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Why do organisms look the way that they do?	
  



However,	
  all	
  this	
  diversity	
  arises	
  from	
  the	
  same	
  genome	
  sequence!	
  
Proteins	
  are	
  very	
  conserved	
  across	
  vertebrates,	
  what	
  is	
  the	
  driving	
  force	
  of	
  variability?	
  

Why do different cell types do what they do! 



Cell identity is determined by gene regulation 
Positive Feedback Between PU.1
and the Cell Cycle Controls
Myeloid Differentiation
Hao Yuan Kueh,1* Ameya Champhekar,1 Stephen L. Nutt,2

Michael B. Elowitz,1,3 Ellen V. Rothenberg1*

Regulatory gene circuits with positive-feedback loops control stem cell differentiation, but several
mechanisms can contribute to positive feedback. Here, we dissect feedback mechanisms through which
the transcription factor PU.1 controls lymphoid and myeloid differentiation. Quantitative live-cell
imaging revealed that developing B cells decrease PU.1 levels by reducing PU.1 transcription, whereas
developing macrophages increase PU.1 levels by lengthening their cell cycles, which causes stable
PU.1 accumulation. Exogenous PU.1 expression in progenitors increases endogenous PU.1 levels by
inducing cell cycle lengthening, implying positive feedback between a regulatory factor and the
cell cycle. Mathematical modeling showed that this cell cycle–coupled feedback architecture effectively
stabilizes a slow-dividing differentiated state. These results show that cell cycle duration functions
as an integral part of a positive autoregulatory circuit to control cell fate.

The transcription factor PU.1 is a central
component of the regulatory gene network
controlling lymphoid and myeloid devel-

opment from hematopoietic progenitors (1–4).
PU.1 is expressed at intermediate levels in pro-
genitors, and its subsequent levels become a de-
terminant of lymphoid and myeloid fate choices,
with down-regulation of PU.1 required for B and
Tcell development and higher PU.1 levels favor-
ing the development of macrophages or myeloid
dendritic cells (5–8).

Differential regulation of PU.1 during lymph-
oid and myeloid development involves tran-
scriptional positive feedback of PU.1 (9). PU.1
positively regulates its own transcription in mye-
loid cells and stem cells, but not in lymphoid cells
(10–13), and forms additional positive-feedback
loops throughmutual inhibition with other hema-
topoietic regulators (7, 14). Positive feedback can, in
principle, generate multiple stable states with differ-
ent levels of regulatory factors, possibly accounting
for the observed differences in PU.1 levels. How-
ever, it is unclear how PU.1 is regulated during
myeloid or lymphoid development,what feedback
mechanisms are involved, and why particular feed-
back architectures may have been selected.

PU.1 promotes growth in several progenitor
types (1, 15), but also coordinates cell cycle ar-
rest with differentiation in myeloid progeni-
tors. Reduced PU.1 activity causes acute myeloid
leukemia, where progenitors fail to initiate dif-
ferentiation growth arrest (16–19); conversely,
reexpression of PU.1 restores growth arrest
(17, 20, 21). However, it is unclearwhether PU.1’s
effect on the cell cycle influences its ability to
regulate its own levels and control differentiation.

In this work, we analyzed PU.1 and cell cy-
cle regulation in individual cells during early
macrophage and B cell development (Fig. 1A).
We isolated fetal liver progenitors (FLPs, Lin-
cKit+CD27+) from mice containing a bicistronic
PU.1–green fluorescent protein (GFP) knock-in
reporter (2), cultured them with cytokines sup-
porting B cell and macrophage differentiation,
and analyzed PU.1-GFP levels over time by time-
lapse imaging or flow cytometry (Fig. 1 and
figs. S1 and S2) (22). PU.1-GFP levels varied
linearly with nuclear PU.1 protein levels in this
culture system (fig. S3). We found that progen-
itors initially expressed PU.1-GFP at uniform
levels but subsequently up- or down-regulated
PU.1-GFP over time (Fig. 1, B to D, and fig. S4).
Cells up-regulating PU.1-GFP expressed the mac-
rophage markers CD11b and F4/80, but not the
granulocyte marker Gr1, and were also large and
adherent, reflecting differentiation into macro-
phages [Fig. 1, B and C (top right), and fig. S4].
In contrast, cells down-regulating PU.1-GFP ex-
pressed the B cell marker CD19 and were also
small and round, reflecting differentiation into
B cells [Fig. 1, B and C (bottom right), and
figs. S2 and S4). Developing granulocytes and
persisting progenitor-like cells maintained PU.1-
GFP levels similar to those of starting progenitors
(Fig. 1B and fig. S4). Both macrophages and B
cells preferentially developed from Fcg receptor
II/III (FcgR2/3)low FLPs, whereas FcgR2/3+ FLPs
mostly differentiated into granulocytes (fig. S5
and see below). These results validate the use
of our system for analyzing PU.1 regulation dur-
ing B cell or macrophage differentiation.

Changes in PU.1 levels during B cell or mac-
rophage differentiation may result from changes
in either the rate of PU.1 synthesis or the rate of
PU.1 removal (Fig. 1E), which would occur pre-
dominantly through dilution due to cell division
(23, 24), as PU.1’s protein half-life is substan-
tially longer than the progenitor cell cycle length
(fig. S6). To determine how PU.1 levels were

regulated, we measured PU.1 synthesis rates and
cell cycle lengths for individual cells within de-
fined progenitor, macrophage (Mac), and B cell
populations (Fig. 1D and fig. S7). PU.1 synthesis
rates could be measured by the slopes of stable
PU.1-GFP increase over time [(Dp/Dt for an ob-
served cell cycle; p, GFP or PU.1 protein; t, time),
Fig. 1E and fig. S7; fig. S8 shows GFP stability],
independent of averagePU.1-GFP levels.Although
cell movement precluded comprehensive multi-
generational tracking (fig. S9), we analyzed time-
lapse movies that allowed accurate measurements
of average cell cycle lengths and PU.1 synthesis
rates for different cell populations. Progenitors
comprised two subpopulations with higher and
lower rates of PU.1 synthesis (Fig. 1, F and G).
Switches between states with high and low PU.1
synthesis rates were infrequent across cell divi-
sion (Fig. 1G), suggesting that these states are
maintained stably inmost cells. Macrophages had
more PU.1-GFP and PU.1 protein than any of the
progenitors (Fig. 1H and fig. S3), as expected.
Surprisingly, however, their PU.1 synthesis rates
were not higher than that of the progenitor sub-
population with high PU.1 synthesis rates (Fig. 1,
F to H, and fig. S9). Instead, macrophages had
significantly longer cell cycle lengths (Fig. 1, F
to H, and fig. S9) and descended from ancestors
with shorter cell cycle lengths but similar PU.1
synthesis rates (Mac early, Fig. 1, F to H). Thus,
developing macrophages increase their PU.1 lev-
els by lengthening their cell cycles, which allows
PU.1 to accumulate to higher levels. In contrast,
emerging B cells had significantly lower PU.1
synthesis rates than progenitors but similar cell
cycle lengths (Fig. 1, F to H, and fig. S9). There-
fore, unlike macrophages, B cells decrease PU.1
levels by reducing PU.1 transcription.

Increased PU.1 levels caused by cell cycle
lengthening may be functionally important for
macrophage differentiation or may simply reflect
a consequence of differentiation growth arrest
(Fig. 2A). To distinguish between these two pos-
sibilities, we tested whether artificial cell cycle
lengthening promotes myeloid differentiation in
a PU.1-dependent manner. We induced cell cycle
lengthening in FLPs by two different methods:
either by retroviral transduction of cyclin-dependent
kinase (CDK)–inhibitors p21Cip1 (Cdkn1a) or
p27Kip1 (Cdkn1b) (Fig. 2B and fig. S10) or by
treatment with PD0332991, a CDK4/6 inhibitor
(25) (Fig. 2, C and D). Induced cell cycle length-
ening in progenitors increased PU.1-GFP and
PU.1 protein levels and the percentage of myeloid
cells, with these increases being most dramatic
in the slowest-dividing cells (Fig. 2, B and C).
This differentiation depended on PU.1 activity,
because in cells transduced with a competitive in-
hibitor of PU.1 (PU.1-ets) (fig. S11), PD0332991
treatment still increased PU.1-GFP, but no longer
increased the fraction of CD11b-expressing cells as
in empty vector (EV)–transduced cells (Fig. 2, C
and D). These results suggest that PU.1 accumu-
lation as a result of cell cycle lengthening is func-
tionally important for macrophage differentiation.

1Division of Biology, California Institute of Technology, Pasadena,
CA, USA. 2The Walter and Eliza Hall Institute of Medical Re-
search, Parkville, Victoria, Australia. 3Howard HughesMedical
Institute and Department of Bioengineering, California Insti-
tute of Technology, Pasadena, CA, USA.
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To examine how positive transcriptional feed-
back regulates PU.1’s own expression (10–13),
we tested how PU.1 and dominant negative
PU.1 transduction affected transcription of the
PU.1-GFP reporter. Forced expression of PU.1-ets
in FLPs reduced PU.1-GFP levels (fig. S12), im-
plying that a threshold level of PU.1 activity is
important for maximal PU.1 expression. Con-
versely, flow cytometry and imaging showed
that exogenous PU.1 up-regulated PU.1-GFP
and CD11b while inhibiting PU.1-GFP down-
regulation and CD19 up-regulation (Fig. 3, A
and B, and fig. S13). However, imaging analysis
(Fig. 1E) showed that exogenous PU.1 expres-
sion did not increase endogenous PU.1 synthesis
rates; instead, it induced cell cycle lengthening in
a subpopulation of progenitors, which led to the
increase in PU.1-GFP levels (Fig. 3, C and D,
and fig. S14). This cell cycle lengthening occurred
preferentially inFcgR2/3lowFLPs (fig. S5C), which
accounted for most of the macrophage potential
in the FLP population. Thus, high PU.1 levels

promote cell cycle lengthening in cells capable of
generating macrophages, which, in turn, allows
high PU.1 levels to be stably maintained. Taken
together, our results provide evidence for a regula-
tory circuit architecture involving positive feedback
on a transcription factor through the cell cycle.

Insight into cell cycle lengthening mecha-
nisms emerged from analysis of regulatory gene
expression in PU.1-transduced progenitors (Fig.
3E). Consistent with PU.1 autoregulation through
cell cycle lengthening rather than transcriptional
acceleration, PU.1 transduction did not affect
endogenous PU.1 mRNA levels, but it reduced
the levels of cell cycle promoting factors cyclin
D2 (Ccnd2) and Cdc25a. Consistent with other
studies (26–28), exogenous PU.1 also reduced the
levels of Myb andMyc, growth-promoting proto-
oncogenes that are down-regulated during nor-
mal differentiation. Exogenous PU.1 also reduced
levels of p21 and Gfi1, which can mediate quies-
cence, although these are up-regulated by PU.1 in
stem cells (13). Thus, themechanisms underlying

PU.1-mediated cell cycle arrest during macro-
phage differentiation appear distinct from those
operating in stem cell quiescence.

How can positive feedback between PU.1
and the cell cycle stabilize a slow-dividing mac-
rophage state with high PU.1 levels? To address
this issue, we constructed a stochastic single-cell
dynamical model, where PU.1 inhibits the G1-to-S
cell cycle transition above a threshold concentration
(Fig. 4A, top). This model exhibits bistability,
supporting both a fast-dividing, low-PU.1 state
and a slow-dividing, high-PU.1 state (Fig. 4A
and figs. S15 and S16). In our simple model, G1

checkpoint release depends solely on PU.1 levels;
during macrophage development, other regula-
tory factors also promote checkpoint release and,
thus, may regulate feedback engagement. Once
the high PU.1 state is established, it is relatively
stable compared with the corresponding state of a
hypothetical pure transcriptional feedback system
with similar parameters, which exhibits more fre-
quent spontaneous switches between states due to
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Fig. 1. Cell cycle lengthening drives PU.1 up-regulation during mac-
rophage development. FLPs (Lin-cKit+CD27+) from embryonic day 13.5
PU.1-GFP mice were cultured with B cell– and macrophage-supporting cyto-
kines [stem cell factor (SCF), interleukin-3 (IL-3), IL-7, Flt3L, macrophage
colony-stimulating factor] and analyzed with time-lapse imaging or flow
cytometry. (A) Schematic showing myeloid and lymphoid development from
hematopoietic progenitor cells. Mac, macrophage; Pro, progenitor, B, B cell. (B)
Histograms (left) show PU.1-GFP levels measured after the indicated number of
days in culture. Dotted lines give initial PU.1-GFP levels. Flow cytometry plots
(right) show CD19, CD11b, and Gr-1 levels against PU.1-GFP after 6 days. (C)
Merged differential interference contrast (gray) and PU.1-GFP fluorescence
(green) images of cultured FLPs, taken after the indicated number of hours.
Cells with PU.1-GFP time traces shown in (F) are marked with correspondingly
colored arrowheads. Scale bar, 20 mm. (D) Heat map showing PU.1-GFP levels
over time for all imaged cells. Rectangles define progenitor, macrophage, and

