (exons) and immature mRNA
(introns) and it can be problematic to distinguish between them.

Reads are short and genes can have many isoforms making it challenging to
determine which isoform produced each read.



Mapping RNA-Seq reads: Exon-first spliced alignment (e.g. TopHat?2)

Exon | Exon 2

Transcript
e
B BB BB B mEmE -
"1 3 3 BT B B¢ Reads

I I Seeds

Seed mapping

|-+ Genome

Seed extend

i ....................................... - |-+ Genome




Mapping RNA-Seq reads: Maximal Mapping Prefix (STAR)

Transcript
e
B BN BN BN BN N -
EEEE BN BN BN BN BN BN B Reads

Seed mapping (MMP)

-+ Genome

Seed extend

i ....................................... - |-+ Genome




RNA-Seq specific problems

Pseudo gene attraction problem

- — 7 \— _—

Wseudogene

Intron invasion

E ~

xon | / Exon 2

Current aligners deal directly with these problems



Short read mapping software for RNA-Seq

Seed-extend Exon-first

Short indels Use base qual Use base qual

STAR Yes ? TopHat2 NO
QPALMA Yes NO
BLAT Yes NO

Exon-first alignments will map contiguous first at the expense of spliced hits



Integrative
Genomics
Viewer

IGV: Integrative Genomics Viewer

A desktop application
for the visualization and interactive exploration

of genomic data

Microarrays
Epigenomics - =

NGS alignments == o
Comparative genomics

E<BROAD

INSTITUTE



Visualizing read alignments with IGV — RNASeq
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Visualizing read alignments with IGV — zooming out
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Analysis of counting data requires 3 broad tasks

e (Quantification:

Assigning scores to genes/transcripts

Determining whether a gene is expressed

Normalization

Finding genes/transcripts that are differentially
represented between two or more samples.



What does significance means!?

RNA-Seq: The gene is expressed

ChlP-Seq: Factor binds the region
CLIP-Seq: Protein binds RNA region

* Ribosomal footprinting:

— Transcript is translated

— Ribosomes stalling at region



How do we find peaks?

RNA

K4dme1

K4dme3 .

Polll
Cebpb
Stat1
Stat2

H3K4me3 | Short modification

HakebIoe Long modification
RNA-Seq

| 1 “_ Discontinuous data
F——4——

Scripture is a method to solve this general question



Our approach

||I | 5 Permutation
— — Poisson
g a=0.05

Density
0.15

0.10

0.05

0.00

0 5 10 15 20 25 30
I I | Counts

We have an efficient way to compute read count p-values ...



The genome is large, many things happen by chance

Nominal P-Value

Genome (3 billion bases)

|dentified ‘

Enriched

Expected ~150,000,000 bases

We need to correct for multiple hypothesis testing



Bonferroni correction is way to conservative

FWER-Bonferroni

Genome (3 billion bases)

Correction factor 3,000,000,000

Bonferroni corrects the number of hits but misses many true hits because its too
conservative — How do we get more power?



Controlling FWER

Max Count distribution
a=0.05 a=0.05

Density
0.15 0.20 0.25 0.30
1 1 1 ]

0.10
|

0.05
1

0.00
[l

I T T T T
0 5 10 15 20

Counts

Count distribution (Poisson)

25

30

Given a region of size w and an observed read
count n. What is the probability that one or
more of the 3x10° regions of size w has read
count >= n under the null distribution?

We could go back to our permutations and
compute an FWER: max of the genome-wide
distributions of same sized region)—>

but really really really slow!!!



Scan distribution, an old problem

* Is the observed number of read counts over our region of interest high?
* Given a set of Geiger counts across a region find clusters of high radioactivity
* Are there time intervals where assembly line errors are high?

a=0.05 a=0.05

0.15 0.20 0.25 0.30
I 1 1 1

Density

0.10
1

0.05
1

(

Scan distribution

Thankfully, the Scan Distribution computes a
closed form for this distribution.

ACCOUNTS for dependency of overlapping
windows thus more powerful!

0 5 10 15
Counts

Poisson distribution

30



FWER-Scan Statistics

Genome (3 billion bases)

By utilizing the dependency of overlapping windows we have greater
power, while still controlling the same genome-wide false positive rate.



