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Model section using Bayes factors

Sebastian Höhna

1 Overview
This tutorial demonstrates some general principles of Bayesian model comparison, which is based on
estimating the marginal likelihood of competing models and then comparing their relative fit to the data
using Bayes factors. We consider the specific case of calculating Bayes factors to select among different
substitution models.

1.1 Requirements

We assume that you have read and hopefully completed the following tutorials:

• RB_Getting_Started

• RB_Data_Tutorial

• RB_CTMC_Tutorial

This means that we will assume that you know how to execute and load data into RevBayes, are familiar
with some basic commands, and know how to perform an analysis of a single-gene dataset (assuming an
unconstrained/unrooted tree).

2 Data and files
We provide several data files that we will use in this tutorial. Of course, you may want to use your own
dataset instead. In the data folder, you will find the following files

• primates_cytb.nex: Alignment of the cytochrome b subunit from 23 primates representing 14 of
the 16 families (Indriidae and Callitrichidae are missing).

• primates_cox2.nex: Alignment of the COX-2 gene from the same 23 primates species.

3 Introduction

For most sequence alignments, several (possibly many) substitution models of varying complexity are plau-
sible a priori. We therefore need a way to objectively identify the model that balances estimation bias and
inflated error variance associated with under- and over-parameterized models, respectively. Increasingly,
model selection is based on Bayes factors (e.g., Suchard et al. 2001; Lartillot and Philippe 2006; Xie et al.
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2011; Baele et al. 2012; 2013), which involves first calculating the marginal likelihood of each candidate
model and then comparing the ratio of the marginal likelihoods for the set of candidate models.

Given two models, M0 and M1, the Bayes-factor comparison assessing the relative fit of each model to the
data, BF (M0,M1), is:

BF (M0,M1) = posterior odds
prior odds .

The posterior odds is the posterior probability of M0 given the data, X, divided by the posterior odds of
M1 given the data:

posterior odds = P(M0 | X)
P(M1 | X) ,

and the prior odds is the prior probability of M0 divided by the prior probability of M1:

prior odds = P(M0)
P(M1) .

Thus, the Bayes factor measures the degree to which the data alter our belief regarding the support for
M0 relative to M1 (Lavine and Schervish 1999):

BF (M0,M1) = P(M0 | X, θ0)
P(M1 | X, θ1) ÷

P(M0)
P(M1) . (1)

Note that interpreting Bayes factors involves some subjectivity. That is, it is up to you to decide the degree
of your belief inM0 relative toM1. Despite the absence of an absolutely objective model-selection threshold,
we can refer to the scale (outlined by Jeffreys 1961) that provides a “rule-of-thumb” for interpreting these
measures (Table 1).

Table 1: The scale for interpreting Bayes factors by Harold Jeffreys (1961).
Strength of evidence BF (M0,M1) log(BF (M0,M1)) log10(BF (M0,M1))

Negative (supports M1) < 1 < 0 < 0
Barely worth mentioning 1 to 3.2 0 to 1.16 0 to 0.5
Substantial 3.2 to 10 1.16 to 2.3 0.5 to 1
Strong 10 to 100 2.3 to 4.6 1 to 2
Decisive > 100 > 4.6 > 2
For a detailed description of Bayes factors see Kass and Raftery (1995)

Unfortunately, it is generally not possible to directly calculate the posterior odds to prior odds ratio.
However, we can further define the posterior odds ratio as:

P(M0 | X)
P(M1 | X) = P(M0)

P(M1)
P(X |M0)
P(X |M1) ,

where P(X |Mi) is the marginal likelihood of the data (this may be familiar to you as the denominator of
Bayes Theorem, which is variously referred to as the model evidence or integrated likelihood). Formally, the
marginal likelihood is the probability of the observed data (X) under a given model (Mi) that is averaged
over all possible values of the parameters of the model (θi) with respect to the prior density on θi

P(X |Mi) =
∫

P(X | θi)P(θi)dt. (2)
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This makes it clear that more complex (parameter-rich) models are penalized by virtue of the associated
prior: each additional parameter entails integration of the likelihood over the corresponding prior density.
If you refer back to equation 1, you can see that, with very little algebra, the ratio of marginal likelihoods
is equal to the Bayes factor:

BF (M0,M1) = P(X |M0)
P(X |M1) = P(M0 | X, θ0)

P(M1 | X, θ1) ÷
P(M0)
P(M1) . (3)

Therefore, we can perform a Bayes factor comparison of two models by calculating the marginal likelihood
for each one. Alas, exact solutions for calculating marginal likelihoods are not known for phylogenetic
models (see equation 2), thus we must resort to numerical integration methods to estimate or approximate
these values. In this exercise, we will estimate the marginal likelihood for each partition scheme using both
the stepping-stone (Xie et al. 2011; Fan et al. 2011) and path sampling estimators (Lartillot and Philippe
2006; Baele et al. 2012).