B cell populations. (E) Alternative hypotheses for PU.1-GFP up-regulation in
macrophages. The PU.1 synthesis rate for a single cell is given by Dp/Dt over
the entire observed cell cycle. (F) Representative single-cell PU.1-GFP time
traces for different cell populations. Data are taken from lineages shown in
fig. S9. Horizontal lines give PU.1-GFP level thresholds for the defined cell
populations. a.u., arbitrary units. (G) Histogram (top) showing distribution of
PU.1 synthesis rates in progenitors. Scatter plot showing the relation between
PU.1 synthesis rates in mother versus daughter cells. Horizontal and vertical
lines indicate the threshold for progenitor subpopulations with higher and
lower rates of PU.1 synthesis. (H) Plots comparing mean PU.1-GFP levels (top),
PU.1 synthesis rates (middle), and cell cycle lengths (bottom) in different cell
populations. Red crosses indicate box-plot outliers. Bottom error bars represent
95% confidence intervals. Asterisks indicate significantly different means (P <
10−7, one-tailed t test). Data are representative of three independent experi-
ments. N, number of cells.
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And their epigenetic state LETTER
doi:10.1038/nature13990

Dissecting neural differentiation regulatory
networks through epigenetic footprinting
Michael J. Ziller1,2,3*, Reuven Edri4*, Yakey Yaffe4, Julie Donaghey1,2,3, Ramona Pop1,2,3, William Mallard1,3, Robbyn Issner1,
Casey A. Gifford1,2,3, Alon Goren1,5,6, Jeffrey Xing1, Hongcang Gu1, Davide Cacchiarelli1, Alexander M. Tsankov1,2,3,
Charles Epstein1, John L. Rinn1,2,3, Tarjei S. Mikkelsen1, Oliver Kohlbacher7, Andreas Gnirke1, Bradley E. Bernstein1,5,6,
Yechiel Elkabetz41 & Alexander Meissner1,2,31

Models derived from human pluripotent stem cells that accurately
recapitulate neural development in vitro and allow for the genera-
tion of specific neuronal subtypes are of major interest to the stem
cell and biomedical community. Notch signalling, particularly through
the Notch effector HES5, is a major pathway critical for the onset
and maintenance of neural progenitor cells in the embryonic and
adult nervous system1–3. Here we report the transcriptional and
epigenomic analysis of six consecutive neural progenitor cell stages
derived from a HES5::eGFP reporter human embryonic stem cell line4.
Using this system, we aimed to model cell-fate decisions including
specification, expansion and patterning during the ontogeny of cor-
tical neural stem and progenitor cells. In order to dissect regulatory
mechanisms that orchestrate the stage-specific differentiation pro-
cess, we developed a computational framework to infer key regulators
of each cell-state transition based on the progressive remodelling of
the epigenetic landscape and then validated these through a pooled
short hairpin RNA screen. We were also able to refine our previous
observations on epigenetic priming at transcription factor binding
sites and suggest here that they are mediated by combinations of
core and stage-specific factors. Taken together, we demonstrate the
utility of our system and outline a general framework, not limited
to the context of the neural lineage, to dissect regulatory circuits of
differentiation.

We used the human embryonic stem (ES) cell line WA9 (also known
as H9) expressing GFP under the HES5 promoter4 to isolate defined
neural progenitor populations of neuroepithelial (NE), early radial glial
(ERG), mid radial glial (MRG) and late radial glial (LRG) cells based on
their cell morphology and Notch activation state5, as well as long-term
neural progenitors (LNP) based on their epidermal growth factor recep-
tor (EGFR) expression5,6 (Fig. 1a and Extended Data Fig. 1a). We took
these defined stages to create strand-specific RNA sequencing (RNA-seq)
data, chromatin immunoprecipitation followed by sequencing (ChIP-seq)
maps for histone H3 lysine 4 monomethylation (H3K4me1), trimethy-
lation (H3K4me3), lysine 27 acetylation (H3K27ac) and H3K27me3 as
well as DNA methylation (DNAme) data by whole-genome bisulphite
sequencing (WGBS) for the first four stages, and reduced representa-
tion bisulphite sequencing (RRBS) for the last two (LRG and LNP) stages
(Fig. 1a and Supplementary Table 1).

Global transcriptional analysis of the undifferentiated ES cells and
the first four neural progenitor cell (NPC) stages identified 3,396 differ-
entially expressed genes (Extended Data Fig. 1b, c and Supplementary
Table 2). Pluripotency-associated genes such as OCT4 (also known as
POU5F1) and NANOG are, as expected, rapidly downregulated, and
pan-neural genes are induced early and maintained throughout the
remainder of the differentiation time course (Extended Data Fig. 1c).

Using data from the mouse Allen Brain Atlas as an in vivo reference for
genes expressed in different brain compartments and developmental
stages, we observed a consecutive shift of expression signatures along
the NPC differentiation trajectory (Fig. 1b). NE through LRG tran-
scripts suggest anterior neural fates, while the MRG and LRG stages
show in addition some posterior identities (Fig. 1b, left). Accordingly,
differentiated progeny derived from these populations express deep
cortical layer neuronal markers (NEdN and ERGdN) such as FEZF2
and BCL11B and superficial layer neuronal markers (MRGdN) such as
POU3F2/POU3F3 and MEF2C (Extended Data Fig. 1d). Progression
from early (NE) to late (LRG) stages was also accompanied by a trans-
ition from predominantly neurogenic to mainly gliogenic potential,
although LRG cells still generate neurons (Extended Data Fig. 1d). This
progressive change in NPC identity aligns well with the in vivo order of
developmental events7.

In line with these observations, our WGBS data show changes in
DNAme that can be separated into two overall patterns. The first is
characterized by widespread loss of methylation and retention of the
resulting hypomethylated state throughout subsequent differentiation
stages (Fig. 1c, top right). This pattern coincides with major cell-fate
decisions such as commitment from ES cells to the neural fate and the
transition from ERG to MRG, the latter demarcating both peak of neu-
rogenesis and onset of gliogenic potential (Fig. 1c, right middle). The
second pattern is defined by a stage-specific loss with subsequent gain
at the next stage, as observed during the transition from NE to ERG and
also from MRG to LRG (Fig. 1c, right). Conversely, regions gaining
DNAme during transition from one stage to another frequently reside
in a hypomethylated state in all preceding stages, indicating the possible
silencing of stem cell or pan-neural gene regulatory elements (Fig. 1c,
left). At the histone modification level we also observed the most wide-
spread changes during the initial neural induction (Fig. 1d); although it
is worth noting that the biggest gain of the repressive mark H3K27me3
occurs at the MRG stage.

These coordinated epigenetic changes are probably the result of dif-
ferential transcription factor activity8–11. We therefore developed a com-
putational method to attribute the genome-wide changes in histone
modifications and DNAme at regions termed footprints to particular
transcription factors and quantified this remodelling potential (TERA,
transcription factor epigenetic remodelling activity; Fig. 2a, Extended
Data Fig. 2a and Methods). Notably, the H3K27ac peak set in our NPC
model was significantly enriched for single nucleotide polymorphisms
previously reported to be implicated in Alzheimer’s disease (P # 0.01)
and bipolar disorders (P # 0.01) by genome-wide association studies,
suggesting the possibility to utilize this differentiation system as a basis
to study the genetic component of complex diseases in vitro12,13. Next,

*These authors contributed equally to this work.
1These authors jointly supervised this work.
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Pathology,MassachusettsGeneral Hospital and Harvard Medical School, Boston, Massachusetts02114, USA. 6Center for SystemsBiology and Center for Cancer Research, MassachusettsGeneralHospital,
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to identify potential key regulators of onset, maintenance and trans-
ition through distinct NPC populations, we ranked all motifs and their
associated transcription factors based on their TERA scores between
consecutive time points (Supplementary Table 3). We then retrieved
the transcription factors associated with highest scoring 40 motifs for
each cell-state transition (Fig. 2b). This analysis confirmed many well-
known key regulators of in vivo neural development and forebrain

specification that are induced at the NE stage such as PAX6, OTX2 and
FOXG1 (refs 14–16) as well as various SOX proteins17. Notably, we also
found predicted differential activity of distinct downstream components
of signalling pathways such as a decrease of SMAD4 activity at the NE
stage, consistent with inhibition of TGF-b signalling that promotes
neural induction18. Another example that is predicted to be relevant
but not limited to the MRG stage is POU3F2, known to be involved in
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Figure 1 | Consecutive stages of ES-cell-derived neural progenitors are
characterized by distinct epigenetic states. a, Left, schematic of the cell
system. Middle, normalized read-count level for H3K27ac over a 1.4-megabase
(Mb) region around the SOX2 locus (chromosome 3: 180,854,252–
182,259,543) where SOX2-OS refers to the SOX2 overlapping transcript. ChIP-
seq read counts were normalized to 1 million reads and scaled to the same
level (1.5) for all tracks shown. Right, additional tracks for H3K4me3,
H3K4me1 and H3K27me3 as well as DNAme (scale 0–100%), OTX2 binding
and expression covering a 100 kilobase (kb) sub-region (chromosome 3:
181,389,523–181,490,148) of this locus. Histone and RNA-seq data were
normalized to 1 million reads and are shown on distinct scales. b, Maximum
gene set activity levels shown as z scores for genes expressed in defined brain
structures (left) and developmental time points (right) based on the mouse
Allen Brain Atlas. Gene set activity was defined as average expression level of all
member genes followed by z score computation across all nine cell types.

Different., differentiated; LRGdA, LRG-derived astrocyte-like cells; RSP, rostral
secondary prosencephalone; Tel, telencephalon; PHy, peduncular (caudal)
hypothalamus; p3, hypothalamus; p2, pre-thalamus; p1, pre-tectum; M,
midbrain; PPH, prepontine hindbrain; PH, pontine hindbrain; PMH,
pontomedullary hindbrain; MH, medullary hindbrain. Developmental times
are embryonic days 11.5, 13.5, 15.5 and 18.5 and postnatal days 4, 14 and 28.
c, Distribution of DNAme levels for differentially methylated regions (change
in methylation $0.2, P # 0.01) across state transitions; for instance,
distributions for regions gaining methylation in the transition from ES cell to
NE (top left) at all stages of differentiation. Distinct methylation level trace
plots are shown for regions gaining methylation (left) during the specific
transitions (indicated on the side) and loss of methylation (right). Black labelled
samples are based on WGBS data and grey colour samples (LRG and LNP)
were profiled by RRBS. d, Bar plot showing the number of regions that gain or
lose selected modifications across the first four cell-state transitions.

RESEARCH LETTER

2 | N A T U R E | V O L 0 0 0 | 0 0 M O N T H 2 0 1 4

Macmillan Publishers Limited. All rights reserved©2014

Transcrip>on	
  factors	
  regulate	
  gene	
  programs.	
  Epigenome	
  informs	
  (determines?)	
  
poten>al	
  for	
  expression	
  



Multicellular development requires complex regulation 
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Figure 1 | Regulation of transcription. a | A summary of promoter elements and regulatory signals. Chromatin is 
comprised of DNA wrapped around histones to form nucleosomes. The structure of chromatin can be tightly 
wrapped or accessible to proteins. Boundaries between these states may be marked by insulators. The region around 
the transcription start site (TSS) is often divided into a larger proximal promoter upstream of the TSS and a smaller 
core promoter just around the TSS. The exact boundaries vary between studies. To recruit RNA polymerase II 
(RNAPII) and to activate transcription of the gene, sequence-specific regulatory proteins (transcription factors) bind 
to specific sequence patterns (namely, transcription factor binding sites (TFBSs)) that are near to the TSS (proximal 
elements) or that are far away from it (enhancers). TFBSs can also occur in clusters, forming cis-regulatory modules 
(CRMs). b | Sequence patterns in core promoters. The region around the TSS has several over-represented sequence 
patterns; the TATA box and initiator (Inr) are the most studied and most prevalent. The location of patterns relative 
to the TSS and their sequence properties are shown as boxes and as associated sequence logos based on the JASPAR 
database. The Inr pattern is not shown as it varies considerably between studies, ranging from a TCA(G/T)TC(C/T) to 
a single dinucleotide (pyrimidine (C/T)–purine (A/G)). Importantly, most promoters only have one or a few of these 
patterns, and some patterns are mostly found in certain species. BRE, B recognition element; DCE, downstream core 
element; DRE, DNA recognition element; MTE, motif ten element. Figure modified, with permission, from REF. 91 © 
(2004) Macmillan Publishers Ltd. All rights reserved.

Pre-initiation complex
(PIC). A polypeptide complex 
consisting of RNA polymerase 
II and general transcription 
factors. This forms in the core 
promoter region around the 
transcription start site and 
primes RNA polymerase II  
for transcription.