Segmentation method for contiguous regions

Example : Polll ChIP

Rela

Significant windows using the FWER
corrected p-value

But, which window?



We use multiple windows

* Small windows detect small punctuate regions.

* Longer windows can detect regions of moderate enrichment
over long spans.

* In practice we scan different windows, finding significant ones
in each scan.

* In practice, it helps to use some prior information in picking
the windows although globally it might be ok.



Applying Scripture to a variety of ChIP-Seq data

200, 500 & 1000 bp windows 100 bp windows



Can we identify enriched regions across different libraries!?

H3K4me3 l Short modification ‘/

H3K36me3
Long modification \/

Using chromatin signatures we discovered hundreds of putative genes.
What is their structure?

RNA-Seq

Ijﬂ_

I 54 5 5
I 71 7 7

Discontinuous data: RNA-Seq to find gene
structures for this gene-like regions




Analysis of counting data requires 3 broad tasks

e (Quantification:

Assigning scores to genes/transcripts

Determining whether a gene is expressed

Normalization

Finding genes/transcripts that are differentially
represented between two or more samples.



RNA-Seq quantification

* Is a given gene (or isoform) expressed!?
* |s expression gene A > gene B?
* Is expression of gene A isoform a, > gene A isoform a,?

* Given two samples is

— expression of gene A in sample | different from gene A in
sample 2?

— |s the expression of one isoform changing!?



RNA-Seq measures relative abundance

RNA-Seq quantification: Infer fraction of molecules in sample



RNA-Seq quantification units

w
D

Short transcript Long transcript

H#reads
length x Total Reads

RPKM = 10° Reads per kilobase of exonic

sequence per million mapped reads
(Mortazavi et al Nature methods 2008)

*Fragmentation of transcripts results in length bias: longer transcripts have higher
counts

*Different experiments have different yields. Normalization is key for cross lane
comparisons

Garber et al. Nat. Methods 2011



RNA-Seq quantification “units”

* To compare within a sequence run (lane), RPKM
accounts for length bias.

* RPKM (Mortazavi et al 2008) is not optimal for cross
experiment comparisons.
— Different samples may have different compositions.

* FPKM (Trapnell et al.201 |) superseded RPKM to deal
with paired end data

— Paired end reads originate from the same Fragment

* And later TPM = 10° x Fraction of transcript in sample (Li
et al 2009)

— More robust to changes in sample composition

Complexity increases when multiple isoforms exist



But, how to compute counts for complex gene structures!?

Condition 2 . T T e T e el g g
N 1soform 1
Isoform 2
Exon intersection method Transcript expression method

Three popular options:
Exon intersection model: Score constituent exons
Exon union model: Score the the “merged” transcript

Transcript expression model: Assign reads uniquely to
different isoforms. Not a trivial problem!

Garber et al. Nat. Methods 2011



Read assignment involves probabilistic assighment

0.33 ) aligned reads
transcript with proportional

bundances ‘ ‘_ _d_ . assignment to
e

a
transcripts

E-step
> blue =————------ transcripts
green s ---coccoccoscesconees — aligned to
red em——----oo------ — - - - - - — genome
0.33 0.33
genome
M-step
0.27 ' .
0® o--@
E-step -~
M-step
o o °
® — o --9
Estep .~ _
M-step

Pachter, L. (2011), (arXiv:1104.3889)




Current quantification models are complex

* In its simplest form we assume that reads can be
unequivocally mapped. This allows:

— Read counts distribute multinomial with rate estimated from the
observed counts
* When this assumption breaks, multinomial is no longer
appropriate.
* In general models use:
— Fragments as inferred from paired-end data
— Base quality scores
— Sequence mapability
— Protocol biases (e.g. 3’ bias)

* Handling each of these involves a more complex model where
reads are assigned probabilistically not only to an isoform but
to a different loci



Why paired end matters for isoform quantification?

upy
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i
]
]
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h _ I
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How do we define the gene expression?
How do we compute the expression of each isoform?



Computing gene expression

Ideal: RPKM of the
constitutive reads
(Neuma, Alexa-Seq,
Scripture)




Computing gene expression — isoform deconvolution




Computing gene expression — isoform deconvolution

e ———— -
T -
T e — T
L] B B m—mm———m e A -
e T T B N .
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If we knew the origin of the reads we could compute each isoform’s expression.
The gene’s expression would be the sum of the expression of all its isoforms.