3.1 Substitution Models

The models we use here are equivalent to the models described in the previous exercise on substitution
models (continuous time Markov models). To specify the model please consult the previous exercise.
Specifically, you will need to specify the following substitution models:

• Jukes-Cantor (JC) substitution model (Jukes and Cantor 1969)

• Hasegawa-Kishino-Yano (HKY) substitution model (Hasegawa et al. 1985)

• General-Time-Reversible (GTR) substitution model (Tavaré 1986)

• Gamma (+G) model for among-site rate variation (Yang 1994)

• Invariable-sites (+I) model (Hasegawa et al. 1985)

3.2 Estimating the Marginal Likelihood

We will estimate the marginal likelihood of a given model using a ‘stepping-stone’ (or ‘path-sampling’)
algorithm. These algorithms are similar to the familiar MCMC algorithms, which are intended to sample
from (and estimate) the joint posterior probability of the model parameters. Stepping-stone algorithms
are like a series of MCMC simulations that iteratively sample from a specified number of discrete steps
between the posterior and the prior probability distributions. The basic idea is to estimate the probability
of the data for all points between the posterior and the prior—effectively summing the probability of the
data over the prior probability of the parameters to estimate the marginal likelihood. Technically, the steps
correspond to a series of powerPosteriors(): a series of numbers between 1 and 0 that are iteratively
applied to the posterior. When the posterior probability is raised to the power of 1 (typically the first
stepping stone), samples are drawn from the (untransformed) posterior. By contrast, when the posterior
probability is raised to the power of 0 (typically the last stepping stone), samples are drawn from the prior.
To perform a stepping-stone simulation, we need to specify (1) the number of stepping stones (power
posteriors) that we will use to traverse the path between the posterior and the prior (e.g., we specify 50 or
100 stones), (2) the spacing of the stones between the posterior and prior (e.g., we may specify that the
stones are distributed according to a beta distribution), (3) the number of samples to (and thinning) of
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Figure 1: Estimating marginal likelihoods using stepping-stone simulation. Estimating the marginal likelihood
involves integrating the likelihood of the data over the entire prior probability density for the model parameters.
MCMC algorithms target the posterior probability density, which is typically concentrated in a small region of the
prior probability density (A). Accordingly, standard MCMC simulation cannot provide unbiased estimates of the
marginal likelihood because it will typically fail to explore most of the prior density. (B) Stepping-stone algorithms
estimate the marginal likelihood by means of a series of MCMC-like simulations, where the likelihood is iterativey
raised to a series of powers, effectivey forcing the simulation to more fully explore the prior density of the model
parameters. Here, six uniformly spaced stones span the posterior, where the power posterior is β = 6/6 = 1, to the
prior, where the power posterior is β = 0/6 = 0.

samples to be drawn from each stepping stone, and (4) the direction we will take (i.e., from the posterior
to the prior or vice versa).

This method computes a vector of powers from a beta distribution, then executes an MCMC run for each
power step while raising the likelihood to that power. In this implementation, the vector of powers starts
with 1, sampling the likelihood close to the posterior and incrementally sampling closer and closer to the
prior as the power decreases.

Just to be safe, it is better to clear the workspace (if you did not just restart RevBayes)

clear()

Now set up the model as in the previous exercise. You should start with the simple Jukes-Cantor substi-
tution model. Setting up the model requires:

1. Loading the data and retrieving useful variables about it (e.g., number of sequences and taxon names).

2. Specifying the instantaneous-rate matrix of the substitution model.
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3. Specifying the tree model including branch-length variables.