B recognition element 
(BRE). A core promoter 
element with consensus 
sequence SSRCGCC found 
upstream of TATA box.

modifications and their dynamics, nucleosome con-
figuration and association with long-range regulatory 
elements — all show clear equivalence. We then turn 
to other recently discovered properties of promoters 

for which systematic classification and association  
with promoter function has not been settled. These 
include promoter-associated small RNAs and RNAPII 
pausing, stalling and backtracking at the TSS.
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Indeed Enhancers are both species and cell type specific   

Chromatin stretch enhancer states drive cell-specific
gene regulation and harbor human disease
risk variants
Stephen C. J. Parkera,1, Michael L. Stitzela,1, D. Leland Taylora, Jose Miguel Orozcoa, Michael R. Erdosa,
Jennifer A. Akiyamab, Kelly Lammerts van Buerenc, Peter S. Chinesa, Narisu Narisua, NISC Comparative Sequencing
Programa, Brian L. Blackc, Axel Viselb,d, Len A. Pennacchiob,d, and Francis S. Collinsa,2

aNational Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892; bGenomics Division, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720; cCardiovascular Research Institute, University of California, San Francisco, CA 95158; and dDepartment of Energy Joint Genome Institute,
Walnut Creek, CA 94598

Contributed by Francis S. Collins, September 16, 2013 (sent for review August 2, 2013)

Chromatin-based functional genomic analyses and genomewide
association studies (GWASs) together implicate enhancers as critical
elements influencing gene expression and risk for common diseases.
Here, we performed systematic chromatin and transcriptome pro-
filing in human pancreatic islets. Integrated analysis of islet data
with those from nine cell types identified specific and signifi-
cant enrichment of type 2 diabetes and related quantitative
trait GWAS variants in islet enhancers. Our integrated chromatin
maps reveal that most enhancers are short (median = 0.8 kb). Each
cell type also contains a substantial number of more extended (≥3
kb) enhancers. Interestingly, these stretch enhancers are often
tissue-specific and overlap locus control regions, suggesting that
they are important chromatin regulatory beacons. Indeed, we
show that (i ) tissue specificity of enhancers and nearby gene
expression increase with enhancer length; (ii ) neighborhoods
containing stretch enhancers are enriched for important cell
type–specific genes; and (iii) GWAS variants associated with traits
relevant to a particular cell type are more enriched in stretch en-
hancers compared with short enhancers. Reporter constructs contain-
ing stretch enhancer sequences exhibited tissue-specific activity in
cell culture experiments and in transgenic mice. These results suggest
that stretch enhancers are critical chromatin elements for coordinating
cell type–specific regulatory programs and that sequence variation in
stretch enhancers affects risk of major common human diseases.

High-throughput sequencing has been coupled to ChIP (ChIP-
seq) and mRNA samples (RNA-seq) to survey the genome-

wide chromatin and transcription profiles in different cell types.
Regulatory elements such as promoters, enhancers, insulators,
transcribed, and repressed regions are marked by distinct pat-
terns of histone modifications (1), including histone H3 lysine
27 acetylation (H3K27ac), H3K27 trimethylation (H3K27me3),
H3K36me3, H3K4 monomethylation (H3K4me1), H3K4me3,
and the CCCTC-binding factor (CTCF). Systematic chromatin
state identification has recently emerged as a powerful technique
to interpret and compare regulatory landscapes within and bet-
ween cell types (2–7). Such methods use an unsupervised approach
to identify recurrent combinations of histone modifications across
the genome, thereby producing a map of representative chromatin
states that are likely to be biologically relevant.

Results
Systematic Chromatin and Transcriptome Profiling in Human Islets.
To correlate chromatin features with the location of type 2 di-
abetes (T2D) genetic risk variants and with gene expression, we
conducted high-throughput sequencing coupled to ChIP (ChIP-
seq) and mRNA samples (RNA-seq) in human pancreatic islets,
a cell type relevant to diabetes and to quantitative trait analysis of
glucose and insulin levels (8). Using the ChromHMM algorithm
(2), we uniformly integrated our islet ChIP-seq reads plus ad-
ditional islet data sets (9) with those from nine Encyclopedia of

DNA Elements (ENCODE) cell types to generate consistent
chromatin state assignments across all 10 cell types. We an-
chored these assignments based on overlap with previously
published chromatin states (2) in the nine ENCODE cell types
to produce a consistent annotation of promoter, enhancer, in-
sulator, transcribed, and repressed chromatin states (SI Appen-
dix, Fig. S1). In parallel, we integrated our human islet RNA-seq
data with ENCODE RNA-seq data, resulting in a unified set of
chromatin state and mRNA maps for islets and the nine EN-
CODE cell types (Fig. 1A). After subsampling to normalize the
amount of ChIP-seq reads, the fraction of the genome covered
by select chromatin states remained relatively constant across
any given cell type (Fig. 1B, Upper). However, we observed that
additional read depth identified additional signal-enriched en-
hancer regions (SI Appendix, Fig. S2), a finding consistent with
other studies (10, 11). Thus, in subsequent analyses, we used
chromatin states identified using all reads (Fig. 1B, Lower) and
note that the trends reported herein are consistently observed
even when normalized read chromatin states are used. As shown
in Fig. 1A, our integrative approach identified both common (e.g.,

Significance

Using high-throughput experiments, we determined the func-
tional epigenomic landscape in pancreatic islet cells. Compu-
tational integration of these data along with similar data from
the ENCODE project revealed the presence of large gene con-
trol elements across diverse cell types that we refer to as
“stretch enhancers.” Stretch enhancers are cell type specific and
are associated with increased expression of genes involved in
cell-specific processes. We find that genetic variations associ-
ated with common disease are highly enriched in stretch
enhancers; notably, stretch enhancers specific to pancreatic
islets harbor variants linked to type 2 diabetes and related
traits. We propose that stretch enhancers form as pluripotent
cells differentiate into committed lineages, to program impor-
tant cell-specific gene expression.
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Histone modifications at human enhancers reflect
global cell-type-specific gene expression
Nathaniel D. Heintzman1,2*, Gary C. Hon1,3*, R. David Hawkins1*, Pouya Kheradpour5, Alexander Stark5,6,
Lindsey F. Harp1, Zhen Ye1, Leonard K. Lee1, Rhona K. Stuart1, Christina W. Ching1, Keith A. Ching1,
Jessica E. Antosiewicz-Bourget7, Hui Liu8, Xinmin Zhang8, Roland D. Green8, Victor V. Lobanenkov9, Ron Stewart7,
James A. Thomson7,10, Gregory E. Crawford11, Manolis Kellis5,6 & Bing Ren1,4

The human body is composed of diverse cell types with distinct
functions. Although it is known that lineage specification depends
on cell-specific gene expression, which in turn is driven by pro-
moters, enhancers, insulators and other cis-regulatory DNA
sequences for each gene1–3, the relative roles of these regulatory
elements in this process are not clear. We have previously
developed a chromatin-immunoprecipitation-based microarray
method (ChIP-chip) to locate promoters, enhancers and insula-
tors in the human genome4–6. Here we use the same approach to
identify these elements in multiple cell types and investigate their
roles in cell-type-specific gene expression. We observed that the
chromatin state at promoters and CTCF-binding at insulators is
largely invariant across diverse cell types. In contrast, enhancers
are marked with highly cell-type-specific histone modification
patterns, strongly correlate to cell-type-specific gene expression
programs on a global scale, and are functionally active in a cell-
type-specific manner. Our results define over 55,000 potential
transcriptional enhancers in the human genome, significantly
expanding the current catalogue of human enhancers and high-
lighting the role of these elements in cell-type-specific gene
expression.

We performed ChIP-chip analysis as described previously5 to deter-
mine binding of CTCF (insulator-binding protein) and the coactiva-
tor p300 (also known as EP300), and patterns of histone modifications
in five human cell lines: cervical carcinoma HeLa, immortalized lym-
phoblast GM06690 (GM), leukaemia K562, embryonic stem cells (ES)
and BMP4-induced ES cells (dES). We first investigated 1% of the
human genome selected by the ENCODE consortium7, using DNA
microarrays consisting of 385,000 50-base oligonucleotides that tile
30-million base pairs (bp) at 36 bp resolution. We examined mono-
and tri-methylation of histone H3 lysine 4 (H3K4me1, H3K4me3)
and acetylation of histone H3 lysine 27 (H3K27ac) at well-annotated
promoters, reasoning that the state of these histone modifications
would vary in a cell-type-specific manner. To our surprise, the chro-
matin signatures at promoters are remarkably similar across all cell
types (Fig. 1a). Quantitative comparison of ChIP-chip enrichment
(see Supplementary Information) revealed highly correlated histone
modification patterns at promoters across all cell types, with an
average Pearson correlation coefficient of 0.71 (Supplementary
Fig. 1a). This observation also holds for the larger set of Gencode
promoters (Supplementary Fig. 2).

Next, we identified putative insulators in the ENCODE regions for
these cell types based on CTCF binding, because mammalian insula-
tors are generally understood to require CTCF to block promoter2
enhancer interactions3. We observed nearly identical CTCF occu-
pancy (Supplementary Table 1 and Supplementary Fig. 1e) and highly
correlated CTCF enrichment patterns across all five cell types
(Supplementary Fig. 1b), providing experimental support for the
mostly cell-type-invariant function of CTCF as suggested by DNase
hypersensitivity mapping results8.

We then investigated transcriptional enhancers in the ENCODE
regions, performing ChIP-chip in HeLa, K562 and GM cells to locate
binding sites for the transcriptional coactivator protein p300
(Supplementary Tables 224) because p300 is known to localize at
enhancers9. We observed highly cell-type-specific histone modifica-
tion patterns at distal p300-binding sites (Supplementary Fig. 1f), in
marked contrast to the similarities in histone modifications across
cell types at promoters. We then used our chromatin-signature-
based prediction method5 to identify additional enhancers in the
ENCODE regions in these cell types (Fig. 1b and Supplementary
Tables 529). In addition to the characteristic H3K4me1 enrichment,
predicted enhancers are frequently marked by acetylation of H3K27,
DNaseI hypersensitivity and/or binding of transcription factors and
coactivators, and many contain evolutionarily conserved sequences
(Supplementary Figs 3 and 4; see Supplementary Information).
Unlike promoters and insulators, but similar to p300-binding sites,
the histone modification patterns at predicted enhancers are largely
cell-type-specific (Fig. 1b and Supplementary Fig. 1d), in agreement
with observations that H3K4me1 is distributed in a cell-type-specific
manner10.

These results indicate that enhancers are the most variable class of
transcriptional regulatory element between cell types and are probably
of primary importance in driving cell-type-specific patterns of gene
expression. Knowledge of enhancers is therefore critical for under-
standing the mechanisms that control cell-type-specific gene expres-
sion, yet our incomplete knowledge of enhancers in the human genome
has confined previous studies of gene regulatory networks mainly to
promoters. To identify enhancers on a genome-wide scale and facilitate
global analysis of gene regulatory mechanisms, we performed ChIP-
chip throughout the entire human genome as described6, mapping
enrichment patterns of H3K4me1 and H3K4me3 in HeLa cells.
Using previously described chromatin signatures for enhancers5, we

1Ludwig Institute for Cancer Research, 2Biomedical Sciences Graduate Program, 3Bioinformatics Program, and 4Department of Cellular and Molecular Medicine, UCSD School of
Medicine, 9500 Gilman Drive, La Jolla, California 92093-0653, USA. 5MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, Massachusetts
02139, USA. 6Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. 7Morgridge Institute for Research, Madison, Wisconsin 53707-7365,
USA. 8Roche NimbleGen, Inc., 500 South Rosa Road, Madison, Wisconsin 53719, USA. 9National Institutes of Allergy and Infectious Disease, 5640 Fishers Lane, Rockville, Maryland
20852, USA. 10University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA. 11Institute for Genome Sciences and Policy, and Department of
Pediatrics, Duke University, 101 Science Drive, Durham, North Carolina 27708, USA.
*These authors contributed equally to this work.
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Cell identity is determined by its epigenetic state 
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Understanding innate immunity 

ACTIVATED DCS

These dendritic cells are fully
mature and express high surface
levels of MHC II and co-
stimulator molecules. They
initiate T-cell immune
responses.

QUIESCENT DCS

These dendritic cells are typically
found in the lymphoid tissues of
uninfected laboratory mice and
are sufficiently mature to express
moderate surface levels of MHC
II and co-stimulator molecules,
but they are not yet fully
activated and maintain some
potential for antigen uptake and
processing. They might mediate
T-cell tolerance.
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example, CPG motifs in bacterial DNA, double-stranded
viral RNA, lipopolysaccharides (LPS) and necrotic cell
products (such as heat-shock proteins) activate DCs18–21.
In addition, DCs distinguish between tissue cells that die
by the normal process of apoptosis and those that die by
externally generated necrosis — antigens from both
types of dead cell are taken up and presented to T cells,
but only the latter activate the DC22,23. The receptors that
recognize these diverse stimuli vary from lectin-domain
scavenger receptors that are similar to those on phago-
cytes to the Toll-like receptors (TLRs), which are related
to proteins from the defence systems of plants and
insects24,25. DCs link these evolutionarily conserved pat-
tern-recognition systems of the innate immune system
to the variable pattern-recognition receptors of the
adaptive immune system: the T-cell receptors.

DCs as cross-presenting APCs. DCs are equipped with
the biochemical machinery for processing and present-
ing peptide fragments of protein antigens on MHC
molecules, rather than merely digesting them26,27. APCs
usually present exogenous antigens on MHC class II
(MHC II) molecules, whereas they usually present
endogenous antigens (from self-components or a viral
infection) on MHC class I (MHC I) molecules.
However, it is clear that certain antigens outside the
APC system somehow enter the MHC-I processing
pathway, both to generate cytotoxic T cells in response
to viruses that do not infect the APCs themselves, and
to maintain self-tolerance to non-APC components7,28.
Many experiments now point to DCs being the previ-
ously elusive cross-presenting APCs29–33. The receptors
and biochemical machinery that lead exogenous anti-
gens into the MHC-I presentation pathway of DCs now
need to be elucidated.