E = RPKM, + RPKM, + RPKM,



Paired-end reads are easier to associate to isoforms

Isoform 1

Isoform 2

Isoform 3
Paired ends increase isoform deconvolution confidence

* P, originates from isoform 1 or 2 but not 3.
* P, and P, originate from isoform 1

Do paired-end reads also help identifying reads originating in isoform 3?



We can estimate the insert size distribution

Splice and compute insert

distance
Estimate insert size ’

empirical distribution

0.001 0.002 0.003 0.004

0.000

T T T T T T
100 200 300 400 500 600

T
700




. and use it for probabilistic read assignment

ul
Isoform 1 I

Isoform 2 I

Isoform 3 I

0 100 200 300 400 500 600 700

For methods such as MISO, Cufflinks and RSEM, it is critical to have paired-end data



Other considerations

* Duplicates —What to do with PCR artifacts

* Multimapper reads —What to do with reads that map to
multiple places in the genome



RNA-Seq quantification summary

* Counts must be estimated from ambiguous read/
transcript assignment.

— Using simplified gene models (intersection)
— Probabilistic read assignment
* Counts must be normalized
— RPKM/FPKM/TPM are designed for intra-library comparisons:

* |s gene A more highly expressed than gene B

* How do we normalize More sophisticated normalization
to account for differences in library composition for
inter-library comparisons.



Programs to measure transcript expression

Implemented method

Cufflinks2

Transcript deconvolution by solving the
maximum likelihood problem

RSEM

Transcript deconvolution by solving the
maximum likelihood problem

eXpress

Incorporated biases into model




Analysis of counting data requires 3 broad tasks

e (Quantification:
* Assigning scores to genes/transcripts

 Determining whether a gene is expressed

* Normalization

* Finding genes/transcripts that are differentially
represented between two or more samples.



Sample composition impacts transcript relative abundance
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Normalizing by total reads does not work well for samples with very
different RNA composition



Example normalization techniques

Counts for gene i in experiment j

s j = median

1 m \1/m’
1)
o \

Geometric mean for that gene
over ALL experiments

kij

i runs through all n genes

j through all m samples

k; is the observed counts for gene i in sample j
s;Is the normalization constant

Alders and Huber, 2010



Lets do an experiment (and

do a short R practice)

> s1 = ¢(100, 200, 300, 400, 10)
> s2 = ¢(50, 100, 150, 200, 500)

>norm=sum(s2)/sum(sl)
>plot(s2, slxnorm,log="xy” )
>abline(a = 0,0 = 1)

>g = sqrt(sl * s2t)

~

Similar read number,
one transcript many fold changed

Size normalization results in 2-fold
changes in all transcripts

>sln = s1/median(sl/g); s2n = s2/median(s2/g)

>plot(s2n, s1n,Jog="xy”)
>abline(a = 0,b = 1)
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When everything changes: Spike-ins
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Analysis of counting data requires 3 broad tasks

e (Quantification:

Assigning scores to genes/transcripts
Determining whether a gene is expressed

Normalization

Finding genes/transcripts that are differentially

represented between two or more samples.




Differential Gene Expression Questions

* Finding genes that have different expression between two or more
conditions.

* Find gene with isoforms expressed at different levels between two
or more conditions.

* Find differentially used slicing events
* Find alternatively used transcription start sites

* Find alternatively used 3’ UTRs



General strategy for differential gene expression

* Normalize count data

* Key:We only compare each gene across samples NOT one gene
to another.

* Estimate normalized mean gene counts

* Estimate gene variance
— Assume variance is similar for similarly expressed transcripts
— Model variance as a function of expression
— Use model to estimate variance for a transcript given its mean
count
* Define a test
— DESeq: Generalization of a fisher exact test

— Cufflinks: Log transformed of counts divided by its variance (~
normally distribute).

* Null hypothesis: log ratio = 0



Differential analysis strategies

e Use read counts and Standard Fisher exact test

Condition A Condition B

Gene A reads n ny,

d
Rest of reads N N,

a

— Not naturally extendable to experiments with
replicates



Why not just simple models!?

