From flask to field: tracking the drivers of phytoplankton physiological ecology across marine ecosystems

Sonya Dyhrman Department of Earth and Environmental Sciences Lamont Doherty Earth Observatory **Columbia University**

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

The ocean makes our planet livable

The ocean acts as a buffer for CO₂ in the atmosphere

Sabine et al. (2004) Science

Between 1800 - 1994, ocean has absorbed ~120 petagrams of CO₂ Oceanic sink accounts for ~48% of fossil-fuel emissions

The vast unseen microbial populations play a critical role in ocean function

Microbial biogeochemistry - fundamental to ocean ecosystem function

- Marine microbes...
 - Produce and consume green house gases
 - Supply the marine food web
 - Recycle organic matter
 - Account for roughly half of global primary production

Image courtesy C-MORE

• make the planet habitable

Marine phytoplankton are highly diverse

Focus on keystone groups

Haptophytes

Diatoms

Phytoplankton play a profound role in the earth system

Half of global primary production

Seasonal chlorophyll distributions in the sea - highlights the global significance of phytoplankton

Sampling microbes across marine ecosystems

Culture and field based approaches to physiological ecology

Culture-based experiments

Species-specific responses to wellcontrolled environment

Limitations:

Species must be in culture Time consuming Extrapolations to the field

Field-based studies

Assess whole community dynamics in a natural environment

Limitations: Not species-specific

Genome and transcriptome-enabled advances allowing to query cells in their environment in a species specific way

Challenges and opportunities in microbial oceanography

- Long standing challenges:
 - Populations are dilute
 - Few species-specific assays
 - Few genome or transcriptome sequences
- New opportunities
 - Novel concentration and detection strategies
 - Increases in whole genome sequences
 - Increases in transcriptomes for eukaryotic taxa

Increasingly able to use 'omic and 'metaomic approaches!

Leveraging 'omic data to study marine microbes

Taxonomic Diversity: Who is there?

Metabolic capacity: What are the molecular underpinnings of resource metabolism?

Metabolic plasticity: How are those pathways regulated?

Functional diversity: How are the pathways expressed *in situ*?

Niche space: How are resources partitioned over time and between species?

 Co-existing in a sea of competition: Leveraging transcriptome data to identify the physiological ecology of phytoplankton from key groups

Transcriptome - enabled

Nitrogen-fixing marine cyanobacteria

- Symbionts
 - UNCYN-A
 - Richelia
- Free-living
 - Crococosphaera
 - Trichodesmium

-Trichodesmium contortum -Trichodesmium erythraeum

-Trichodesmium tenue -Trichodesmium thiebautii

-Trichodesmium spiralis -Trichodesmium hildebrandtii

Richelia

T. erythraeum - like Clade

T. theibautii like Clade

Crocosphaera

Trichodesmium

Key themes

Taxonomic diversity

• How are the major clades of *Trichodesmium* distributed?

Metabolic traits and trade-offs

- What phosphorus is bioavailable?
- Is phosphorus supply sufficient to support maximal N₂ fixation in the North Atlantic?

Niche space

• What is the composition of the colony and are activities influenced by communication among epibionts and *Trichodesmium*?

Enumerating *Trichodesmium* for N₂ fixation models

- Video Plankton Recorder
 - Underway
 - High throughput
 - Only detects colonies
 - Image classification a challenge
 - No clade specificity

Enumerating Trichodesmium beyond the colony

- VPR
 - High throughput
 - Misses filaments
 - No clade specificty
- Microscopy on discrete samples
 - Low throughput
 - Detects colonies and filaments
 - No clade specificity
- Molecular diagnostic (qPCR)
 - High throughput
 - Detects colonies and filaments
 - Sensitive
 - Clade-specific

Mónica Rouco

Leveraging the *Trichodesmium erythraeum* genome

2006 Genome sequence provided new and continued insight and a blue-print for developing molecular tools

Trichodesmium clades have different activities

- Clades may have different capacity and unique distributions like other marine cyanobacteria
- Different clades:
 - Make different phosphorus compounds (Dyhrman et al. 2009 *Nature Geosci*.)
 - Reduce phosphate differently (Van Mooy et al. 2015 *Science*)
 - Respond differently to increased CO₂ (Hutchins et al. 2015 *PNAS*)

Culture cells

Standard curve from cultured isolates

Rouco et al. 2014 Limnol. Oceanogr.

The *rnpB* gene amplifies specifically from each clade with ~100% efficiency

How are the major clades distributed?

Rouco et al. 2014 Limnol. Oceanogr.