DCs direct the T-cell response. The experimental out-
come of a DC–T-cell interaction is often simply T-cell
proliferation. Although triggering of T cells into cell-
cycle progression is a central function of DCs, it is now
clear that DCs can also influence, and perhaps dictate,
the subsequent development of these dividing T cells.
T-cell activation and proliferation might lead to immu-
nity or to tolerance, to the generation/activation of
effector T cells or regulatory T cells, and to T cells that
secrete different patterns of cytokines, including the
extreme cytokine-polarized T helper 1 (TH1) AND TH2

responses (FIG. 1).
Although the signals from DCs that govern T-cell

cytokine polarization have not all been determined, the
production of the TH1-inducing cytokine interleukin-12
(IL-12) is an important factor34. The production of the
bioactive p70 form of IL-12 by DCs is tightly regulated
and involves separate control of the production of the
p40 and p35 components. Several factors are needed to
induce IL-12 production by DCs, including microbial
products, the CD40 ligand CD154, stimulation from
activated T cells and the appropriate cytokine
milieu35,36. Notable examples of controls on IL-12 pro-
duction include the negative-feedback effect (in which
the TH2 cytokine IL-4 acts as a strong promoter of IL-12

(iDCs) produced tolerance, whereas mature DCs pro-
duced immunity13,14. The iDCs might induce tolerance
by killing T cells, by paralysing them (anergy) or, par-
ticularly, by inducing the generation of regulatory 
T cells15. However, the idea has been revised to suggest
that tolerance is induced by DCs that are mature but
quiescent, whereas immunity is induced by DCs that
are fully activated16,17. These ACTIVATED DCS then provide
T cells with additional signals or much stronger ver-
sions of the same signals. The emerging model is that
QUIESCENT DCS that bear self-components are required for
the continuous maintenance of self-tolerance, whereas
immune responses only occur when invading pathogens
provide danger signals to trigger DC activation. We
suggest that the effects of microbial infections extend
further, to inducing not just the final activation but also
the production of certain DC subtypes.

Recognition receptors on DCs. These models require the
DCs to sense ‘danger’ in the form of microbes or tissue
damage. Indeed, a series of microbial products (for
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Figure 1 | Dendritic cells and immunoregulation. The current view of the ways in which the
activation states of dendritic cells (DCs) can determine the nature of T-cell responses. In the
absence of microbial infections and related ‘danger’ signals, there is a low-level, steady-state
entry of DCs into lymphoid tissues, in which quiescent DCs help to maintain a state of peripheral
T-cell tolerance to self-antigens. Microbial infection, inflammation and tissue damage all activate
the DCs and increase their rate of migration into lymphoid tissue, where they signal to T cells that
are specific for the foreign antigens that are presented by the DCs to initiate immune responses.
The idea that microbial invasion might also trigger the production of new DC subtypes that are not
present at all in uninfected animals is not shown here. MHC, major histocompatibility complex;
TH1, T helper 1 cell; TH2, T helper 2 cell.
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Gene expression programs in response to LPS 
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Chip-Seq + RNA-Seq to map and relate components 
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Transcription factors control specific pathways 
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Specific factors control amplitude of expression 
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How different is the regulation of different expression patterns? 

TF fold change (log2)
4–4

Binding score at t = 0
950

log2
3–3



Different control of early vs. late induced genes 
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Factors that control early induced genes are more redundant 



•  A large fraction of binding exist prior to stimulus 
•  Immediate vs. late regulation is drastically different: 

–  Early induced genes regulators are more redundant 
–  Late induced regulators are less redundant 
–  Are the early inflammation pathways evolutionary more malleable? 

•  Factors act in layers, consistent with previous reports 
•  Genomic approaches like this are applicable to many 

systems 
–  Protocols can handle smaller input material (Alon Goren, Oren 

Ram, Amit) 

•  Test models using a genome wide genetic screens 
•  Map TFs with no available antibodies  

Conclusions and considerations 



Sequencing: applications 
Counting applications 
•  Profiling 

–  microRNAs 
–  Immunogenomics 
–  Transcriptomics 

•  Epigenomics 
–  Map histone modifications 
–  Map DNA methylation  
–  3D genome conformation 

•  Nucleic acid Interactions  

Polymorphism/mutation discovery 
–  Bacteria 
–  Genome dynamics 
–  Exon (and other target) sequencing 
–  Disease gene sequencing 

•  Variation and association studies 
•  Genetics and gene discovery 

 
•  Cancer genomics  

–  Map translocations, CNVs, 
structural changes 

–  Profile somatic mutations 
•  Genome assembly 
•  Ancient DNA (Neanderthal) 
•  Pathogen discovery 
•  Metagenomics 



Sequencing libraries to probe the genome  

•  RNA-Seq 
–  Transcriptional output 
–  Annotation 
–  miRNA 
–  Ribosomal profiling 

•  ChIP-Seq 
–  Nucleosome positioning 
–  Open/closed chromatin 
–  Transcription factor binding 

•  CLIP-Seq 
–  Protein-RNA interactions 

•  Hi-C 
–  3D genome conformation 



RNA-Seq libraries I: “Standard” full-length 

•  “Source: intact, high qual. RNA (polyA selected or 
ribosomal depleted) 

•  RNA à cDNA à sequence 
•  Uses:  

–  Annotation. Requires high depth, paired-end sequencing. ~50 mill 
–  Gene expression. Requires low depth, single end sequence, ~ 

5-10 mill  
–  Differential Gene expression. Requires ~ 5-10 mill, at least 3 

replicates, single end 



RNA-Seq libraries II: End-sequence libraries 

•  Target the start or end of transcripts. 
•  Source: End-enriched RNA 

–  Fragmented then selected 
–  Fragmented then enzymatically purified 

•  Uses: 
–  Annotation of transcriptional start sites 
–  Annotation of 3’ UTRs 
–  Quantification and gene expression  
–  Depth required 3-8 mill reads 
–  Low quality RNA samples 
–  Single cell RNA sequencing 



RNA-Seq libraries III: Small RNA libraries 

•  Source: size selected RNA 
•  Uses: miRNA, piRNA annotation and 

quantification 
–  Short single end 30-50 bp reads 
–  Depth: 5-10 mill reads 

Malonne	
  et	
  al.	
  CSHL	
  protocols,	
  2011	
  



When you need both annotation and quantification 

•  Attempt three replicates per condition 
•  Pool libraries to obtain ~15 mill reads per replicate 
•  Sequence using paired ends 
•  Analysis: 

–  Merge replicate alignments for annotation 
–  Split alignments for differential expression analysis 



RNA-Seq libraries: Summary 

m7G

Zn-based
fragmentation

Poly-A selected RNA

PolyA
selection

Library Construction

m7G (A)n

Full-length
RNA-Seq

(A)n
(A)n

m7G

m7G

P
P

P
P

P

P
P

P

(A)n
(A)n

m7G

m7G

(A)n
(A)n
(A)n

m7G

m7G

Exo-CAGE 3’-end-Seq



ChIP-Seq libraries: 

•  Crosslinked, immunoprecipitated DNA 
•  DNA à sequence 
•  Uses:  

–  Mapping nucleosomes (huge depth required)  
–  Mapping histones with specific tails 
–  Mapping transcription factor sites 
–  Requires ~ 5-10 mill, at least 2-3 replicates, single end 



ChIP-Seq protocol  

Pu rify DNA 

End repair and
adapter ligation   

Cluster generation 

Sequencing on NGS platforms 

Histones

Histone tails

Kidder	
  et	
  al.	
  Nature	
  Immunology,	
  2011	
  



CLIP-Seq libraries and ribosome footprinting: 

•  Crosslinked, immunoprecipitated RNA 
•  RNAà cDNA àsequence 
•  Uses:  

–  Mapping RNA/protein interactions 
–  Find miRNA regulated transcripts 
–  Mapping translation rates 
–  Annotate ORFs Ribosomal	
  profiling 

CLIP-Seq 



•  Read	
  mapping	
  (alignment):	
  Placing	
  short	
  reads	
  in	
  the	
  
genome	
  

•  Quan2fica2on:	
  	
  
•  Assigning	
  scores	
  to	
  genes/transcripts	
  
•  Determining	
  whether	
  a	
  gene	
  is	
  expressed	
  	
  

•  Normaliza2on	
  

•  Finding	
  genes/transcripts	
  that	
  are	
  differen2ally	
  
represented	
  between	
  two	
  or	
  more	
  samples.	
  

•  Reconstruc2on:	
  Finding	
  the	
  regions	
  that	
  originated	
  the	
  
reads	
  

Analysis of counting data requires 3 broad tasks 



Sequenced	
  
reads	
  cells	
  

sequencer	
  

cDNA	
  
ChIP	
  

genome	
  

read	
  
coverage	
  

Alignment	
  

Once sequenced the problem becomes computational 



•  Read	
  mapping	
  (alignment):	
  Placing	
  short	
  reads	
  in	
  the	
  
genome	
  

•  Quan2fica2on:	
  	
  
•  Assigning	
  scores	
  to	
  genes/transcripts	
  
•  Determining	
  whether	
  a	
  gene	
  is	
  expressed	
  	
  

•  Normaliza2on	
  

•  Finding	
  genes/transcripts	
  that	
  are	
  differen2ally	
  
represented	
  between	
  two	
  or	
  more	
  samples.	
  

•  Reconstruc2on:	
  Finding	
  the	
  regions	
  that	
  originated	
  the	
  
reads	
  

Analysis of counting data requires 3 broad tasks 



The sequencing era alignment problem 

•  Finding 100,000s of small (30-500 bp) sequence in a 10 - 
10000 million bp genome. 

•  Sequences are error prone (~1% error rate) 
•  Reference and sequence may not be the same haplotype 
•  Many techniques are great at finding perfect 

matches 



Short read alignment strategies 

Breaks reads into “seeds” that can be perfectly matched 

•  Create an easily searchable genome (index) 
–  Hash table: address map of small words (k-mers) 
–  Suffix Arrays: Efficient way to look up words 
–  FA indices (i.e. Burrows Wheelers)  

•  Seed search using the index:  
–  Matching of smaller portions (seeds) of the read 
–  Grouping and prioritizing seeds 

•  Extending seed alignments  
–  Use algorithms that handle mismatches and gaps 

 



Spaced seed alignment – Hashing the genome 

G:	
  	
  accgattgactgaatggccttaaggggtcctagttgcgagacacatgctgaccgtgggattgaatg…… 

accg attg **** ****  
accg **** actg **** 
accg **** **** aatg 

**** attg actg **** 
**** attg **** aatg 
**** **** actg aatg 

0	
  
0	
  

0,45	
  
0	
  
0	
  
0	
  

1	
  
1	
  
1	
  
1	
  
1	
  
1	
  

ccga ttga **** ****  
ccga **** ctga **** 
ccga **** **** atgg 

**** ttga ctga **** 
**** ttga **** atgg 
**** **** ctga atgg 

Store	
  spaced	
  seed	
  posi2ons	
  



Spaced seed alignment – Mapping reads 

G:	
  	
  accgattgactgaatggccttaaggggtcctagttgcgagacacatgctgaccgtgggattgaatg…… 

q:	
  	
  accg atag accg aatg accg attg **** ****  
accg **** actg **** 
accg **** **** aatg 

**** attg actg **** 
**** attg **** aatg 
**** **** actg aatg 

0	
  
0	
  

0,45	
  
0	
  
0	
  
0	
  

1	
  
1	
  
1	
  
1	
  
1	
  
1	
  

ccga ttga **** ****  
ccga **** ctga **** 
ccga **** **** atgg 

**** ttga ctga **** 
**** ttga **** atgg 
**** **** ctga atgg 

✕	
  

✓	
  
✕	
  

✕	
  
✕	
  
✕	
  

✕	
  
✕	
  

✕	
  
✕	
  
✕	
  

✕	
  

accgattgactgaatg	
   accgtgggattgaatg	
  

2	
  missmatches	
   5	
  missmatches	
  

Report	
  posi2on	
  0	
  	
  

qMS = −10 log10 P(read is wrongly mapped)
But,	
  how	
  confidence	
  are	
  we	
  in	
  the	
  placement?	
  



Mapping quality 

qMS = −10 log10 P(read is wrongly mapped)What	
  does	
  	
   mean?	
  

Lets	
  compute	
  the	
  probability	
  the	
  read	
  originated	
  at	
  genome	
  posi2on	
  i	
  

q:	
  	
  accg atag accg aatg 

qs	
  :	
  	
  30 40 25 30  30 20 10 20  40 30 20 30  40 40 30 25 

qs[k] = −10 log10 P(sequencing error at base k),	
  the	
  PHRED	
  score.	
  Equivalently:	
  

P(q |G,i) = P(qjgood call) P(qjbad call)
j  missmatch
∏

j  match
∏ ≈ P(qjbad call)

j  missmatch
∏

So	
  the	
  probability	
  that	
  a	
  read	
  originates	
  from	
  a	
  given	
  genome	
  posi2on	
  i	
  is:	
  

In	
  our	
  example	
  
P(q |G,0) = (1−10−3)6 (1−10−4 )4 (1−10−2.5 )2 (1−10−2 )2"# $% 10

−110−2"# $% = [0.97]*[0.001] ≈ 0.001

Finding regions of evolutionary constraint

Manuel Garber

January 12, 2013

> s1 = c(100, 200, 300, 400, 10)
> s2 = c(50, 100, 150, 200, 500)
>norm=sum(s2)/sum(s1)
>plot(s2, s1⇤norm,log=”xy”)

>abline(a = 0, b = 1)

>g = sqrt(s1 ⇤ s2t)
>s1n = s1/median(s1/g); s2n = s2/median(s2/g)
>plot(s2n, s1n,log=”xy”)

>abline(a = 0, b = 1)

P (sequencing error at base k) = 10

� qs[k]
10

1



Mapping quality 

qMS = −10 log10 P(read is wrongly mapped)What	
  we	
  want	
  to	
  es2mate	
  is	
  	
  

That	
  is,	
  the	
  posterior	
  probability,	
  the	
  probability	
  	
  that	
  the	
  region	
  star2ng	
  at	
  i	
  was	
  
sequenced	
  given	
  that	
  we	
  observed	
  the	
  read	
  q:	
  

P(i | q) = P(q | i)P(i)
P(q)

=
P(q | i)P(i)

P(q | j)
j
∑

Fortunately,	
  there	
  are	
  efficient	
  ways	
  to	
  approximate	
  this	
  probability	
  (see	
  
Li,	
  H	
  genome	
  Research	
  2008,	
  for	
  example)	
  

qMS = −10 log10 (1−P(i | q))



Considerations 

•  Trade-off between sensitivity, speed and memory 
–  Smaller seeds allow for greater mismatches at the cost of more 

tries 
–  Smaller seeds result in a smaller tables (table size is at most 4k), 

larger seeds increase speed (less tries, but more seeds) 



Considerations 

•  BWT-based algorithms rely on perfect matches for speed 

•  When dealing with mismatches, algorithms “backtrack” when 
the alignment extension fails. 