Isoform A ll——

/-> I i ] model
S

Exon-union

Isoform B I |
_Ll — Ll_l I Exon-intersection
e e model
Log fold-change Log fold-change Log fold-change
Condition A Condition B (union count) (intersect count) (true expression)
- - = - L EE = - m
" = ---" - =" log,(19) =0 log, (-8} =0.19 log,(—L ) =032
—_— —_— 92<1o) =\ %\, 4
I — I S Loat
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H— . H— . log, | — | =-0.41 log,| =]=0 log,[ 2= |=0.58
I — I S
- - - -
- - - LI B - - LI B 5 4 %
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Trapnell et al. Nat. Biotech 2012



RNA-Seq differential expression software

Underlying model Notes

EdgeR Negative Bionomial Gene read counts table

DESeq?2 Negative Bionomial Gene read counts table

Cufflinks2 Poisson Negative Bionomial Works directly from the
alignments

Myrna Empirical Sequence reads and

reference transcriptome

Miso Multinomial Specifically to test exon
cassette inclusion/
exclusion.



MISO: Specifically testing exon inclusion

] 0.4

| ] -
| =]
| ] 0.6

A l
l Single-end estimate, ¥,
Fragmentation and amplification

mRNA fragments sampled in proportion
to isoform length and expression level ¥ Insert variability:

l g=d\u
Sequencing

Short reads generated from fragments

9ouslajul uBISafeg

Alignment
Reads aligned to genome and splice

| N

Paired-end estimate, ¥\, 50

Insert length (nt)

Incorporation of paired ends

Assign reads to isoforms using insert
length distribution

- Intron
1 Skipped exon
mm— Constitutive exons

Inclusion reads

=
[} =
| =
—_— [ -]
Constitutive ™= Constitutive
reads ——  reads
Exclusion
reads

Katz et al Nat. Methods 2010



Our typical pipeline (e.g. RNA-Seq)

Upload your
sequence data (fastq)

Make report of quality metrics

!

Align to the ribosome (Bowtie)

Output ribosomal contamination
metrics report

Align remaining reads to
genome (TopHat)

——
————
——

Produce RNA-Seq report
% aligned, % intergenic, % exonic,
% UTR

Produce IGV/UCSC friendly files

Quantify transcriptome

!

Produce a table with normalized
expression values

Call differentially expressed
genes
(if multiple samples)

Report pairwise significant genes
that are differentially expressed




The quest for inexpensive expression assays

Goal: Routinely profile hundreds of samples
Why!?

— Human variability in health and disease

— Perturbation studies
— Clinical applications of expression profiling

— Single cell sequencing

e Current costs

— Afffy ~$300-$400/sample
— lllumina bead arrays $150/sample
— RNA-Seq (20 mill reads) ~$400-$500/sample ($350 in sequencing)

RNA-Seq disadvantages

— Complex analysis

— Length bias



Reading molecules: end-sequencing and molecular barcodes

Poly-A selected RNA

m7G (A)n
m7G (A)n
l fragmentation
P
m’G \/\_{\_P//—}/_\ (A)n
P
P g P\_/_'ﬁn\
~——— m7G-—\_/
/ \
Exo-CAGE 3’-end-Seq sP‘e)IIZé\tion
. ¢ Full-length \
me=x__~ RNA-Seq =~ (A),
m’G —~
TG = ‘_"j\ (A),
=~ 2

Library Construction

Maxim Artyomov



Molecule counting — Unique Molecular ldentifiers (UMI)

Step 1: Reverse transcription

5 A, 3
3 NT,UMI-barcode)partial rd2-'-T7 promoter 5’
Step 2: Exonuclease |
Legend:
= ] RNA
Step 3: Sample pooling /E\ . ONA
v == mm1 2strand

Step 4: Second strand synthesis
3 NT,,-UMI-barcode-partial rd2-T7 promoter 5’

5’ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII> 3’

Step 5: In Vitro Transcription l

Step 6: DNasel 3 Un-UMI-barcode-partial rd2mv 5

NT, XXXXXXXXX-SSSSSS-adapter

XXXXXXXXX: UM
SSSSSS: Sample Barcode

Jaitin et al. Science 2014



End-sequencing solution
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Although annotated ends far from perfect
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While annotated starts are much more conserved