4. Creating a random variable for the sequences that evolved under the PhyloCTMC.

5. Clamping the data.

6. Creating a model object.

7. Specifying the moves for parameter updates.

The following procedure for estimating marginal likelihoods is valid for any model in RevBayes. You will
need to repeat this later for other models. First, we create the variable containing the power-posterior
analysis. This requires that we provide a model and vector of moves, as well as an output file name. The
cats argument sets the number of stepping stones.

pow_p = powerPosterior(mymodel, moves, "model1.out", cats=50)

We can start the power-posterior analysis by first burning in the chain and and discarding the first 10000
states. This will help ensure that analysis starts from a region of high posterior probability, rather than
from some random point.

pow_p.burnin(generations=10000,tuningInterval=1000)

Now execute the run with the .run() function:

pow_p.run(generations=1000)

Once the power posteriors have been saved to file, create a stepping stone sampler. This function can read
any file of power posteriors and compute the marginal likelihood using stepping-stone sampling.

ss <- steppingStoneSampler(file="model1.out", powerColumnName="power", likelihoodColumnName="
likelihood")

These commands will execute a stepping-stone simulation with 50 stepping stones, sampling 1000 states
from each step. Compute the marginal likelihood under stepping-stone sampling using the member function
marginal() of the ss variable and record the value in Table 5.

ss.marginal()

Path sampling is an alternative to stepping-stone sampling and also takes the same power posteriors as
input.
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ps = pathSampler(file="model1.out", powerColumnName="power", likelihoodColumnName="likelihood")

Compute the marginal likelihood under stepping-stone sampling using the member function marginal()
of the ps variable and record the value in Table 5.

ps.marginal()

As an example we provide the file RevBayes_scripts/marginalLikelihood_JukesCantor.Rev.→

3.3 Exercises

• Compute the marginal likelihoods of the cytb alignment for the following substitution models:

– Jukes-Cantor (JC) substitution model
– Hasegawa-Kishino-Yano (HKY) substitution model
– General-Time-Reversible (GTR) substitution model
– GTR with gamma distributed-rate model (GTR+G)
– GTR with invariable-sites model (GTR+I)
– GTR+I+G model

• Enter the marginal likelihood estimate for each model in the corresponding cell of Table 5.

• Repeat the above marginal likelihood analyses for the mt-COX2 gene and enter results in Table 3.

• Which is the best fitting substitution model?
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Table 2: Estimated marginal likelihoods for different substitution models for the cytb alignment∗.
Marginal lnL estimates

Substitution Model Stepping-stone Path sampling

JC (M1)

HKY (M2)

GTR (M3)

GTR+Γ (M4)

GTR+I (M5)

GTR+Γ+I (M6)

Any other model (M7)

Any other model (M8)

Any other model (M9)
∗you can edit this table

Table 3: Estimated marginal likelihoods for different substitution models of the cox2 gene∗.
Marginal lnL estimates

Substitution Model Stepping-stone Path sampling

JC (M1)

HKY (M2)

GTR (M3)

GTR+Γ (M4)

GTR+I (M5)

GTR+Γ+I (M6)

Any other model (M7)

Any other model (M8)

Any other model (M9)
∗you can edit this table
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4 Computing Bayes Factors and Model Selection
Now that we have estimates of the marginal likelihood for each of our the candidate substitution models,
we can evaluate their relative fit to the datasets using Bayes factors. Phylogenetic programs log-transform
the likelihood values to avoid underflow: multiplying likelihoods (numbers < 1) generates numbers that
are too small to be held in computer memory. Accordingly, we need to use a different form of equation 3
to calculate the ln-Bayes factor (we will denote this value K):

K = ln[BF (M0,M1)] = ln[P(X |M0)]− ln[P(X |M1)], (4)

where ln[P(X | M0)] is the marginal lnL estimate for model M0. The value resulting from equation 4 can
be converted to a raw Bayes factor by simply taking the exponent of K

BF (M0,M1) = eK. (5)

Alternatively, you can directly interpret the strength of evidence in favor of M0 in log space by comparing
the values of K to the appropriate scale (Table refbftable, second column). In this case, we evaluate K in
favor of model M0 against model M1 so that:

if K > 1, model M0 is preferred
if K < −1, model M1 is preferred.

Thus, values of K around 0 indicate that there is no preference for either model.

Using the values you entered in Table 5 and equation 4, calculate the ln-Bayes factors (using K) for each
model comparison. Enter your answers in Table 4 using the stepping-stone and the path-sampling estimates
of the marginal log-likelihoods.