•  Backtracking is expensive 

•  As read length increases novel algorithms are required 



Short	
  indels	
   Use	
  base	
  qual	
  

Maq	
   No	
   YES	
  

RMAP	
   Yes	
   YES	
  

SeqMap	
   Yes	
   NO	
  

SHRiMP	
   Yes	
   NO	
  

Use	
  Base	
  qual	
  

BWA	
   YES	
  

Bow2e	
   NO	
  

Stampy*	
   YES	
  

Bow2e2*	
   (NO)	
  

Seed-­‐extend	
  
	
  

BWT	
  
	
  

*Stampy	
  is	
  a	
  hybrid	
  approach	
  which	
  first	
  uses	
  BWA	
  to	
  map	
  reads	
  then	
  uses	
  seed-­‐extend	
  only	
  to	
  
reads	
  not	
  mapped	
  by	
  BWA	
  
*Bow>e2	
  breaks	
  reads	
  into	
  smaller	
  pieces	
  and	
  maps	
  these	
  “seeds”	
  using	
  a	
  BWT	
  genome.	
  	
  
	
  

Short read mapping software for ChIP-Seq 



10s	
  kb	
  100s	
  bp	
  

RNA (1000 b)

AAAAAAA

Genome
(100000 bp)

RNA (1000 b)

AAAAAAA

Genome
(100000 bp)

RNA (1000 b)

AAAAAAA

Genome
(100000 bp)

Challenges:	
  
•  Genes	
  exist	
  at	
  many	
  different	
  expression	
  levels,	
  spanning	
  several	
  orders	
  of	
  

magnitude.	
  	
  
•  Reads	
  originate	
  from	
  both	
  mature	
  mRNA	
  (exons)	
  and	
  immature	
  mRNA	
  

(introns)	
  and	
  it	
  can	
  be	
  problema2c	
  to	
  dis2nguish	
  between	
  them.	
  	
  
•  Reads	
  are	
  short	
  and	
  genes	
  can	
  have	
  many	
  isoforms	
  making	
  it	
  challenging	
  to	
  

determine	
  which	
  isoform	
  produced	
  each	
  read.	
  

The RNA-Seq alignment problem 



Mapping RNA-Seq reads: Exon-first spliced alignment (e.g. TopHat2) 



Mapping RNA-Seq reads: Maximal Mapping Prefix (STAR) 



RNA-Seq specific problems 

Current	
  aligners	
  deal	
  directly	
  with	
  these	
  problems	
  

Pseudo	
  gene	
  adrac2on	
  problem	
  

Exon 1 Exon 2

Intron	
  invasion	
  

Exon 1 Exon 2



Short read mapping software for RNA-Seq 

Short	
  indels	
   Use	
  base	
  qual	
  

STAR	
   Yes	
   ?	
  

QPALMA	
   Yes	
   NO	
  

BLAT	
   Yes	
   NO	
  

Exon-­‐first	
  alignments	
  will	
  map	
  con>guous	
  first	
  	
  at	
  the	
  expense	
  of	
  spliced	
  hits	
  

Use	
  base	
  qual	
  

TopHat2	
   NO	
  

Seed-­‐extend	
   Exon-­‐first	
  



The Broad Institute of MIT and Harvard 
The Broad Institute of MIT and Harvard 

The Broad Institute of MIT and Harvard 

A	
  desktop	
  applica2on	
  	
  

	
  for	
  the	
  visualiza2on	
  and	
  interac2ve	
  explora2on	
  

	
   	
  of	
  genomic	
  data	
  

IGV: Integrative Genomics Viewer 

Microarrays	
  
Epigenomics	
  

RNA-­‐Seq	
  
NGS	
  alignments	
  

Compara:ve	
  genomics	
  



Visualizing read alignments with IGV — RNASeq 

Gap	
  between	
  reads	
  spanning	
  exons	
  Strand	
  specific	
  library!	
  



Visualizing read alignments with IGV — zooming out 

RNA­Seq

K4me3 ChIP­Seq

PolII ChIPSeq

Cebeb ChIP­Seq

t

t



•  Read	
  mapping	
  (alignment):	
  Placing	
  short	
  reads	
  in	
  the	
  
genome	
  

•  Quan2fica2on:	
  	
  
•  Assigning	
  scores	
  to	
  genes/transcripts	
  
•  Determining	
  whether	
  a	
  gene	
  is	
  expressed	
  	
  

•  Normaliza2on	
  

•  Finding	
  genes/transcripts	
  that	
  are	
  differen2ally	
  
represented	
  between	
  two	
  or	
  more	
  samples.	
  

•  Reconstruc2on:	
  Finding	
  the	
  regions	
  that	
  originated	
  the	
  
reads	
  

Analysis of counting data requires 3 broad tasks 



What does significance means? 

•  RNA-Seq: The gene is expressed 
•  ChIP-Seq: Factor binds the region  
•  CLIP-Seq: Protein binds RNA region 
•  Ribosomal footprinting: 

–  Transcript is translated 
–  Ribosomes stalling at region 



Scripture	
  is	
  a	
  method	
  to	
  solve	
  this	
  general	
  ques>on	
  

Short	
  modifica2on	
  

Long	
  modifica2on	
  

Discon2nuous	
  data	
  

RNA

K4me1

K4me3

PolII

Cebpb

Stat1

Stat2

How do we find peaks? 



We	
  have	
  an	
  efficient	
  way	
  to	
  compute	
  read	
  count	
  p-­‐values	
  …	
  

α=0.05	
  

Permuta2on	
  

Poisson	
  

Our approach 



We need to correct for multiple hypothesis testing 

Expected ~150,000,000 bases 

The genome is large,  many things happen by chance 



Bonferroni	
  corrects	
  the	
  number	
  of	
  hits	
  but	
  misses	
  many	
  true	
  hits	
  because	
  its	
  too	
  
conserva>ve	
  –	
  How	
  do	
  we	
  get	
  more	
  power?	
  

Correction factor 3,000,000,000 

Bonferroni correction is way to conservative 



Given	
  a	
  region	
  of	
  size	
  w	
  and	
  an	
  observed	
  read	
  
count	
  n.	
  What	
  is	
  the	
  probability	
  that	
  one	
  or	
  
more	
  of	
  the	
  3x109	
  regions	
  of	
  size	
  w	
  has	
  read	
  
count	
  >=	
  n	
  under	
  the	
  null	
  distribu2on?	
  
	
  
	
  

Count	
  distribu2on	
  (Poisson)	
  

Max	
  Count	
  distribu2on	
  

α=0.05	
  

We	
  could	
  go	
  back	
  to	
  our	
  permuta2ons	
  and	
  
compute	
  an	
  FWER:	
  max	
  of	
  the	
  genome-­‐wide	
  
distribu>ons	
  of	
  same	
  sized	
  region)à	
  
but	
  really	
  really	
  really	
  slow!!!	
  
	
  

αFWER=0.05	
  

Controlling FWER  



Thankfully,	
  the	
  Scan	
  Distribu:on	
  computes	
  a	
  
closed	
  form	
  for	
  this	
  distribu2on.	
  
	
  
ACCOUNTS	
  for	
  dependency	
  of	
  overlapping	
  
windows	
  thus	
  more	
  powerful!	
  
	
  

α=0.05	
   αFWER=0.05	
  

Poisson	
  distribu2on	
  

Scan	
  distribu2on	
  

• 	
  Is	
  the	
  observed	
  number	
  of	
  read	
  counts	
  over	
  our	
  region	
  of	
  interest	
  high?	
  	
  
• 	
  Given	
  a	
  set	
  of	
  Geiger	
  counts	
  across	
  a	
  region	
  find	
  clusters	
  of	
  high	
  radioac2vity	
  
• 	
  Are	
  there	
  2me	
  intervals	
  where	
  assembly	
  line	
  errors	
  are	
  high?	
  

Scan distribution, an old problem 



By utilizing the dependency of overlapping windows we have greater 
power, while still controlling the same genome-wide false positive rate. 



Example	
  :	
  PolII	
  ChIP	
  

Significant	
  windows	
  using	
  the	
  FWER	
  
corrected	
  p-­‐value	
  

Merge	
  

Trim	
  

Segmenta2on	
  method	
  for	
  con2guous	
  regions 

But,	
  which	
  window?	
  



We use multiple windows 

•  Small windows detect small punctuate regions. 
•  Longer windows can detect regions of moderate enrichment 

over long spans. 
•  In practice we scan different windows, finding significant ones 

in each scan. 
•  In practice, it helps to use some prior information in picking 

the windows although globally it might be ok. 
 



Applying	
  Scripture	
  to	
  a	
  variety	
  of	
  ChIP-­‐Seq	
  data 

1Kb1Kb

100	
  bp	
  windows	
  	
  200,	
  500	
  &	
  1000	
  bp	
  windows	
  



Short	
  modifica2on	
  

Long	
  modifica2on	
  

Discon2nuous	
  data:	
  RNA-­‐Seq	
  to	
  find	
  gene	
  
structures	
  for	
  this	
  gene-­‐like	
  regions	
  

P

P
Using	
  chroma2n	
  signatures	
  we	
  discovered	
  hundreds	
  of	
  puta2ve	
  genes.	
  	
  
What	
  is	
  their	
  structure?	
  

Can we identify enriched regions across different libraries? 



•  Read	
  mapping	
  (alignment):	
  Placing	
  short	
  reads	
  in	
  the	
  
genome	
  

•  Quan2fica2on:	
  	
  
•  Assigning	
  scores	
  to	
  genes/transcripts	
  
•  Determining	
  whether	
  a	
  gene	
  is	
  expressed	
  	
  

•  Normaliza2on	
  

•  Finding	
  genes/transcripts	
  that	
  are	
  differen2ally	
  
represented	
  between	
  two	
  or	
  more	
  samples.	
  

•  Reconstruc2on:	
  Finding	
  the	
  regions	
  that	
  originated	
  the	
  
reads	
  

Analysis of counting data requires 3 broad tasks 



RNA-Seq quantification 

•  Is a given gene (or isoform) expressed? 
•  Is expression gene A > gene B? 
•  Is expression of gene A isoform a1 > gene A isoform a2? 
•  Given two samples is  

–  expression of gene A in sample 1 different from gene A in 
sample 2? 

–  Is the expression of one isoform changing? 



RNA-Seq measures relative abundance 

RNA-­‐Seq	
  quan>fica>on:	
  Infer	
  frac>on	
  of	
  molecules	
  in	
  sample	
  

A	
   B	
  

C	
  



• Fragmenta2on	
  of	
  transcripts	
  results	
  in	
  length	
  bias:	
  longer	
  transcripts	
  have	
  higher	
  
counts	
  
• Different	
  experiments	
  have	
  different	
  yields.	
  Normaliza2on	
  is	
  key	
  for	
  cross	
  lane	
  
comparisons	
  

RPKM = 109
#reads

length� TotalReads

1

Reads	
  per	
  kilobase	
  of	
  exonic	
  
sequence	
  per	
  million	
  mapped	
  reads	
  
(Mortazavi	
  et	
  al	
  Nature	
  methods	
  2008)	
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RNA-Seq quantification “units” 

•  To compare within a sequence run (lane), RPKM 
accounts for length bias.  

•  RPKM (Mortazavi et al 2008) is not optimal for cross 
experiment comparisons. 
–  Different samples may have different compositions. 

•  FPKM (Trapnell et al. 2011) superseded RPKM to deal 
with paired end data 
–  Paired end reads originate from the same Fragment  

•  And later TPM = 106 x Fraction of transcript in sample (Li 
et al 2009) 
–  More robust to changes in sample composition 

Complexity	
  increases	
  when	
  mul>ple	
  isoforms	
  exist	
  



But, how to compute counts for complex gene structures? 
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Three	
  popular	
  op>ons:	
  

Exon	
  intersec3on	
  model:	
  Score	
  cons2tuent	
  exons	
  

Exon	
  union	
  model:	
  Score	
  the	
  the	
  “merged”	
  transcript	
  

Transcript	
  expression	
  model:	
  Assign	
  reads	
  uniquely	
  to	
  
different	
  isoforms.	
  Not	
  a	
  trivial	
  problem!	
  

