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Plan 

• Shotgun meta’omics primer 
• Informal survey 
• Meta’omic taxonomic profiling 

• MetaPhlAn(2) 
• Meta’omic functional profiling 

• Broad functional profiling with HUMAnN(2) 
• Targeted functional profiling with ShortBRED 
• Predictive functional profiling with PICRUSt 

• Downstream analyses 
• Resources 
• Tutorials (today and tomorrow) 
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Sequencing as a tool for microbial community 
analysis (amplicon vs. shotgun) 

• 16S rRNA gene 
• Conserved across bacteria 
• (Allows PCR amplification) 

Lyse cells 

Extract & 
fragment DNA 

AGCTAGA 

TTAGCAC ACTAGCA 

CCGATCG 

Sequence 
short DNA 
reads 
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    ACAGCACGGCAT 
           GGCATCATC 
AGCTACAGCACGGCATCATC 

Assemble 
into contigs 
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Relative 

abundance 

• Some regions are variable 
• Permits genus-level ID 

Map reads to  
reference genomes 
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• Amplicon sequencing 
• PCR amplify and seq. specific marker(s) 
• Often the 16S rRNA gene (for bacteria) 

 
• Shotgun sequencing 

• Seq. short, random DNA/RNA fragments 
• Whole metagenome shotgun (WMS) 
• Whole metatranscriptome shotgun 
• Collectively, meta’omic sequencing 

A note on “metagenomics” vocabulary 
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• Where they overlap 
• Strengths 

• Quantifying taxonomic abundance 
• Ecological statistics 
• Taxon-taxon association 
• Taxon-metadata association 

• Challenges 
• Compositional (& noisy) data 
• Difficult distributions 
• Biases from sequencing 

Sequencing as a tool for microbial community 
analysis (amplicon vs. shotgun) 



6 

• Properties of shotgun meta’omic sequencing 
• Strengths 

• Taxonomic resolution (species, strains) 
• Functional genomics (genes, transcripts) 
• Comparative genomics 

• Challenges 
• More expensive per sample 
• Data are bigger, compute more intensive 
• Need a good reference 
• Contamination 

Sequencing as a tool for microbial community 
analysis (amplicon vs. shotgun) 
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• 16S data? 
• shotgun data? 
• metatranscriptomes? 
• human vs. environmental samples? 
• metagenomic assemblies? 

Survey: who has/plans to work with… 
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Compare to 
reference 

The universal meta’omics workflow 

Raw 
Reads 

Quality  
Control 

Good 
Reads 
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Trends Writing Paper 

We develop computational methods in these areas 

Today we’ll be focusing on this subset 
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• Trim low-quality bases from read ends 
• http://www.usadellab.org/cms/?page=trimmomatic 

• Drop short reads 
• Remove contaminant sequences 

• E.g. human genome, EST database 

• Remove low-complexity sequences (?) 
• Enforce end-pairing (?) 

• Not required for bioBakery tools 

• Integrated workflow coming soon! 
• https://bitbucket.org/biobakery/kneaddata 

Meta’omic quality control 
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Meta’omics seeks to answer 
two big questions… 

Who is there? 
(taxonomic profiling) 

What are they doing? 
(functional profiling) 



The NIH Human Microbiome Project (HMP): 
A comprehensive microbial survey  

• What is a “normal” human microbiome? 

• 300 healthy human subjects 

• Multiple body sites 

• 15 male, 18 female 

• Multiple visits 

• Clinical metadata 

Slide by Dirk Gevers 

www.hmpdacc.org 
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Profiling microbial communities and ecology 
at species-level resolution (HMP) 

Skin (nares) 

Oral (plaque) 
Oral (cheek) 
Oral (tongue) 

Gut (stool) 

Vaginal (fornix) 
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Gut 

Vaginal 

Profiling microbial communities and ecology 
at species-level resolution 

Arumugam Nature 2012 
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Are there discrete “types” of typical human 
microbiomes? 
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Bacteroides % 

 Prevotella 

Dan Littman 
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MetaPhlAn(2) 
For meta’omic taxonomic profiling 
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RepoPhlAn ChocoPhlAn (http://metaref.org) 

NCBI isolate  
genomes 

Archaea 300 
Bacteria 12,926 
Viruses 3,565 
Eukaryota 112 

protein- 
coding genes 

49.0 million  
total genes 

Species 
pangenomes 

7,677 
containing 

18.6 million 
gene clusters 

Core 
genes 

Marker 
genes 

Comprehensive pangenome reference db 

Nicola 

Segata 
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Nicola 

Segata 
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Nicola 

Segata 
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MetaPhlAn overview 

Gene A 

A is a core gene for clade Y A is a unique marker gene for clade Y 
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Species Classes 

(Validation on high-complexity uniformly distributed synthetic metagenomes.) 

