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Extract	RNA,	convert	to	cDNA	

RNA-Seq	Empowers	Transcriptome	Studies	

Next-gen	Sequencer	
(pick	your	favorite)	



Genera&ng	RNA-Seq:		How	to	Choose?	
	

Illumina	 454	 SOLiD	 Helicos	

Pacific	Biosciences	Ion	Torrent	 Oxford	Nanopore	

Slide	courtesy	of	Joshua	Levin,	Broad	InsNtute.	

Many	different	instruments	hit	the	scene	in	the	last	decade	
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Genera&ng	RNA-Seq:		How	to	Choose?	
	

Illumina	 454	 SOLiD	 Helicos	

Pacific	Biosciences	Ion	Torrent	 Oxford	Nanopore	

Popular	choices	for	RNA-Seq	today	

[Current	RNA-Seq	
workhorse]	

[Full-length	single	
	molecule	sequencing]	

[Newly	emerging	
technology	for	full-length	
single	molecule	sequencing]	



RNA-Seq:		How	do	we	make	cDNA?	
	

Reverse	transcriptase	

RNase	H	
DNA	polymerase	
DNA	Ligase	

Prime	with	Random	Hexamers	(R6)	

cDNA	First	strand	synthesis	

cDNA	Second	strand	synthesis	

mRNA	
5’	 3’	

R6	 R6	 R6	

R6	 R6	R6	

Illumina	cDNA	Library	

Slide	courtesy	of	Joshua	Levin,	Broad	InsNtute.	



Overview	of	RNA-Seq	

From:	hZp://www2.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics.html	



Common	Data	Formats	for	RNA-Seq	

>61DFRAAXX100204:1:100:10494:3070/1	
AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT	

FASTA	format:	
	

FASTQ	format:	

@61DFRAAXX100204:1:100:10494:3070/1	
AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT	
+	
ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCBC?CCCCCCCCC@@CACCCCCA	

AsciiEncodedQual	(‘C’)	=	64	

AsciiEncodedQual(x)	=	-10	*	log10(Pwrong(x))	+	33	

So,	Pwrong(‘C’)	=		10^(	(64-33/	(-10)	)		=	10^-3.4			=		0.0004				

Read	

Quality	values	



Paired-end	Sequences	

@61DFRAAXX100204:1:100:10494:3070/1	
AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT	
+	
ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCBC?CCCCCCCCC@@CACCCCCA	

@61DFRAAXX100204:1:100:10494:3070/2	
CTCAAATGGTTAATTCTCAGGCTGCAAATATTCGTTCAGGATGGAAGAACA	
+	
C<CCCCCCCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCBCCCC	

Two	FastQ	files,	read	name	indicates	
leo	(/1)	or	right	(/2)	read	of	paired-end	
	



Overview	of	RNA-Seq	

From:	hZp://www2.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics.html	



Transcript	Reconstruc&on	from	RNA-Seq	Reads	

Nature	Biotech,	2010	



Transcript	Reconstruc&on	from	RNA-Seq	Reads	

TopHat	



Transcript	Reconstruc&on	from	RNA-Seq	Reads	

Cufflinks	

TopHat	



Transcript	Reconstruc&on	from	RNA-Seq	Reads	

Trinity	

GMAP	Cufflinks	

TopHat	 The	Tuxedo	Suite:	
End-to-end	Genome-based	

RNA-Seq	Analysis		
Sooware	Package	



Transcript	Reconstruc&on	from	RNA-Seq	Reads	

Trinity	

GMAP	Cufflinks	

TopHat	 The	Tuxedo	Suite:	
End-to-end	Genome-based	

RNA-Seq	Analysis		
Sooware	Package	Non-model	organisms:	

	“I	don’t	have	a	
reference	genome!”	