Garber	
  et	
  al.	
  Nat.	
  Methods	
  2011	
  	
  



Read assignment involves probabilistic assignment 
Models for transcript quantification from RNA-Seq 17
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Figure 4. Illustration of the EM algorithm. The gene has three isoforms
(red, green, blue) of the same length. There are five reads (a,b,c,d,e)
mapping to the gene. One maps to all three isoforms, one only to red, and
the other three to each of the three pairs of isoforms. Initially every isoform
is assigned the same abundance (13 ,

1
3 ,

1
3). During the expectation (E) step

reads are proportionately assigned to transcripts according to the isoform
abundances. Next, during the maximization (M) step isoform abundances
are recalculated from the proportionately assigned read counts. Thus, for
example, the abundance of red after the first M step is estimated by
0.47 = (0.33 + 0.5 + 1 + 0.5)/(2.33 + 1.33 + 1.33).

Pachter,	
  L.	
  (2011),	
  (arXiv:1104.3889)	
  



Current quantification models are complex 

•  In its simplest form we assume that reads can be 
unequivocally mapped. This allows: 
–  Read counts distribute multinomial with rate estimated from the 

observed counts 

•  When this assumption breaks, multinomial is no longer 
appropriate. 

•  In general models use: 
–  Fragments as inferred from paired-end data 
–  Base quality scores 
–  Sequence mapability 
–  Protocol biases (e.g. 3’ bias) 

•  Handling each of these involves a more complex model where 
reads are assigned probabilistically not only to an isoform but 
to a different loci 



Why paired end matters for isoform quantification? 

How	
  do	
  we	
  define	
  the	
  gene	
  expression?	
  	
  
How	
  do	
  we	
  compute	
  the	
  expression	
  of	
  each	
  isoform?	
  



Computing gene expression 

Idea1:	
  RPKM	
  of	
  the	
  
cons2tu2ve	
  reads	
  
(Neuma,	
  Alexa-­‐Seq,	
  
Scripture)	
  



Computing gene expression — isoform deconvolution 



Computing gene expression — isoform deconvolution 

If	
  we	
  knew	
  the	
  origin	
  of	
  the	
  reads	
  we	
  could	
  compute	
  each	
  isoform’s	
  expression.	
  
The	
  gene’s	
  expression	
  would	
  be	
  the	
  sum	
  of	
  the	
  expression	
  of	
  all	
  its	
  isoforms.	
  

E	
  =	
  RPKM1	
  +	
  RPKM2	
  +	
  RPKM3	
  



Paired-end reads are easier to associate to isoforms 

P1	
  

P2	
   P3	
  

Isoform	
  1	
  

Isoform	
  2	
  

Isoform	
  3	
  

Paired	
  ends	
  increase	
  isoform	
  deconvolu2on	
  confidence	
  
•  P1	
  originates	
  from	
  isoform	
  1	
  or	
  2	
  but	
  not	
  3.	
  
•  P2	
  and	
  P3	
  originate	
  from	
  isoform	
  1	
  

Do	
  paired-­‐end	
  reads	
  also	
  help	
  iden>fying	
  reads	
  origina>ng	
  in	
  isoform	
  3?	
  



We can estimate the insert size distribution 
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… and use it for probabilistic read assignment 

Isoform	
  1	
  

Isoform	
  2	
  

Isoform	
  3	
  

d1	
   d2	
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For	
  methods	
  such	
  as	
  MISO,	
  Cufflinks	
  and	
  RSEM,	
  it	
  is	
  cri>cal	
  to	
  have	
  paired-­‐end	
  data	
  



Other considerations 

•  Duplicates – What to do with PCR artifacts 
•  Multimapper reads – What to do with reads that map to 

multiple places in the genome 



RNA-Seq quantification summary 

•  Counts must be estimated from ambiguous read/
transcript assignment. 
–  Using simplified gene models (intersection) 
–  Probabilistic read assignment 

•  Counts must be normalized 
–  RPKM/FPKM/TPM are designed for intra-library comparisons:  

•  Is gene A more highly expressed than gene B 

•  How do we normalize More sophisticated normalization 
to account for differences in library composition for 
inter-library comparisons. 



Programs to measure transcript expression 

Implemented	
  method	
  

Cufflinks2	
   Transcript	
  deconvolu>on	
  by	
  solving	
  the	
  
maximum	
  likelihood	
  problem	
  

RSEM	
   Transcript	
  deconvolu>on	
  by	
  solving	
  the	
  
maximum	
  likelihood	
  problem	
  

eXpress	
  	
   Incorporated	
  biases	
  into	
  model	
  



•  Read	
  mapping	
  (alignment):	
  Placing	
  short	
  reads	
  in	
  the	
  
genome	
  

•  Quan2fica2on:	
  	
  
•  Assigning	
  scores	
  to	
  genes/transcripts	
  
•  Determining	
  whether	
  a	
  gene	
  is	
  expressed	
  	
  

•  Normaliza2on	
  

•  Finding	
  genes/transcripts	
  that	
  are	
  differen2ally	
  
represented	
  between	
  two	
  or	
  more	
  samples.	
  

•  Reconstruc2on:	
  Finding	
  the	
  regions	
  that	
  originated	
  the	
  
reads	
  

Analysis of counting data requires 3 broad tasks 



Sample composition impacts transcript relative abundance 

Cell	
  type	
  I	
   Cell	
  type	
  II	
  

Normalizing	
  by	
  total	
  reads	
  does	
  not	
  work	
  well	
  for	
  samples	
  with	
  very	
  
different	
  RNA	
  composi>on	
  



Example normalization techniques 

i	
  runs	
  through	
  all	
  n	
  genes	
  	
  
j	
  through	
  all	
  m	
  samples	
  
kij	
  is	
  the	
  observed	
  counts	
  for	
  gene	
  i	
  in	
  sample	
  j	
  
sj	
  Is	
  the	
  normaliza2on	
  constant	
  	
  

Alders	
  and	
  Huber,	
  2010	
  

Counts	
  for	
  gene	
  i	
  in	
  experiment	
  j 

Geometric	
  mean	
  for	
  that	
  gene	
  
	
  over	
  ALL	
  experiments 



Lets do an experiment (and do a short R practice) 

Finding regions of evolutionary constraint

Manuel Garber

January 11, 2013

> s1 = c(100, 200, 300, 400, 10)

> s2 = c(50, 100, 150, 200, 500)

>norm=sum(s2)/sum(s1)

>plot(s2, s1,log=”xy”,xlim=c(10, 600),ylim=c(10, 600)); abline(a = 0, b = 1)

>g = sqrt(s1 ⇤ s2t)
>s1n = s1/median(s1/g); s2n = s2/median(s2/g)

>plot(s2n, s1n,log=”xy”, xlim =c(1, 1000),ylim=c(1, 1000)); abline(a = 0, b = 1)

1

Similar	
  read	
  number,	
  	
  
one	
  transcript	
  many	
  fold	
  changed	
  

Finding regions of evolutionary constraint

Manuel Garber

January 11, 2013

> s1 = c(100, 200, 300, 400, 10)
> s2 = c(50, 100, 150, 200, 500)
>norm=sum(s2)/sum(s1)
>plot(s2, s1⇤norm,log=”xy”)

>abline(a = 0, b = 1)

>g = sqrt(s1 ⇤ s2t)
>s1n = s1/median(s1/g); s2n = s2/median(s2/g)
>plot(s2n, s1n,log=”xy”)

>abline(a = 0, b = 1)

1

Size	
  normaliza2on	
  results	
  in	
  2-­‐fold	
  
changes	
  in	
  all	
  transcripts	
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Finding regions of evolutionary constraint

Manuel Garber

January 11, 2013

> s1 = c(100, 200, 300, 400, 10)
> s2 = c(50, 100, 150, 200, 500)
>norm=sum(s2)/sum(s1)
>plot(s2, s1⇤norm,log=”xy”)

>abline(a = 0, b = 1)

>g = sqrt(s1 ⇤ s2t)
>s1n = s1/median(s1/g); s2n = s2/median(s2/g)
>plot(s2n, s1n,log=”xy”)

>abline(a = 0, b = 1)
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When everything changes: Spike-ins 

expression data appropriately indicates an increase in the rela-
tive RNA levels for a set of genes (Figure 1B). In the second
model, the two cells express a similar set of genes, but one
cell produces and accumulates two to three times more RNA/
gene for many of the same genes expressed in the other cell
(Figure 1C), an effect that has been termed transcriptional ampli-
fication (Lin et al., 2012; Nie et al., 2012). In the conventional
approach to expression analysis, similar amounts of RNA from
the two cells are introduced into the assay, thus masking the
fact that one of the cells has two to three times more RNA than
the other (Figure 1D). This potential source of error is typically
overlooked because of the commonly believed, though rarely
stated, assumption that the absolute amount of total mRNA in
each cell is similar across different cell types or experimental
perturbations. Furthermore, the most commonly used analysis
methods are primarily intended to account for technical varia-
tions in signal to noise and assume that the signals for different
samples from different experiments should be scaled to have
the same median or average value or that the distributions of
signal intensities for each experiment within a set should all be
the same (Bolstad et al., 2003; Huber et al., 2002; Irizarry et al.,
2003; Kalocsai and Shams, 2001; Li and Wong, 2001; Reimers,

2010; Wu et al., 2004). Normalization of signal from cells that
experience transcriptional amplification can thus have the net
result of equalizing values that are actually different and pro-
ducing the erroneous perception that some genes have elevated
expression, whereas a similar number of genes have reduced
expression.

Experimental Approach
To produce a reliable gene expression analysis protocol that
addresses this experimental and data normalization issue, we
investigated the use of spiked-in standards (Benes and Muck-
enthaler, 2003; Hartemink et al., 2001; Hill et al., 2001; Jiang
et al., 2011;Mortazavi et al., 2008).We implemented an approach
that uses spiked-in RNA standards to allow normalization to cell
number and permit correction for differences in yields during
experimental manipulation (Figure 2A). We performed genome-
wide analysis on P493-6 cells expressing low or high levels of
c-Myc (Pajic et al., 2000; Schuhmacher et al., 1999) in which cells
with high levels of the transcription factor were found to produce
2- to 3-fold higher levels of the same RNA species found in cells
with low levels (Lin et al., 2012). Cell number was determined
by counting cells with C-Chip disposable hemocytometers

Figure 1. Normalization and Interpretation of Expression Data
(A) Schematic representation of pattern of change in gene expression when levels of total RNA in the two cells are similar. The square box represents
a perturbation such as increased expression of a gene regulator or a change in environment or cell state. Red arrows point to target genes affected by the
perturbation, which are represented as circles. Red shading of circles indicates relative transcriptional increase.
(B) Schematic representation of microarray normalization when the overall levels of mRNA per cell are not changing in two conditions. Relative mRNA levels for
nine different genes (A-I) are indicated along the y axis for condition 1 (black) and condition 2 (orange). The panels, from left to right, depict the actual relationship
between mRNA levels for the two conditions; the effect of median normalization; the calculated fold-changes based on median normalization, with increased
expression represented by red bars above the midline and decreased expression represented by green bars below the midline; and the perceived transcriptional
response of a limited transcriptional increase in gene expression.
(C) Schematic representation of pattern of change in gene expression when levels of total RNA in the two cells is different such as in transcriptional amplification,
where most genes are expressed at higher levels. The square box represents a perturbation such as increased expression of a gene regulator or a change in
environment or cell state. Red arrows point to target genes affected by the perturbation, which are represented as circles. Red shading of circles indicates relative
transcriptional increase.
(D) Schematic representation of microarray normalization when the overall levels of mRNA per cell are increased in one condition compared to another. Relative
mRNA levels for nine different genes (A–I) are indicated along the y axis for condition 1 (black) and condition 2 (orange). The panels, from left to right, depict the
actual relationship between mRNA levels for the two conditions; the effect of median normalization; the calculated fold changes based on median normalization,
with increased expression represented by red bars above themidline and decreased expression represented by green bars below themidline; and the perceived
transcriptional response following transcriptional amplification of gene expression.

Cell 151, October 26, 2012 ª2012 Elsevier Inc. 477

(Digital Bio) and equivalent numbers of high- and low-Myc cells
were harvested. The DNA content of the two samples was
measured and found to be equivalent. Following total RNA
extraction, spiked-in RNA standards were added in proportion
to the number of cells present in the sample. Samples were
then split andprepared formicroarray, RNA-seq, anddigital anal-
ysis by using NanoString.

DNA-microarrays were first used to compare the high-Myc
versus low-Myc cell RNA populations (Figure 2B; Table S1 avail-
able online). Similar amounts of RNA from the low- and high-Myc
cells were introduced into the Affymetrix DNA microarray assay

following the manufacturer’s protocol, which is the most com-
mon approach used in expression analysis. The resulting data
were processed by using standard normalization methods and
by using the spike-in standards for normalization. The results ob-
tained by using standard approaches can be interpreted tomean
that the expression levels of some genes are unchanged,
whereas others increase or decrease (Figure 2B). The interpreta-
tion is quite different when the same data is normalized by using
spike-in standards that reflect cell number: 90% of the genes
show increases in expression in high-Myc cells relative to low-
Myc cells (Figure 2B).