Trichodesmium is found in the low phosphorus - oligotrophic western North Atlantic

Trichodesmium clade abundance correlates with colony counts

- Microscopy and VPR-based colony abundance correlate with qPCR cell count
- Counts suggest the presence of free filaments (so VPR is missing biomass)
- Counts suggest that the majority of the population falls into one of the two clades

Rouco et al. 2014 Limnol. Oceanogr.

Clade distribution and abundance trends

Clade distribution

Summary - Taxonomic diversity

How are the major clades distributed?

- *T. theibautii* like species are dominant (~90%) in the western North Atlantic (~50% in the North Pacific) NOT THE CLADE OF THE GENOME STRAIN
- Distribution and correlations with temperature and phosphorus pools hint at the importance of P bioavailability in driving the dynamics
 - -Trichodesmium contortum -Trichodesmium erythraeum
 - *-Trichodesmium tenue -Trichodesmium thiebautii*
 - -Trichodesmium spiralis -Trichodesmium hildebrandtii

T. erythraeum - like Clade

DOMINANT

Key themes

Taxonomic diversity

• How are the major clades of *Trichodesmium* distributed?

Metabolic traits and trade-offs

- What phosphorus is bioavailable?
- Is phosphorus supply sufficient to support maximal N₂ fixation in the North Atlantic?

Niche space

• What is the composition of the colony and are activities influenced by communication among epibionts and *Trichodesmium*?

Phosphorus pools in the western North Atlantic

Lomas et al. (2010) Biogeosciences

Trichodesmium erythraeum IMS101 genome page

www.jgi.doe.gov

Phosphorus metabolic traits and trade-offs

• Phosphonate

 \bullet

• C-P Lyase (Fe co-factor)

ptxD gene cluster

COP

COP

- Ester

 <u>phoX type alkaline phosphatase (Ca Fe co-factor)</u>
 - *phoA* type alkaline phosphatase (Zn co-factor)

• Phosphite

PO₃

Dyhrman et al. 2006 Nature, Dyhrman and Haley 2010 AEM, Orchard et al. 2010 L&O, Van Mooy et al. 2015 Science

Comparative genomics: phosphorus traits and trade offs

Other N₂ fixing cyanobacteria genomes do not encode the same pathways for phosphorus metabolism - less available substrates, but less metal requirement

Dyhrman et al. 2006 Nature, Dyhrman and Haley 2010 AEM, Orchard et al. 2010 L&O, Van Mooy et al. 2015 Science

Assaying P supply with isotope tracers

- Rates are difficult to constrain with tracer studies
 - No tracers for DOP
 - Dynamic P requirement

Trichodesmium: ~ 0.5 nmol PO₄h⁻¹ugChla⁻¹

- ~ 29 80 % ester DOP
- ~ ?% phosphonate DOP
- ~ ?% phosphite (PO_3)

Orchard et al. 2010 *Limnol and Oceanogr* Van Mooy et al. 2015 *Science*

Liz Orchard

Assaying P supply with a genome-enabled tool

Tracking genomic potential with expression studies

Calibrating gene expression to growth and N₂ fixation

Orchard and Dyhrman unpublished

Calibrating gene expression to P supply

- phoX expression is responsive to cellular P regardless of exogenous source.
- Transcripts are rapidly turned over.
- Response is similar in culture experiments with both clades

Orchard and Dyhrman unpublished

Calibrating gene expression to growth and N₂ fixation

Orchard and Dyhrman unpublished

Calibrating gene expression to N₂ fixation

Orchard et al. in prep

Sampling different P regimes

DIP, TDP Measurements

Measurements of quantitative gene expression for *Trichodesmium sp.*

Gene expression increases at low phosphorus

Orchard and Dyhrman unpublished

Calibrating gene expression to N₂ fixation

Orchard and Dyhrman unpublished

Data predicts that P supply limits N₂ fixation in the western N. Atlantic

Orchard and Dyhrman unpublished

Constraints on *Trichodesmium* N₂ fixation

(Moore et al. 2004)

Molecular patterns corroborate predictive models in the western north Atlantic

phoX - P regulated ester metabolism (Orchard et al. 2009 Environ. Micro.)
idiA - Fe regulated iron metabolism (Chappell et al. 2013 ISME J.)
rnpB - reference gene
nifH - N₂ - fixation

Sampling and pipeline

The reality.....

Summary - Metabolic traits and trade-offs

What phosphorus forms are bioavailable? Is P supply sufficient to support maximal N₂ fixation in the North Atlantic?