Transcript	Reconstruc&on	from	RNA-Seq	Reads	

Trinity	

Cufflinks	

TopHat	



Transcript	Reconstruc&on	from	RNA-Seq	Reads	

Trinity	

GMAP	Cufflinks	

TopHat	



Transcript	Reconstruc&on	from	RNA-Seq	Reads	

	
	Trinity	

GMAP	

End-to-end	Transcriptome-based	
RNA-Seq	Analysis		
Sooware	Package	



The	General	Approach	to		
De	novo	RNA-Seq	Assembly	
Using	De	Bruijn	Graphs	



Sequence	Assembly	via	De	Bruijn	Graphs	

From	MarNn	&	Wang,	Nat.	Rev.	Genet.	2011	



From	MarNn	&	Wang,	Nat.	Rev.	Genet.	2011	



From	MarNn	&	Wang,	Nat.	Rev.	Genet.	2011	



Contras&ng	Genome	and	Transcriptome	Assembly	

Genome	Assembly	 Transcriptome	Assembly	

•  Uniform	coverage	
•  Single	conNg	per	locus	
•  Double-stranded	

•  ExponenNally	distributed	coverage	levels	
•  MulNple	conNgs	per	locus	(alt	splicing)	
•  Strand-specific	



Trinity	Aggregates	Isolated	Transcript	Graphs	

Genome	Assembly	
Single	Massive	Graph	

Trinity	Transcriptome	Assembly	
Many	Thousands	of	Small	Graphs	

Ideally,	one	graph	per	expressed	gene.	EnNre	chromosomes	represented.	



RNA-Seq	
reads	

Linear	
con&gs	

de-Bruijn	
graphs	

Transcripts	
+	

Isoforms	

Trinity	–	How	it	works:	

Thousands	of	disjoint	graphs	



Inchworm	Algorithm	
Decompose	all	reads	into	overlapping	Kmers	(25-mers)	

Extend	kmer	at	3’	end,	guided	by	coverage.	
G	

A	

T	

C	

IdenNfy	seed	kmer	as	most	abundant	Kmer,	ignoring	low-complexity	kmers.	

GATTACA	
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GATTACA	
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Inchworm	Algorithm	

Remove	assembled	kmers	from	catalog,	then	repeat	the	enNre	process.	

Report	conNg:						….AAGATTACAGA….		



Inchworm	ConNgs	from	Alt-Spliced	Transcripts	

Isoform	A	

Isoform	B	

Expressed	isoforms	



Inchworm	ConNgs	from	Alt-Spliced	Transcripts	

Isoform	A	

Isoform	B	

Graphical	
representaNon	

Expressed	isoforms	
(low)	
(high)	

Expression	



Inchworm	ConNgs	from	Alt-Spliced	Transcripts	



Inchworm	ConNgs	from	Alt-Spliced	Transcripts	

+	 No	k-mers	
in	common	



Inchworm	ConNgs	from	Alt-Spliced	Transcripts	

+	



Chrysalis	Re-groups	Related	Inchworm	ConNgs	

+	

Chrysalis	uses	(k-1)	overlaps	and	read	
support	to	link	related	Inchworm	conNgs	



Chrysalis	

Integrate	isoforms	
via	k-1	overlaps	 Build	de	Bruijn	Graphs	

(ideally,	one	per	gene)	



Thousands	of	Chrysalis	Clusters	



(isoforms	and	paralogs)	



BuZerfly	Example	1:		
ReconstrucNon	of	AlternaNvely	Spliced	Transcripts	

BuZerfly’s	Compacted	
Sequence	Graph	

Reconstructed	Transcripts	

Aligned	to	Mouse	Genome	
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ReconstrucNon	of	AlternaNvely	Spliced	Transcripts	

BuZerfly’s	Compacted	
Sequence	Graph	

Reconstructed	Transcripts	

Aligned	to	Mouse	Genome	

(Reference	structure)	



Teasing	Apart	Transcripts	of	Paralogous	Genes	
Ap2a1	 Ap2a2	

BuZerfly	Example	2:	



Teasing	Apart	Transcripts	of	Paralogous	Genes	
Ap2a1	 Ap2a2	



Strand-specific	RNA-Seq	is	Preferred	
ComputaNonally:	fewer	confounding	graph	structures	in	de	novo	assembly:	
																ex.		Forward	!=	reverse	complement		