# Genes
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We take full advantage of the data

. L =

Irf9 [ [ |
DGE 2hr R1 - - B _ﬂ_l

1. Slide a window and identify major 3’ end

2. Identify all other significant windows (using a local background)
3. Repeat for each sample

4. Take all significant windows across samples

5.1 Report gene level counts: Sum across all sig. windows
5.2 Report isoform level counts: Each sig. window



Reproducibility is as good as with full length
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With 8.5 Million reads similar yet somewhat reduced power

Full Lengh Full Lengh D
+
o UTR correction
&
multimapper handling
3’-seq ExoCage

Having established a robust analysis pipeline => Single cell RNA-Seq



Why Single-cell analysis?

gPCR analysis of CXCR5 vs CCL5 expression in ‘bulk’” 100-cell T cell populations
and single T cells:

100 cells Single cells

Average expression &

. \ ..: ..
over populations > .ﬁ 204" o iy
20 i .' ¢ ' ® & ° 3. ’

100% CHTY IPRR SN Py
10 - subpopulations

10 - 06|10

CXCR5

0 10 20 30 0 10 20
CCL5

From: Beyond model antigens: high-dimensional methods for the analysis of antigen-specific T cells, Newell E, Davis M; Nature
Biotechnology, Feb. 2014



Type | Diabetes study

* It is unclear what triggers TI1D

* The mechanism(s) of S-cell death are not well
understood.

* Rat model with inducible TID within 10 (£ |) days.

* Bulk RNA-Seq can’t reveal tissue composition



Cell sorting

* Pancreatic islets are composed of:
— q-cells: primarily produce glucagon
— [-cells: primarily produce insulin
— 0-cells, PPY producing cells, and others

* Issues with sorting cells by FACS:
— Only known cell types can be selected
— Preprocessing may affect the observed cell state

’

— Islet cells are very difficult to isolate, and FACS discards “other’
cells in the sorting process (wasteful for rare cells)

* In addition,“bulk” RNA-Seq can mask underlying
heterogeneity of even a sorted cell population...



Islet single cell sequencing

Dissociate Islets

3 4 5 6 7 8 9 10 31 12 13 14 15 16 17 18 19 20 21 22 23 M4

Flow Sort Single

Cells

VOZZTrXw=—IOMWMON®>

no extension

5kb extension

% increase

Total unique genes with >0 UMI for any cell: 8574 9648 12.5%
After filtering:
cells with >200 total UMls: 263 283 7.6%
genes with >50 total UMls: 296 367 24.0%

SCRB-Seq
Library
Construction



Single cell RNA-Seq cell

sorting

PC2 (29% of variacne)
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Single cell RNA-Seq cell sorting

PC4 (< 5% of variance)
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Which allow us to recover the known islet composition

fraction of total UMIs
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More in depth exploration of depth

* Very deep (30 million reads) dataset with triplicates.
— Mouse WT vs double Jnk1/2 KO (Roger Davis)
— Worm diet changes (Marian Walhout)

* Call DE with full dataset, then in-silico downsample data

Alper Kucukural



Is the loss qualitatively significant?

15 Million reads
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Is the loss qualitatively significant?

12.5 Million reads
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Is the loss qualitatively significant?

10 Million reads
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Is the loss qualitatively significant?

7.5 Million reads
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Is the loss qualitatively significant?

5 Million reads
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Is the loss qualitatively significant?

2.5 Million reads

't
o
§ . \ad

mé Legend
3 Rest
2 gold
& ® Sublost
8 ubLos

1 1
1e+03 1e405
baseMeanA



Is the loss qualitatively significant?

1 Million reads
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The loss is qualitatively small
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The loss is qualitatively small
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Final considerations: The steps of Sequencing analysis

* Filter reads (fastq file) by removing adapter, splitting
barcodes.

— Evaluate overall quality, look for drop in quality at ends. Trim
reads if ends are of low quality

* Alignment to the genome

— Use transcriptome if available

— Filter out likely PCR duplicates (reads that align to the same
place in the genome)

— Evaluate ribosomal contamination
— What percent of reads aligned

* Reconstruct(?)
* Quantify

— Normalize according to application
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