Evaluation of MetaPhlAn accuracy 
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>50 times faster than 
earlier methods 

450 reads/sec 
(BLAST) 

Up to 25,000 reads/sec 
(bowtie2) 

Multi-threaded 

Easily parallelizable 

Evaluation of MetaPhlAn performance 
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MetaPhlAn 2.0 

 MetaPhlAn 1.0 focused on bacteria and archaea 

 v2.0 adds support for eukaryotes and viruses 

 ... along with many more bacteria and archaea 

 v2.0 supports profiling at the strain level 

https://bitbucket.org/biobakery/metaphlan2 
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MetaPhlAn2: synthetic evaluation 

https://bitbucket.org/biobakery/metaphlan2 
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MetaPhlAn2: Results for HMP Skin 

https://bitbucket.org/biobakery/metaphlan2 
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MetaPhlAn in action: strain profiling 

• In practice, not all markers are present 
• Individual-specific marker “barcodes” 
• Often very stable over time 
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Meta’omics seeks to answer 
two big questions… 

Who is there? 
(taxonomic profiling) 

What are they doing? 
(functional profiling) 
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(What we mean by “function”) 
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Metagenomic analyses: 
gene calling and proxygenes 

Extrinsic gene calling: 

BLAST etc. (proxygenes) 

Intrinsic gene calling: 

ORF detection from seq. 

Dalevi, 2009 

Krause, 2006 

Yooseph, 2008 

MetaGene: Noguchi, 2006 

HMM models 

BLAST 

Orphelia: Hoff, 2009 
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Metagenomic analyses: 
molecular functions and biological roles 

Orthology: 
Grouping genes by conserved 

sequence features 
COG, KO, FIGfam… 

Structure: 
Grouping genes by similar 

protein domains 
Pfam, TIGRfam, SMART, EC… 

Biological roles: 
Grouping genes by pathway 

and process involvement 
GO, KEGG, MetaCyc, SEED… 

Turnbaugh, 2009 

DeLong, 2006 

Warnecke, 2007 
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Niche specialization in  
human microbiome function 

Metabolic modules in the 

KEGG functional catalog 

enriched at one or more 

body habitats 

LEfSe: 
LDA Effect Size 

Nonparametric test for microbial and 

metagenomic biomarkers 

http://huttenhower.sph.harvard.edu/lefse 

• Most processes are “core”: <10% are differentially present/absent even by body site 

• Contrast zero microbes meeting this threshold! 

• Most processes are habitat-adapted: >66% are differentially abundant by body site 

http://huttenhower.sph.harvard.edu/lefse
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“Who’s there,” versus, “What they’re doing,” 
in the healthy human microbiome 
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http://hmpdacc.org/HMMRC 
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Which functions of the gut microbiome 
are disrupted by IBD? 

• Over six times as many microbial metabolic 

processes disrupted in IBD as microbes. 
– If there’s a transit strike, everyone working for the MBTA is 

disrupted, not everyone named Smith or Jones. 

– Phylogenetic distribution of function is consistent but diffuse 
 

• During IBD, microbes... 

• Creating most amino acids 

• Degrading complex carbs. 

• Producing short-chain fatty acids 

• Taking up more host products 

• Dodging the immune system 

• Adhering to and invading host cells 

Stop Start 
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Integrated functional meta’omics 
(Examining community DNA & RNA) 

Franzosa et al. PNAS 11:E2329-38 (2014) 

Functional metagenomics & metatranscriptomics  
of 8 heathy human stool samples 
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HUMAnN(2) 
For broad meta’omic functional profiling 
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HUMAnN 
HMP Unified Metabolic Analysis Network 

Short reads + protein families 

Translated BLAST search 

Repeat for each metagenomic 
or metatranscriptomic sample 

A1 A2 A3 B1 B2 C1 C2 C3 

Weight hits by significance 

Sum over families 

Adjust for sequence length 

https://huttenhower.sph.harvard.edu/humann 
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? 