Table 4: Bayes factor calculation∗.
Model comparison M1 M2 M3 M4 M5 M6 M7 M8 M9

M1 -

M2 -

M3 -

M4 -

M5 -

M6 -

M7 -

M8 -

M9 -
∗you can edit this table
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5 For your consideration...
In this tutorial you have learned how to use RevBayes to assess the relative fit of a pool of candidate
substitution models to a given sequence alignment. Typically, once we have identified the “best” substi-
tution model for our alignment, we would then proceed to use this model for inference. Technically, this
is a decision to condition our inferences on the selected model, which explicitly assumes that it provides
a reasonable description of the process that gave rise to our data. However, there are several additional
issues to consider before proceeding along these lines, which we briefly mention below.

5.1 Accommodating Process Heterogeneity

In the analyses that we performed in this tutorial, we assumed that all sites in an alignment evolved under
an identical substitution process. It is well established that this assumption is frequently violated in real
datasets. Various aspects of the substitution process—the stationary frequencies, exchangeability rates,
degree of ASRV, etc.—may vary across sites of our sequence alignment. For example, the nature of the
substitution process may vary between codon positions of protein-coding genes, between stem and loop
regions of ribosomal genes, or between different gene and/or genomic regions. It is equally well estab-
lished that failure to accommodate this process heterogeneity—variation in the nature of the substitution
process across the alignment—will cause biased estimates of the tree topology, branch lengths and other
phylogenetic model parameters. We can accommodate process heterogeneity by adopting a mixed-model
approach, where two or more subsets of sites are allowed to evolve under distinct substitution processes.
We will demonstrate how to specify—and select among—alternative mixed models using RevBayes in a
separate tutorial, RB_PartitionedData_Tutorial.

5.2 Assessing Model Adequacy

In this tutorial, we used Bayes factors to assess the fit of various substitution models to our sequence data,
effectively establishing the relative rank of the candidate models. Even if we have successfully identified the
very best model from the pool of candidates, however, the preferred model may nevertheless be woefully
inadequate in an absolute sense. For this reason, it is important to consider model adequacy: whether a
given model provides a reasonable description of the process that gave rise to our sequence data. We can
assess the absolute fit of a model to a given dataset using posterior predictive simulation. This approach
is based on the following premise: if the candidate model provides a reasonable description of the process
that gave rise to our dataset, then we should be able to generate data under this model that resemble our
observed data. We will demonstrate how to assess model adequacy using RevBayes in a separate tutorial,
RB_ModelAdequacy_Tutorial.

5.3 Accommodating Model Uncertainty

Even when we have carefully assessed the relative and absolute fit of candidate models to our dataset,
it may nevertheless be unwise to condition our inference on the best model. Imagine, for example, that
there are several (possibly many) alternative models that provide a similarly good fit to our given dataset.
In such scenarios, conditioning inference on any single model (even the ‘best’) ignores uncertainty in the
chosen model, which will cause estimates to be biased. This is the issue of model uncertainty. The Bayesian
framework provides a natural approach for accommodating model uncertainty by means of model averaging;
we simply adopt the perspective that models (like standard parameters) are random variables, and integrate
the inference over the distribution of candidate models. We will demonstrate how to accommodate model
uncertainty using RevBayes in a separate tutorial, RB_ModelAveraging_Tutorial.
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Table 5: Marginal likelihoods for various substitution models estimated using MrBayes.
Marginal lnL estimates

Substitution Model run 1 run 2 mean
JC (M1) -15839.35 -15838.77 -15839.02
F81 (M2) -15459.19 -15459.16 -15459.17
HKY (M3) -14821.19 -14821.48 -14821.32
GTR (M4) -14572.03 -14572.64 -14572.29
GTR+Γ (M5) -13241.33 -13241.78 -13241.53
GTR+I (M6) -13472.73 -13472.79 -13472.76
GTR+Γ+I (M7) -13184.67 -13184.18 -13184.40
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Questions about this tutorial can be directed to:
• Tracy Heath (email: tracyh@berkeley.edu)
• Sebastian Höhna (email: sebastian.hoehna@gmail.com)
• Michael Landis (email: mlandis@berkeley.edu)
• Brian R. Moore (email: brianmoore@ucdavis.edu)
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