Figure 2. Spike-In Controls, Normalized to Cell Number, Enable Accurate Interpretation of Transcriptional Changes
(A) Schematic representation ofmicroarray normalizationwhen the total level of mRNAper cell is different as in transcriptional amplification, but spike-in RNAs are
used as standards for normalization. mRNA levels are indicated along the y axis for condition 1 (black) and condition 2 (orange); individual genes are represented
along the x axis. Spike-in standards in the mRNA for condition 1 are represented by black triangles and spike-in standards in the mRNA for condition 2 are
represented by orange triangles (S1–S3). The panels, from left to right, depict the actual relationship between mRNA levels for the two conditions; the effect of
normalization using the spike-in standards; the resulting fold changes from condition 1 and condition 2, where increased expression is represented by red bars
above the midline; and the perceived transcriptional response following transcriptional amplification of gene expression normalized with spike-in RNAs.
(B) Heatmap showing the results of different normalizationmethods on the interpretation of microarray data. The data represent fold change of expression in high-
Myc versus low-Myc cells. Each line represents data for individual probes on the microarray. Red indicates increased expression in high-Myc versus low-Myc
cells. Green indicates decreased expression in high-Myc versus low-Myc cells. Black indicates no change in expression. Left: data using a standard microarray
normalization method (MAS5). Right: the same data, now renormalized by using spike-in standards.
(C) Heatmap showing the results of different normalization methods on the interpretation of RNA-sequencing data. The data represent fold change of expression
in high-Myc versus low-Myc cells. Each line represents data for an individual gene. Red indicates increased expression in high-Myc versus low-Myc cells. Green
indicates decreased expression in high-Myc versus low-Myc cells. Black indicates no change in expression. Left: data using a standard sequencing normalization
(reads per kilobase of exon model per million mapped reads). Right: the same data, now renormalized by using spike-in standards.
(D) Heatmap showing the results of different sample preparation methods on the interpretation of digital quantification data. The data represent fold change of
counts of mRNA molecules in high-Myc versus low-Myc cells. Each line represents data for an individual gene. Red indicates increased expression in high-Myc
versus low-Myc cells. Green indicates decreased expression in high-Myc versus low-Myc cells. Black indicates no change in expression. Left: the results if the
quantification is performed with equal amounts of total RNA for the high-Myc versus low-Myc cells. Right: the results if the quantification is performed with RNA
from equal numbers of high-Myc and low-Myc cells.
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•  Read	
  mapping	
  (alignment):	
  Placing	
  short	
  reads	
  in	
  the	
  
genome	
  

•  Quan2fica2on:	
  	
  
•  Assigning	
  scores	
  to	
  genes/transcripts	
  
•  Determining	
  whether	
  a	
  gene	
  is	
  expressed	
  	
  

•  Normaliza2on	
  

•  Finding	
  genes/transcripts	
  that	
  are	
  differen2ally	
  
represented	
  between	
  two	
  or	
  more	
  samples.	
  

•  Reconstruc2on:	
  Finding	
  the	
  regions	
  that	
  originated	
  the	
  
reads	
  

Analysis of counting data requires 3 broad tasks 



Differential Gene Expression Questions 

•  Finding	
  genes	
  that	
  have	
  different	
  expression	
  between	
  two	
  or	
  more	
  
condi2ons.	
  

•  Find	
  gene	
  with	
  isoforms	
  expressed	
  at	
  different	
  levels	
  between	
  two	
  
or	
  more	
  condi2ons.	
  

•  Find	
  differen2ally	
  used	
  slicing	
  events	
  

•  Find	
  alterna2vely	
  used	
  transcrip2on	
  start	
  sites	
  

•  Find	
  alterna2vely	
  used	
  3’	
  UTRs	
  



General strategy for differential gene expression 

•  Normalize count data 
•  Key: We only compare each gene across samples NOT one gene 

to another. 
•  Estimate normalized mean gene counts  
•  Estimate gene variance 

–  Assume variance is similar for similarly expressed transcripts 
–  Model variance as a function of expression 
–  Use model to estimate variance for a transcript given its mean 

count 

•  Define a test 
–  DESeq: Generalization of a fisher exact test  
–  Cufflinks: Log transformed of counts divided by its variance (~ 

normally distribute).  
•  Null hypothesis: log ratio = 0 



Differential analysis strategies 
•  Use read counts and Standard Fisher exact test     

Condi>on	
  A	
   Condi>on	
  B	
  

Gene	
  A	
  reads	
   na	
   nb	
  
Rest	
  of	
  reads	
   Na	
   Nb	
  

– Not	
  naturally	
  extendable	
  to	
  experiments	
  with	
  
replicates	
  



Why not just simple models? 
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 displayed altered inclusion of key features, such as DNA binding 
regions, in their protein products.

RESULTS
Raw fragment counts inaccurately estimate changes in expression
Early methods for quantifying gene expression from RNA-seq data 
work by counting the sequencing library fragments that map to the 
exons of each gene and dividing the count for each gene by a scal-
ing factor based on the length of the exons. Expression levels esti-
mated using such approaches are less accurate than later methods27, 
which calculate a gene’s expression level by adding the expression 
values of its alternative isoforms3,16. We refer to the former as ‘raw 
count’ methods and the latter as ‘isoform deconvolution’ methods. 
Current tools for differential gene expression analysis use the raw 
count method, equating the change in a gene’s expression levels with 
the change in the number of fragments originating from it between 
conditions17,20,21,28.

Because the raw count method is not always accurate when calculat-
ing gene expression in a single library, we hypothesized that it would 
be inaccurate when comparing libraries. Simple examples of hypo-
thetical, alternatively spliced genes showed that the change in expres-
sion could be drastically different from the change in raw read count 
(Fig. 1). We compared expression levels from two popular raw count 
schemes to changes in gene expression in simulation experiments. 
When all of a gene’s isoforms are up- or downregulated between two 
conditions, raw count methods recover true change in gene expres-
sion. However, when some isoforms are upregulated and others 
downregulated, raw count methods are inaccurate (Supplementary 
Fig. 1). In contrast, gene expression levels calculated by isoform 
deconvolution correlated well with true gene expression even when 
relative abundance of the isoforms changed between conditions. Thus, 
identifying accurate, statistically significant expression changes at the 
resolution level of genes requires transcript-level calculations.

Cuffdiff 2
Cuffdiff 2 assumes that the expression of a transcript in each condi-
tion can be measured by counting the number of fragments generated 
by it. Thus, a change in the expression level of a transcript is measured 
by comparing its fragment count in each condition. If the chance of 
seeing a change in this count is small enough under an appropriate 
statistical model of the inherent variability in this count (say with 
odds of 1 in 100), the transcript is deemed significantly differentially 
expressed. Choosing a model that adequately controls for variability  
in sequencing depth, biological noise and splicing structure has 
been the subject of debate19. Under one of the simplest models, the 
Poisson model, the variability is estimated by calculating the mean 
count across replicates, which allows one to calculate a P-value for 
any observed changes in a transcript’s fragment count.

The Poisson model is computationally simple, but it fails to account 
for two key issues that arise in differential analysis—count uncertainty 
and count overdispersion. Count uncertainty refers to the observa-
tion that in RNA-seq experiments it is common for up to 50% of 
reads to map ambiguously to different transcripts29. This happens 
because in higher eukaryotes alternative isoforms of most genes share 
large amounts of sequence, and many genes have paralogs with high 
sequence similarity. As a result, the fragment counts for individual 
transcripts cannot be calculated exactly and must be estimated. Count 
overdispersion refers to the fact that experiments that produce count 
data are often more variable across replicates than what is expected 
according to a Poisson distribution17,20.

Our method (Fig. 2) addresses both of these issues by modeling 
how variability in measurements of a transcript’s fragment count 
depends on both its expression and its splicing structure. Previous 
studies observed that overdispersion in RNA-seq experiments 
increases with expression and proposed the negative binomial dis-
tribution as a means of controlling for it17,22. In contrast, ambiguity 
in mapping fragments to transcripts manifests itself in measurement 

Isoform A

Isoform B

L - eL e e

Log fold-change
(intersect count)

Log fold-change
(true expression)

Log fold-change
(union count)Condition BCondition A

Exon-union
model

Exon-intersection
model

a

b

log2
10
10

0=

log2
6
8

–0.41=

log2
5

10
–1= log 4

5
–0.1=

log2
5
5

0=

log2
8
7

0.19=

log2
6/L
8/2L

0.58=

log2 0.32=
10
L

+6
L

4
2L

log2 0=
10
2L

5
L

Figure 1 Changes in fragment count for a gene does not necessarily equal a change in expression. (a) Simple read-counting schemes sum the fragments 
incident on a gene’s exons. The exon-union model counts reads falling on any of a gene’s exons, whereas the exon-intersection model counts only reads 
on constitutive exons. (b) Both of the exon-union and exon-intersection counting schemes may incorrectly estimate a change in expression in genes with 
multiple isoforms. The true expression is estimated by the sum of the length-normalized isoform read counts. The discrepancy between a change in the union 
or intersection count and a change in gene expression is driven by a change in the abundance of the isoforms with respect to one another. In the top row, 
the gene generates the same number of reads in conditions A and B, but in condition B, all of the reads come from the shorter of the two isoforms, and thus 
the true expression for the gene is higher in condition B. The intersection count scheme underestimates the true change in gene expression, and the union 
scheme fails to detect the change entirely. In the middle row, the intersection count fails to detect a change driven by a shift in the dominant isoform for the 
gene. The union scheme detects a shift in the wrong direction. In the bottom row, the gene’s expression is constant, but the isoforms undergo a complete 
switch between conditions A and B. Both simplified counting schemes register a change in count that does not reflect a change in gene expression.

Trapnell	
  et	
  al.	
  Nat.	
  Biotech	
  2012	
  



RNA-Seq differential expression software 

Underlying	
  model	
   Notes	
  

EdgeR	
   Nega2ve	
  Bionomial	
   Gene	
  read	
  counts	
  table	
  

DESeq2	
   Nega2ve	
  Bionomial	
   Gene	
  read	
  counts	
  table	
  

Cufflinks2	
   Poisson	
  Nega2ve	
  Bionomial	
   Works	
  directly	
  from	
  the	
  
alignments	
  

Myrna	
   Empirical	
   Sequence	
  reads	
  and	
  
reference	
  transcriptome	
  

Miso	
   Mul2nomial	
   Specifically	
  to	
  test	
  exon	
  
cassede	
  inclusion/
exclusion.	
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information about the splicing of the alternative exon, as higher 
expression of the exclusion isoform will generally increase the 
density of reads in the flanking exons relative to the alternative 
exon, and lower expression of the exclusion isoform will decrease 
this ratio of densities. MISO captures this, as well as the infor-
mation in the lengths of library inserts in paired-end data, by 
recasting the analysis of isoforms as a Bayesian inference problem. 
Our approach is related to the alternative-splicing quantification 
method12, which does not use paired-end information.

MISO samples reads uniformly from the chosen isoform, then 
recovers the underlying abundances of isoforms (  and 1 −  in the 
case of a single alternative exon) using the short read data (Fig. 1a 
and Supplementary Fig. 3). As a result of mRNA fragmentation 
in library preparation, mRNA abundance and length contribute 
roughly linearly to read sampling in RNA-seq. This effect is treated 
by rescaling the abundances  and 1 −  of the two isoforms by 
the number of possible reads that could be generated from each 
isoform, respectively. In the model, reads from a gene locus are 
produced by a generative process in which an isoform is first chosen 
according to its rescaled abundance, and a sequence read is then 
sampled uniformly from possible read positions along the mRNA 
(Online Methods). For the exon-centric analyses involving a single 
alternative exon we derived an analytic solution to the inference 
problem, whereas for isoform-centric analyses and estimation using 
CIs we developed an efficient inference technique based on Monte 
Carlo sampling (Online Methods). Our new estimator, ˆ

MISO, 
uses all of the read positions used in ˆSJ, plus reads aligning to the 
adjacent exons (Fig. 1b,c) and information about the library insert 
length distribution in paired-end RNA-seq. Both ˆSJ and ˆ

MISO 
are unbiased estimators of .

An improved measure of exon expression
Simulating read generation from an alternatively spliced gene, we 
observed that the ˆ

MISO estimate had consistently much lower 
variance and error than ˆSJ (Fig. 1d). For reference, the dis-
tribution of read-coverage values at depths typically obtained 
from one lane of sequencing on an Illumina Genome Analyzer 2  
(GA2) and on a HiSeq 2000 are shown, in units of reads per 
kilobase of exon model (RPK). For a gene with median cover-
age in the GA2 data set (~220 RPK), the s.d. of the estimated  
value was reduced more than twofold, from 0.21 for ˆSJ to 0.09 
for ˆ

MISO.  

Validation of MISO estimates
To assess the uncertainty in the splicing estimates for each exon, 
we calculated CIs for  (Online Methods) from moderate-depth 
breast cancer RNA-seq data (Supplementary Table 1; examples 
are shown in Fig. 2a,b). Comparing ˆ

MISO estimates for 52 alter-
native exons to corresponding quantitative reverse-transcription  
PCR (qRT-PCR) values11,13 yielded a Pearson correlation  
r = 0.87 (Fig. 2c and Supplementary Table 2; a bias in the  
RT-PCR data was analyzed in Supplementary Figs. 4–6). 
Restricting the analysis to exons with 95% CI width <0.25 
increased the correlation with qRT-PCR data considerably, to  
r = 0.96 (Fig. 2d). Thus, MISO CIs identify exons whose  
RNA-seq–based -value estimates are more reliable.