																					(GGAA	!=	TTCC)	
Biologically:	separate	sense	vs.	anNsense	transcripNon	
	



dUTP	2nd	Strand	Method:		Our	Favorite	

Modified	from	Parkhomchuk	et	al.	(2009)	Nucleic	Acids	Res.	37:e123	

RNA	

PCR	and	paired-end	sequencing	

Adaptor	liga&on	

U	 UU	U	 UU	U	

U	 UU	U	 UU	U	

USER™		
(Uracil-Specific	Excision	Reagent)	Remove	“U”s	

Second-strand	synthesis	with	dTTP	à	dUTP	

U	 UU	U	 UU	U	

First-strand	synthesis	with	normal	dNTPs	
cDNA	

Slide	courtesy	of	Joshua	Levin,	Broad	InsNtute.	



Overlapping	UTRs	from	Opposite	Strands	

Schizosacharomyces	pombe	
(fission	yeast)	



AnNsense-dominated	TranscripNon	



Trinity	output:	A	mulN-fasta	file	





Evalua&ng	the	quality	of	your	transcriptome	assembly	

•  Read	representaNon	by	assembly	
•  Full-length	transcript	reconstrucNon	
•  ConNg	N50	leveraging	expression	data	(ExN50)	
•  Detonate	



Evalua&ng	the	quality	of	your	transcriptome	assembly	

Read	representa8on	by	assembly	

Align	reads	to	the	assembled	transcripts	using	BowNe.	
A	typical	‘good’	assembly	has	~80	%	reads	mapping	to	the	assembly	
and	~80%	are	properly	paired.	

Proper	pairs	

Given	read	pair:		 Possible	mapping	contexts	in	the	Trinity	assembly	are	reported:	

Improper	pairs	 Leo	only	 Right	only	



%		samtools	tview		alignments.bam		target.fasta	

Assembled	transcript	con&g	is	only	as	good	as	its	read	support.	



IGV	



Can	Examine	Transcript	Read	Support	Using	IGV	



Can	align	Trinity	transcripts	to	genome	scaffolds	to	examine	intron/exon	structures	
(Trinity	transcripts	aligned	to	the	genome	using	GMAP)	



Evalua&ng	the	quality	of	your	transcriptome	assembly	
Full-length	Transcript	Detec8on	via	BLASTX	

M	 *	 Known	protein	(SWISSPROT)	

Trinity	transcript	

Haas	et	al.	Nat.	Protoc.	2013	*	Mouse	transcriptome	

Have	you	
sequenced	
deeply	
enough?	



The	ConNg	N50	staNsNc	

“At	least	half	of	assembled	bases	are	in	conNgs	
that	are	at	least	N50	bases	in	length”	

In	genome	assemblies	–	used	ooen	to	judge	‘which	assembly	is	beZer’	

In	transcriptome	assemblies	–	N50	is	not	very	useful.	
•  	Overzealous	isoform	annotaNon	for	long	transcripts	drives	

higher	N50	
•  Very	sensiNve	reconstrucNon	for	short	lowly	expressed	

transcripts	drives	lower	N50	



Expression	

Ojen,	most	assembled	transcripts	are	*very*	lowly	expressed	
(How	many	‘transcripts	&	genes’	are	there	really?)	

20k	transcripts	

CumulaNve	
#	of		

Transcripts	

1.4	million	Trinity		
transcript	conNgs	
N50	~	500	bases	

*	Salamander	transcriptome	

-1	*	minimum	TPM		



•  Sort	conNgs	by	expression	value,	descendingly.	
•  Compute	N50	given	minimum	%	total	expression	data	thresholds	=>		ExN50	

N50=3457,	
and	

24K	transcripts	

Compute	N50	Based	on	the	Top-most	Highly	Expressed	Transcripts	(ExN50)	

90%	of		
expression	data	



ExN50	Profiles	for	Different	Trinity	Assemblies	Using	Different	Read	Depths	

Note	shio	in	ExN50	profiles	as	you	assemble	more	and	more	reads.	

*	Candida	transcriptome	

Thousands	of		
Reads	

Millions	of	Reads	



	“RSEM-EVAL	[sic]	uses	a	novel	probabilisNc	model-based	method	to	compute	
the	joint	probability	of	both	an	assembly	and	the	RNA-Seq	data	as	an	
evaluaNon	score.”	