- *Trichodesmium* genome suggests bioavailabiliy of phosphonate, ester, phosphite etc.
- *Trichodesmium phoX* expression levels suggests that supply of bioavailable P is low in the western N. Atlantic, which could constraint N₂ fixation
- Predicted biogeochemical drivers of N₂ fixation are reflected in *Trichodesmium* physiology

Key themes

Taxonomic diversity

• How are the major clades of *Trichodesmium* distributed?

Metabolic traits and trade-offs

- What phosphorus is bioavailable?
- Is phosphorus supply sufficient to support maximal N₂ fixation in the North Atlantic?

Niche space

 What is the composition of the colony and are activities influenced by communication among epibionts and *Trichodesmium*?

Modeling N₂ fixation is still a challenge

- Models do not balance the N cycle in the ocean or recapitulate patterns well
- Assays of nitrogen fixation are technically difficult = variability
- Information on distribution over time and with depth is still patchy
- Geochemistry is not necessarily a good predictor of distribution or N₂ fixation

Olson et al. 2015 DSR II

Could there be other factors? - Epibiont interactions

- Trichodesmium colonies harbor epibionts in cultures and field populations (Hmelo et al. 2012 AME)
- Quorum sensing communication molecules (acylated homoserine lactones - AHL) detected in colonies (Van Mooy et al. 2012 *ISME J*)
- What is epibiont diversity and the role of the *Trichodesmium* microbiome in its physiological ecology

Image courtesy Tracy Mincer

Epibiont interactions - alkaline phosphatase activity

Epibiont interactions - alkaline phosphatase activity

2.5 nmol PO₄h⁻¹ugChla⁻¹

17.5 nmol PO₄h⁻¹ugChla⁻¹

Could there be other factors? - Epibiont interactions

- Trichodesmium colonies harbor epibionts in cultures and field populations (Hmelo et al. 2012 AME)
- Quorum sensing communication molecules (acylated homoserine lactones - AHL) detected in colonies (Van Mooy et al. 2012 *ISME J*)
- What is epibiont diversity and the role of the *Trichodesmium* microbiome in its physiological ecology

Image courtesy Tracy Mincer

Epibiont diversity

Are epibiont communities distinct as a function of colony morphology or environment?

Mónica Rouco

Colony composition by region

Colonies are not likely species specific, the raft morphology is more diverse except in the S. Pacific

Average epibiont community

Trichodesmium colonies harbor diverse epibionts distinct from common water column bacteria.

Epibiont community diversity

Epibiont communities significantly differ by ocean basin, and with colony morphology except for the S. Pacific where the *Trichodesmium* composition of rafts and puffs were not significantly different.

Epibiont community diversity

Epibiont communities significantly differ by ocean basin, and with colony morphology except for the S. Pacific where the *Trichodesmium* composition of rafts and puffs were not significantly different.

Epibiont community diversity

Epibiont communities are isolated by distance across ocean basins within a morphology so both neutral and selective processes may drive the holobiont structure

- Niche? What type of Trichodesmium, physiological ecology in the colony, environment..
- *Lottery?* Random selection of potential copiotrophs, role of taxonomic v. functional group uncertain...
- Working to examine the *Trichodesmium* holobiont with metagenomics/metatranscriptomics.

Metagenome of the *Trichdoesmium* holobiont

1 Lane Illumina PE 100 bp ~26M PE reads / sample Assemble by station/full dataset with **IDBA-UD** Bin full dataset assembly by TNF and coverage using MaxBin Predict proteins from individual station assemblies using Prodigal Cluster predicted proteins using MCL (inflation value of 1.4) Annotate bins and predicted proteins using DIAMOND against UniRef90 etc.

Metabolic partitioning in the holobiont

Metagenomics will emphasize how metabolic potential is segregated between *Trichodesmium* clades and epibionts, and how these communities are organized What is the composition of the colony and are activities influenced by communication among epibionts and *Trichodesmium*?

- Colonies harbor diverse epibionts distinct from water column, which vary by ocean region and colony morphology
- AHLs can modify epibiont alkaline phosphatase activity independent of phosphorus chemistry
- Many orthologous groups are unique to the epibionts, suggestive of their role in creating metabolic diversity
- Next steps involve investigating these interactions in more detail

 including N₂ fixation and coordinated metabolism with
 metagenomics and metatranscriptomics

Conclusions

The physiological ecology and metabolic traits and trade-offs of different *Trichodesmium* species or clades may be more complex than previously appreciated, and genome-enabled approaches are providing new tools to trace these relationships in the field.

Taxonomic diversity Metabolic traits and trade-offs Niche space