Detection of differentially expressed isoforms
Differential splicing of alternative exons entails a difference in 

 values, , and can be evaluated statistically using the Bayes 
factor (BF), which quantifies the odds of differential regulation 

0 250 500 750 1,000 1,250 1,500 1,750 2,000
Coverage (RPK)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E
st

im
at

ed
 

90% 95%85%

80% 85%

75%

75%

50%

50%

Percentile of genes 
(25M PE, GA2)

c

b

Fragmentation and amplification

Short reads generated from fragments
Sequencing

Reads aligned to genome and splice 
junctions

Alignment

0.6

0.4

B
ayesian inference

mRNA fragments sampled in proportion 
to isoform length and expression level k 

a

Assign reads to isoforms using insert
length distribution

Incorporation of paired ends

Skipped exon
Intron

Constitutive exons

Exclusion
reads

Constitutive 
reads

Constitutive
reads

Inclusion reads

Insert length (nt)

Insert variability:

Single-end estimate, SJ

Paired-end estimate, MISO

100 nt

d

1–  

Percentile of genes
(80M PE, HiSeq)

 = d 

SJ

MISO

Figure 1 | More accurate inference of splicing 
levels using MISO. (a) Generative process for 
MISO model. White, alternatively spliced exon; 
gray and black, flanking constitutive exons. 
RNA-seq reads aligning to the alternative exon 
body (white) or to splice junctions involving 
this exon support the inclusive isoform, whereas 
reads joining the two constitutive exons (black-
gray exon junction) support the exclusive 
isoform. Reads aligning to the constitutive 
exons are common to both isoforms.  
(b) The ˆ

SJ estimate uses splice-junction and 
alternative exon–body reads only. (c) The MISO 
estimate, ˆ

MISO (derived here analytically), 
also uses constitutive reads and paired-end 
read information; orange lines connect reads in 
a pair; the insert length distribution is shown 
at right. (d) Comparison of ˆ

SJ and ˆ
MISO 

estimates from simulated data. Reads were 
sampled at varying coverage, measured in RPK, 
from the gene structure shown at top right, 
with underlying true  = 0.5. Mean values from 
3,000 simulations are shown ( s.d.) for each 
coverage value. Percentiles of gene expression 
values are shown for a data set assuming  
25 million mapped paired-end (PE) read pairs 
(25M PE; blue, extrapolating from an Illumina 
GA2 run that yielded 15 million mapped 
read pairs) and for a data set of 78 million 
mapped read pairs from an Illumina HiSeq 
2000 instrument (78M PE; red), both obtained 
from human heart tissue.

MISO: Specifically testing exon inclusion 

Katz	
  et	
  al	
  Nat.	
  Methods	
  2010	
  



Our typical pipeline (e.g. RNA-Seq) 

Upload	
  your	
  	
  
sequence	
  data	
  (fastq)	
   Make	
  report	
  of	
  quality	
  metrics	
  

Align	
  to	
  the	
  ribosome	
  (Bow2e)	
   Output	
  ribosomal	
  contamina2on	
  
metrics	
  report	
  

Align	
  remaining	
  reads	
  to	
  
genome	
  (TopHat)	
  

Produce	
  RNA-­‐Seq	
  report	
  
%	
  aligned,	
  %	
  intergenic,	
  %	
  exonic,	
  
%	
  UTR	
  

Produce	
  IGV/UCSC	
  friendly	
  files	
  

Quan2fy	
  transcriptome	
   Produce	
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expression	
  values	
  

Call	
  differen2ally	
  expressed	
  
genes	
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Report	
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  genes	
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•  Goal: Routinely profile hundreds of samples 
•  Why? 

–  Human variability in health and disease 
–  Perturbation studies  
–  Clinical applications of expression profiling 
–  Single cell sequencing 

•  Current costs 
–  Afffy ~$300-$400/sample 
–  Illumina bead arrays $150/sample 
–  RNA-Seq (20 mill reads) ~$400-$500/sample ($350 in sequencing) 

•  RNA-Seq disadvantages 
–  Complex analysis 
–  Length bias 

The quest for inexpensive expression assays 



Reading molecules: end-sequencing and molecular barcodes  

Maxim	
  Artyomov	
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Molecule counting – Unique Molecular Identifiers (UMI) 

Figure S2. Experimental procedure. Schematic diagram presenting the process of 
converting single-cell RNA samples to sequencing-ready DNA libraries. Shown are ten 
experimental steps describing how RNA is tagged, pooled, amplified, fragmented, and 
how library construction is being performed. Colored lines represent RNA (blue) or 
DNA (black) molecules, or oligos and primers (see methods for a detailed description). 

Step 1: Reverse transcription 

Step 3: Sample pooling 

Step 4: Second strand synthesis 

3’ 5’ An 

NT20-UMI-barcode-partial rd2-1-T7 promoter 3’ 5’ 

Step 2: Exonuclease I 

NT20-UMI-barcode-partial rd2rev-T7 promoter 3’ 5’ 

5’ 3’ 

Step 5: In Vitro Transcription 

Un-UMI-barcode-partial rd2rev 3’ 5’ 

Step 7: RNA Fragmentation 

Step 8: RNA/ssDNA ligation 
             * Optional addition of  
               pool barcode 

P5_rd1 forward 
primer 

Step 10: Amplification + Illumina primers addition by nested PCR 

Step 9: Reverse transcription 

Step 6: DNaseI 

OH 

OH 
OH 

v Un-UMI-barcode-partial rd2rev 3’ 5’ 3’ 5’ 
partial rd1rev 

Un-UMI-barcode-partial rd2rev 5’ 3’ 
3’ 5’ 

partial rd1 primer 

P7_rd2 reverse 
primer 

Library ready for Illumina 
sequencing 
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P5 P7 
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partial rd2 

RNA 
cDNA 
2nd strand 

Legend: 

S2 
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XXXXXXXXX:	
  UMI	
  
SSSSSS:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Sample	
  Barcode	
  

Jai2n	
  et	
  al.	
  Science	
  2014	
  



End-sequencing solution 
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Although annotated ends far from perfect 
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While annotated starts are much more conserved 
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We take full advantage of the data 

DGE 2hr R1

DGE 2hr R2

DGE 4hr R1

DGE 4hr R2

Irf9

1. Slide a window and identify major 3’ end 

2. Identify all other significant windows (using a local background) 

3. Repeat for each sample 

4. Take all significant windows across samples 

5.1 Report gene level counts: Sum across all sig. windows 
5.2 Report isoform level counts: Each sig. window   



Reproducibility is as good as with full length 



With 8.5 Million reads similar yet somewhat reduced power 
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Why Single-cell analysis? 

From:	
  Beyond	
  model	
  an:gens:	
  high-­‐dimensional	
  methods	
  for	
  the	
  analysis	
  of	
  an:gen-­‐specific	
  T	
  cells,	
  Newell	
  E,	
  Davis	
  M;	
  Nature	
  
Biotechnology,	
  Feb.	
  2014	
  

qPCR	
  analysis	
  of	
  CXCR5	
  vs	
  CCL5	
  expression	
  in	
  ‘bulk’	
  100-­‐cell	
  T	
  cell	
  popula2ons	
  
and	
  single	
  T	
  cells:	
  

Average	
  expression	
  
over	
  popula2ons	
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Type 1 Diabetes study 

•  It is unclear what triggers T1D 
•  The mechanism(s) of β-cell death are not well 

understood. 
•  Rat model with inducible T1D within 10 (± 1) days.  
•  Bulk RNA-Seq can’t reveal tissue composition 



Cell sorting 

•  Pancreatic islets are composed of: 
–  α-cells: primarily produce glucagon 
–  β-cells: primarily produce insulin 
–  δ-­‐cells,	
  PPY	
  producing	
  cells,	
  and	
  others	
  

•  Issues with sorting cells by FACS: 
–  Only known cell types can be selected 
–  Preprocessing may affect the observed cell state 
–  Islet cells are very difficult to isolate, and FACS discards “other” 

cells in the sorting process (wasteful for rare cells) 

•  In addition, “bulk” RNA-Seq can mask underlying 
heterogeneity of even a sorted cell population…  
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Library 

Construction 
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Single cell RNA-Seq cell sorting 
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Single cell RNA-Seq cell sorting 

−0.3 −0.2 −0.1 0.0 0.1

−0
.3

−0
.2

−0
.1

0.
0

0.
1

PC3 (9% of variance)

PC
4 

(<
 5

%
 o

f v
ar

ia
nc

e)

O24

I20

O22I22

O21

O20

I23 M23

K20

M24

K21K22M22

K23

K24

M20B24
C23

C24
B21

B23
B22

B17

B18

B19

B13

B14 B15B16

G20

G21

G24

G23

B12

B10B08
B06

B07B04

B05

B03

E21

E22

E23

E24

J24

J20

E20 J22

J23

F19

E16

N22

A02

N21

F17

E14

A01

N20E12
E11

N24
F12

F11

F10

F16

F15

F14

E19

E04

F06

E03

F09

E06
F08
E05

E02

E01

F01

E08

F03

F02

F05

E09

J02

J03

M07

J04

I01

M08

I02

J07

J09

I07

A14

I08

I09

A16

A17
I03

A18

N09

A19

N06

I05

J01

N05

N04

N03

A20

N02
A22

A21

M02

M01

M06

M05

M04

M03

M18

J15

I12

J16

I13

J13

J14

I11

J19
J17

J18

A05

A06

I18

A03

I19

N17

J11

I16
N18

J12

I17

I14

A07

J10

I15

A08

N14

N13

N16

N10

A13

A12

A11

N12

A10

N11

M11

F24
M10

M12

F21

F20

M14

F23

M17

B01

D01

D03

D02

D05

D04

D06

D09

D08

H10

H11

G16

H12
G17

H13

G18

H14

G19

H15

G12

H16

G13

G14

H18

G15
G10
G11D10 D14

D13

D12

D11

D18

L20

D15

C19

C18

L23

D19

C15

C14

C13

C21

G09

C20

H02

G07

H03
G08

G05

G06

G03H07

G04

H04

G01

H05

G02

D20

H08

K13

P09

P08

K15

L10

K14

D23

D22

K16

P04

K19

D24

K18

P06

L16

O06

L15

O05

L18

L17

O07
L12

L11

O09
K11L14

K10

L13
L19O01

O03

O04

P03

K04

K03

K02

P19

K08

K07

K06
P16P15

L06

O18

L04

L03

L02

L01

O10
H22

H23

H20

O15

L08

L09

O13

K09

P11

−1.5 −1.0 −0.5 0.0 0.5

−1
.5

−1
.0

−0
.5

0.
0

0.
5

Ins1

Iapp

Ppy

Sst

Ins2

Gcg



−0.4 −0.2  0.0  0.2  0.4  0.6  0.8

−0
.8

−0
.6

−0
.4

−0
.2

 0
.0

 0
.2

−0.8
−0.6

−0.4
−0.2

 0.0
 0.2

 0.4

PC1 (55% of var)

PC
2 

(2
9%

 o
f v

ar
)

PC
3 

( 9
%

 o
f v

ar
)

●
●●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●
● ●

● ●●●●●●●
●

●●

●
●●

●

●
●●●●●●●●●●●●●●●●●●●●●●

●
●●

●
●●●●●●●●●●●●●●●
●
●●●●●●●
●●●●●●
●●●●●●●●●●●●●● ●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
● ●●●●●●● ●●●●● ●
●
●●●●●●●●
●
●●●●● ●●●

●●
● ●
● ●●●●●
●●●

●

●
●
●

●

● ●
●

●
●

●

●

●

●

●

●
●

●

●●

● ●
●

●
●

●● ●
●
●

●
●●●●●●●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●

● ●●●●●●●●
●●●●●●●

●●●●●●●

●
●

●●● ●
●

●
●

●●
● ●●●●●

●
●

● ●●●

●

●

●
●●
●
●

●●

●
●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
● ●

●
●

●
●

●
●
●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●●
●●
●

●●●

●

●
●●
●

●
●
●●●●●

●
●●●●●
●●●

●●
●●
●

●
●
●●●●●

●
●●

●●●●

●
●

●
●

●
●●●

●

●
●●

●
●●

●

●

●

●●
●
●

●

●

●
●●●●●
●
● ●

●●
●●●●

●

●

●

●●

●
●
●●●●●
●

●
● ●●

●●

●
●
● ●●
●

● ●●●

●

●●
●

●●

●●

●
●

●
●

●●●●●● ●

●

●● ●●●●●
●
●

●
●●●
●

●
●

●●
●●

●

●

●

●

●
●

●

●●
●

●

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

Gcg

fr
ac

tio
n 

of
 to

ta
l U

M
Is

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

Ins1

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

Ins2

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

Ppy

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

Sst

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

Iapp

Which allow us to recover the known islet composition 



•  Very deep (30 million reads) dataset with triplicates. 
–  Mouse WT vs double Jnk1/2 KO (Roger Davis) 
–  Worm diet changes (Marian Walhout) 

•  Call DE with full dataset, then in-silico downsample data 

More in depth exploration of depth 

Alper Kucukural 



Is the loss qualitatively significant? 

15 Million reads 



Is the loss qualitatively significant? 

12.5 Million reads 



Is the loss qualitatively significant? 

10 Million reads 



Is the loss qualitatively significant? 

7.5 Million reads 



Is the loss qualitatively significant? 

5 Million reads 



Is the loss qualitatively significant? 

2.5 Million reads 



Is the loss qualitatively significant? 

1 Million reads 



The loss is qualitatively small  
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Final considerations: The steps of Sequencing analysis 

•  Filter reads (fastq file) by removing adapter, splitting 
barcodes.  
–  Evaluate overall quality, look for drop in quality at ends. Trim 

reads if ends are of low quality  
•  Alignment to the genome 

–  Use transcriptome if available 
–  Filter out likely PCR duplicates (reads that align to the same 

place in the genome) 
–  Evaluate ribosomal contamination 
–  What percent of reads aligned 

•  Reconstruct(?) 
•  Quantify  

–  Normalize according to application 
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