Li	et	al.	Evalua&on	of	de	novo	transcriptome	assemblies	from	RNA-Seq	data,	Genome	Biology	2014	

Detonate	Sojware	
Re

f	G
en

om
e	
–b

as
ed

	m
et
ric

	

RSEM-EVAL	Genome-free	metric	



Abundance	EsNmaNon	
(Aka.	CompuNng	Expression	Values)	



Slide	courtesy	of	Cole	Trapnell	
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Slide	courtesy	of	Cole	Trapnell	
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Normalized	Expression	Values	
	
•  Transcript-mapped	read	counts	are	
normalized	for	both	length	of	the	transcript	
and	total	depth	of	sequencing.	

•  Reported	as:	Number	of	RNA-Seq	Fragments		
				Per	Kilobase	of	transcript	
												per	total	Million	fragments	mapped	

FPKM	
RPKM	(reads	per	kb	per	M)	used	with	Single-end	RNA-Seq	reads	
FPKM	used	with	Paired-end	RNA-Seq	reads.	



Transcripts	per	Million	(TPM)	

iTPM = iFPKM
FPKM
j∑

*1e6

Preferred	metric	for	measuring	expression	
•  BeZer	reflects	transcript	concentraNon	in	the	sample.	
•  Nicely	sums	to	1	million	

TPM	

FPKM	

Linear	relaNonship	between	TPM	and	
FPKM	values.	

Both	are	valid	metrics,	but	best	to	be	consistent.	



MulNply-mapped	Reads	Confound	
Abundance	EsNmaNon	

Blue	=	mulNply-mapped	reads	
Red,	Yellow	=	uniquely-mapped	reads	

Isoform	A	

Isoform	B	

	EM					



MulNply-mapped	Reads	Confound	
Abundance	EsNmaNon	

Blue	=	mulNply-mapped	reads	
Red,	Yellow	=	uniquely-mapped	reads	

Isoform	A	

Isoform	B	

	EM					

Use	ExpectaNon	MaximizaNon	(EM)	to	find	the	
most	likely	assignment	of	reads	to	transcripts.	
	
Performed	by:		
•  Cufflinks	and	Cuffdiff	(Tuxedo)	
•  RSEM	
•  eXpress	

New	fast	alignment-free	methods	
now	available!		eg.	Kallisto	



Comparing	RNA-Seq	Samples	

Some	Cross-sample	NormalizaNon	May	Be	Required	



Why	cross-sample	normalizaNon	is	important	
Absolute	RNA	

quanNNes	per	cell	

eg.	Some	housekeeping	gene’s	expression	level:	

TP
M
	

L	 K	

Measured	relaNve	
abundance	via	

RNA-Seq	

TP
M
	

L	 K	

Cross-sample	
normalized	

(rescaled)	relaNve	
abundance	

TP
M
	

L	 K	



Cross-sample	NormalizaNon	Required	
Otherwise,	housekeeping	genes	look	diff	expressed		

due	to	sample	composiNon	differences	
Subset	of	genes	
highly	expressed	
in	liver	

Technical	
	replicates	

Liver	-	kidney	

Robinson	and	Oshlack,	Genome	Biology,	2010	



Normaliza&on	methods	for	Illumina	high-throughput	RNA	
sequencing	data	analysis.	

From	“A	comprehensive	evaluaNon	of	normalizaNon	methods	for	Illumina	high	
throughput	RNA	sequencing	data	analysis”	Brief	Bioinform.	2013	Nov;14(6):671-83	

hZp://www.ncbi.nlm.nih.gov/pubmed/22988256	



DifferenNal	Expression	Analysis	
Using	RNA-Seq	



Diff.	Expression	Analysis	Involves	
•  CounNng	reads	
•  StaNsNcal	significance	tesNng	

Gene	A	

Sample_A	 Sample_B	

Gene	B	

Fold_Change	 Significant?	