HUMAnN 
HMP Unified Metabolic Analysis Network 

Millions of hits are collapsed into 
thousands of gene families 
(still a large number) 

• Map genes to pathways 

• Use MinPath (Ye 2009) to find simplest 
pathway explanation for observed genes 

• Remove pathways unlikely to be present 
due to low organismal abundance 

• Smooth/fill gaps 

Collapsing gene family abundance into 
pathway abundance (or presence/absence) 
yields a smaller, more tractable feature set 

https://huttenhower.sph.harvard.edu/humann 
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HUMAnN accuracy 

Validated against synthetic metagenome samples 
(similar to MetaPhlAn validation) 

Gene family abundance and pathway presence/absence 
calls beat naïve best-BLAST-hit strategy 

https://huttenhower.sph.harvard.edu/humann 
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HUMAnN 2.0 

 Avoid translated search where possible 

 Speed up translated search with ORF-picking 

 Stratify community-wide function by organism 

 Focus on open gene family & pathway systems 

 https://bitbucket.org/biobakery/humann2 



39 

X X X Y 

Sh
o

rt
 R

ea
d

s 

Y X Y Y 

A B C 

A B C 

Reference Genomes 

Faster functional profiling by avoiding 
translated search 
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Faster functional profiling by avoiding 
translated search 
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HUMAnN 2.0 overview IV II V 

III II V 

(DIAMOND) 

https://huttenhower.sph.harvard.edu/humann2 
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HUMAnN2 accuracy 
(1M read mock stool metagenome) 

• 20 common gut bugs (even) 
• 1M 100-nt reads 
• Computed expected 

UniRef50 abundances from  
genome annotations 

• Ran reads through HUMAnN2 
• Compared expected and 

observed profiles 

• Strong agreement, even for 
closely related species 
(e.g. Bacteroides) 

https://huttenhower.sph.harvard.edu/humann2 
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HUMAnN2 performance 
(1M read mock stool metagenome) 

MetaPhlAn2 
Prescreen 

Pangenome 
Search 

Translated 
Search 

Total 

Normal  
Flow 

0.5  
cpu-hours 

0.7  
cpu-hours  

(86% reads) 

1.7  
cpu-hours 

(14% reads) 

2.9  
cpu-hours 

Translated 
Search  

Only 

 
NA 

 
NA 

12.1  
cpu-hours 

12.1  
cpu-hours 

https://huttenhower.sph.harvard.edu/humann2 
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HUMAnN2: Example combining DNA- & RNA-
seq from 8 healthy gut microbiomes 

• Dot = functional contribution of one species 
• Ribosomal & peptidoglycan transcription correlate 
• Ribosome biosyn. generally “over-transcribed” 
• Peptidoglycan biosyn. generally “under-transcribed” 
• Not a paradox, it’s consistent with the biology 

https://huttenhower.sph.harvard.edu/humann2 
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HUMAnN2: Glycolytic processes performed by 
different species in Finns and Russians 

https://huttenhower.sph.harvard.edu/humann2 
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ShortBRED 
For targeted meta’omic  

functional profiling 
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The problem with short reads and regions of 
local homology among proteins 

• Protein of interest 
• Belongs to a family 
• Local homology to 

unrelated families 
• Short reads from 

unrelated families may 
map to protein of 
interest (spurious hits) 

https://huttenhower.sph.harvard.edu/shortbred 
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ShortBRED Identify 
Find unique markers for interesting prots 

Prots of 

interest 
Reference 

database 

True Marker Junction Marker Quasi Marker 

Cluster into 

families 
Identify short, 

common regions 

Jim 

Kaminski 

https://huttenhower.sph.harvard.edu/shortbred 
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ShortBRED Quantify 
Use markers for highly specific profiling 

Metagenome 

reads ShortBRED 

markers 

Translated search for 

high ID hits 

Normalize 

 relative 

abundances 

Jim 

Kaminski 

https://huttenhower.sph.harvard.edu/shortbred 
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ShortBRED Synthetic Evaluation (ABR genes) 