1	 2	 2-fold	

100	 200	 2-fold	

No	

Yes	



Observed	RNA-Seq	Counts	Result	from	Random	
Sampling	of	the	PopulaNon	of	Reads	

Technical	variaNon	in	RNA-Seq	counts	per	feature	is		
well	modeled	by	the	Poisson	distribuNon	

(observed	read	counts)	

Mean	#	fragments	

See:	hZp://en.wikipedia.org/wiki/Poisson_distribuNon	



Example:	One	gene*not*	differenNally	expressed	
SampleA(gene)	=	SampleB(gene)	=	4	reads	

(k)	number	of	reads	observed	

de
ns
ity

	

Distribu&on	of	observed	counts	for	single	gene	
(under	Poisson	model)	

x	=	log2(SampleA/SampleB)	

de
ns
ity

	

same	

2-fold	diff	

4-fold	diff	

Dist.	of	log2(fold	change)	values	

SampleA(geneX)	
SampleB(geneX)	



Beware	of	concluding	fold	change	
from	small	numbers	of	counts	

From:	hZp://gkno2.tumblr.com/post/24629975632/thinking-about-rna-seq-experimental-design-for	

Poisson	distribuNons	for	counts	based	on	2-fold	expression	differences	

No	confidence	in	2-fold	
difference.	Likely	
observed	by	chance.	

High	confidence	in	2-fold	
difference.	Unlikely	
observed	by	chance.	

Observed	Read	Count	(k)	

P(x=k)	



More	Counts	=	More	StaNsNcal	Power	

SampleA	

Example:		5000	total	reads	per	sample.	

Sample	B	

geneA	 1	 2	

Fisher’s	Exact	Test	
(P-value)	

geneB	 10	 20	

1.00	

0.098	

100	 200	 <	0.001	geneC	

Observed	2-fold	differences	in	read	counts.	



Tools	for	DE	analysis	with	RNA-Seq	

See:	hZp://www.biomedcentral.com/1471-2105/14/91	

edgeR	
ShrinkSeq	
DESeq	
baySeq	
Vsf	
Limma/Voom	
mmdiff	
cuffdiff	

ROTS	
TSPM	
DESeq2	
EBSeq	
NBPSeq	
SAMseq	
NoiSeq	

(italicized	not	in	R/Bioconductor		
but	stand-alone)	



VisualizaNon	of	DE	results	
and	Expression	Profiling	



Volcano	plot	
(	fold	change	vs.	significance)	

MA	plot	
(abundance	vs.	fold	change)	

Significantly	differently	expressed	transcripts	have	FDR	<=	0.001	
(shown	in	red)	

Plo�ng	Pairwise	DifferenNal	Expression	Data	

Log2	Average	Expression	level	(M	of	MA)	Log2	(fold	change)	
Lo
g 2
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ol
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Comparing	MulNple	Samples	

Heatmaps	provide	an	effecNve	tool	
for	navigaNng	differenNal	expression	across	
mulNple	samples.	
	
Clustering	can	be	performed	across	both	axes:	

	-cluster	transcripts	with	similar	expression	
	paZers.	
	-cluster	samples	according	to	similar	
	expression	values	among	transcripts.	
		



Examining	PaZerns	of	Expression	Across	Samples	
Can	extract	clusters	of	transcripts	and	examine	them	separately.	



FuncNonal	AnnotaNon	of	Transcripts	



hpp://trinotate.sf.net	

GO-Seq	



Trinotate	Web	for	Interac&ve	Analysis	



Deciphering	the	Cell	Circuitry		
of	Limb	RegeneraNon	Via		

Single	Cell	Transcriptome	Studies	

Work	done	in	collaboraNon	with	
	Jessica	Whited’s	lab			



Axolotl	(Ambystoma	mexicanum)	Transcriptomics	

Axolotl	"water	monster”,	aka	Mexican	
salamander	or	Mexican	walking	fish.	

•  Model	for	vertebrate	studies	of	Nssue	
regeneraNon	

•  Short	generaNon	Nme	

•  Can	fully	regenerate	a	severed	limb	in	just	
weeks.	

•  Genome	esNmated	at	~30	Gb	(not	yet	
sequenced)	



Key	morphological	steps	during	limb	regenera&on	

wound	epidermis	

blastema	

24	hours	 1	week	 1	week	 1	week	 2-3	weeks	



Jessica	Whited,	Mark	Mannucci,	Ari	Haberberg	99	



1.		Building	a	reference	Axolotl	transcriptome	

limb	&ssues	and	select	
other	&ssues	with	
biological	replicates	

1.3	billion	of	
	100	bp	paired-end	
Illumina	reads	



Framework	for	De	novo	Transcriptome	Assembly	and	Analysis	

1.3	Billion		
Total	Reads	

86	Million		
Normalized	Reads	BowNe	&	RSEM	

EdgeR,	
Bioconductor,	
&	Trinity	



0	

200000000	

400000000	

600000000	

800000000	

1E+09	

1.2E+09	

1.4E+09	

Total	PE	
frags	

Normalized	
PE	frags	

In	silico	NormalizaNon	

Trinity	con&gs	
(transcripts)	

1,701,035	

Trinity	components	
(genes)	

1,327,843	

Axolotl	Transcriptome	De	novo	Assembly	Sta&s&cs	
And	Quality	Assessment		

Counts	of	Transcripts	

Min.	length	200	bases	

Percent	of	Non-normalized	Fragments	Mapping	as	Properly	Paired	to	Transcriptome	
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2.  IdenNficaNon	of	Tissue-enriched	Expression	

EdgeR,	min	4-fold	change,	FDR	<=	1e-3	



Arm	(193),	GO:	thick	ascending	limb	development	[8.8e-5]		

Ovaries	(1225)	

Skeletal	Muscle	(539)	

Testes	(4113),	GO:	spermatogenesis	[2.5e-14]		

Blood	Vessel	(939)	
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Heart	(238),		
GO:	vascular	process	in	circulatory	system	[2.6e-3]	

CarNlage	(255),	GO:	collagen	fibril	organizaNon	[4.5e-10]	
Blastema	(202):	limb	morphogenesis	[2.5e-5]	
Bone	(272),	GO:	myeloid	leukocyte	differenNaNon	[2.2e-3]		

Gill	Filament	(765)	

EdgeR,	min	4-fold	change,	FDR	<=	1e-3	

IdenNficaNon	of	Tissue-enriched	Gene	Expression	

FuncLonal	enrichment	using	GO-Seq	



Most	Highly	Expressed	Blastema-enriched	Genes	

CIRBP	(cold-inducible)	RNA-binding	protein	

RABP2	ReNnoic	Acid	Binding	Protein	2	
MFAP2:	Microfibrillar-associated	protein	2		

MKA:	Pleiotrophic	factor-alpha-1		

GPC6:	Glypican	
FBN2:	Fibrillin	
TENA:	Tenascin	
HES1:	transcripNon	factor	
CXG1:	connexin	
RAI4:	cytoskeleton	&	cell-cell	adhesion	

VWDE:	von	Willebrand	factor	D	and	EGF	
KERA:	Keratacan	
K2C6A:	KeraNn,	cytoskeletal	

TWIST:	transcripNon	factor	(pt.	1	of	2)		
TWIST:	transcripNon	factor	(pt.	2	of	2)		

KAZD1:	growth	factor	binding	protein		

Log2(FPKM)	

Regulator	Signaling	 Structure	and	Extracellular	Matrix	Color	key:		



Func&onal	Characteriza&on	of	Blastema-enriched	KAZD1	
RT-PCR	Timecourse	of	KAZD1	Expression	
	 Days	post-amputaNon	

Viral-based	Delivered	Over-expression	of	KAZD1	Leads	to	Regenera&on	Defects	



Summary	of	Key	Points	

•  RNA-Seq	is	a	versaNle	method	for	transcriptome	analysis	
enabling	quanNficaNon	and	novel	transcript	discovery.	

•  Expression	quanNficaNon	is	based	on	sampling	and	counNng	
reads	derived	from	transcripts	

•  Fold	changes	based	on	few	read	counts	lack	staNsNcal	
significance.	

•  Trinity	assembly	and	supported	downstream	computaNonal	
analysis	tools	facilitate	transcriptome	studies.	
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