Relative to mapping reads against full-length centroids, we are: 
> Substantially more accurate (fewer false positives) 
> Faster (reduced search space) 

https://huttenhower.sph.harvard.edu/shortbred 
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ShortBRED: ABR in human gut metagenomes 

https://huttenhower.sph.harvard.edu/shortbred 
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PICRUSt 
For predictive functional profiling 
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PICRUSt: Inferring community metagenomic potential from 
marker gene sequencing 

Relative abundance 

Seq. genomes 

Reconstructed 
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Orthologous 
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Pathways 
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Gene families in one 

HMP hard palate sample HMP stool sample 

With Rob Knight, Rob Beiko 

One can recover general 

community function with 

reasonable accuracy from 

16S profiles. 

 
http://picrust.github.com 
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Meta’omics seeks to answer 
two big questions… 

Who is there? 

What are they doing? 



56 

Meta’omics seeks to answer 
two three big questions… 

Who is there? 

What are they doing? 

What does it all mean? 
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• Compositional nature (Σ = 1) 
• Abundance is relative, not absolute 

• High dynamic range  
• Often sparse (sample dominated by a few species) 
• Noisy 
• Hierarchical organization 

Properties of microbiome data 
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• General problem: correlate microbiome features with 
metadata (potentially controlling for other features) 

• Intuitively summarize the results 

Properties of microbiome data 
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MaAsLin 
Multivariate Association with Linear Models 

• A more general solution for finding significant metagenomic 
associations in metadata-rich studies 

Tim 
Tickle 
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Microbiome downstream analyses: 
interaction network reconstruction 

Mutualism Predation 
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Samples 

Competition 

Given microbial relative abundance measurements over many samples, 

can we detect co-occurrence and co-exclusion relationships? 

It’s a jungle in there – 

microbial interactions follow 

patterns from classical 

macro-ecology. 



61 

Absolute (cell) counts 
No bug1-bug2 correlation 

Relative abundance 
Spurious bug1-bug2 correlation 

(sequencing yields rel. ab.) 

Relative abundance data poses a problem for 
correlating metagenomic features 
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CCREPE: Compositionality Corrected by 
REnormalization and PErmutation 

Estimating the null distribution 

Estimating a confidence interval 

Emma 
Schwager 
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CCREPE: Compositionality Corrected by 
REnormalization and PErmutation 

• Synthetic evaluation 
• Random sample feature/tables 
• No built-in correlation structure 
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CCREPE: Compositionality Corrected by 
REnormalization and PErmutation 

“Microbial co-occurrence relationships in the human microbiome.” 
Faust, et al. PLoS Comp Biol, 8:e1002606 (2012). 
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The three big questions… 

Who is there? 

What are they doing? 

What does it all mean? 
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Resources 
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http://huttenhower.sph.harvard.edu/galaxy 

Using tools through Galaxy 

http://huttenhower.sph.harvard.edu/galaxy
http://huttenhower.sph.harvard.edu/galaxy
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Tutorials available online 

http://huttenhower.sph.harvard.edu/biobakery 
(click on your tool-of-interest) 

http://huttenhower.sph.harvard.edu/biobakery
http://huttenhower.sph.harvard.edu/biobakery


69 

All tools are open source 

http://bitbucket.org/biobakery/biobakery 

http://bitbucket.org/biobakery/biobakery
http://bitbucket.org/biobakery/biobakery
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The bioBakery Virtual Machine 
https://bitbucket.org/biobakery/biobakery/wiki/biobakery_wiki 

Ubuntu base image preloaded and configured to run all 
Huttenhower lab tools; one click up-and-running via Vagrant 

https://bitbucket.org/biobakery/biobakery/wiki/biobakery_wiki
https://bitbucket.org/biobakery/biobakery/wiki/biobakery_wiki
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Ramnik Xavier 

Harry Sokol 

Dan Knights 

Moran Yassour 

Human Microbiome Project 
Owen White 

Joe Petrosino 

George Weinstock 

Karen Nelson 

Lita Proctor Dirk Gevers 

Kat Huang 
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Doyle Ward Ashlee Earl 

http://huttenhower.sph.harvard.edu 
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