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A tutorial  on how to use BayeScan & BayeScenv 
 

Running BayeScan 
 
The method has been implemented in C++ and there are command-line versions for 
all operating systems (OS X, Lynux, and Windows). There is a GUI version only for 
Windows. Here we will use the command-line version.  
 

 Input Fi le:  
Genetic data: 
The best approach is to prepare files with FSTAT, popgen, or Arlequin format. Then 
use PGDSpider  
http://www.cmpg.unibe.ch/software/PGDSpider/ 
to convert them into GESTE/BayScan format. 
 

Output f i les 
There is a large number of files that can be obtained by running BayeScan. The most 
important ones, which are also the ones printed by default, are: 
*_Verif.txt: you should use this file in order to verify that bayescenv read the input 

files properly.  
*.sel: provide the trace of some of the parameters estimated by the model. This 

include the loglikelihood and the local population Fst’s. This file is used to 
verify convergence of the chain. 

*_fst.txt: this file is used to interpret the results. In other words, identify the outlier 
loci.  

 

Command l ine: 
If you type “./BayeScan2.1_linux64bits”, you get the list of options with a brief 
explanation 

  
 ---------------------------  
 | BayeScan 2.0 usage:     |  
 ---------------------------  
 -help        Prints this help  
 ---------------------------  
 | Input                   |  
 ---------------------------  
 alleles.txt  Name of the genotypes data input file  
 -d discarded Optional input file containing list of loci to discard 
 -snp         Use SNP genotypes matrix 
 ---------------------------  
 | Output                  |  
 ---------------------------  
 -od          Output file directory, default is the same as program file 
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 -o alleles   Output file prefix, default is input file without the 
extension 

 -fstat       Only estimate F-stats (no selection) 
 -all_trace   Write out MCMC trace also for alpha paremeters (can be a very 

large file) 
 ---------------------------  
 | Parameters of the chain |  
 ---------------------------  
 -threads n   Number of threads used, default is number of cpu available  
 -n 5000      Number of outputted iterations, default is 5000  
 -thin 10     Thinning interval size, default is 10  
 -nbp 20      Number of pilot runs, default is 20  
 -pilot 5000  Length of pilot runs, default is 5000  
 -burn 50000  Burn-in length, default is 50000  
 ---------------------------  
 | Parameters of the model |  
 ---------------------------  
 -pr_odds 10  Prior odds for the neutral model, default is 10  
 -lb_fis 0    Lower bound for uniform prior on Fis (dominant data), default 

is 0 
 -hb_fis 1    Higher bound for uniform prior on Fis (dominant data), 

default is 1 
 -beta_fis    Optional beta prior for Fis (dominant data, m_fis and sd_fis 

need to be set) 
 -m_fis 0.05  Optional mean for beta prior on Fis (dominant data with -

beta_fis) 
 -sd_fis 0.01 Optional std. deviation for beta prior on Fis (dominant data 

with -beta_fis) 
 -aflp_pc 0.1 Threshold for the recessive genotype as a fraction of maximum 

band intensity, default is 0.1 
 ---------------------------  
 | Output files            |  
 ---------------------------  
 -out_pilot   Optional output file for pilot runs 
 -out_freq    Optional output file for allele frequencies 
 
The output files we will use were generated with the following command lines: 
Long run that leads to results that are reliable because convergence of the MCMC 
was achieved. The prior odd is somewhat small (=10) for a dataset of 5000 SNPs so 
the number of false positives is likely to be large unless we use a very stringent FDR 
threshold. 
./BayeScan2.1_macos64bits HsIMM-Us100-2.txt -o bayescanLongRunOD10 -
n 5000 -thin 10 -nbp 20 -pilot 5000 -burn 50000 -pr_odds 10 
 
Long run (convergence of the MCMC was achieved). The prior odd is much larger 
than in the previous case and more appropriate for 5000 SNPs so the number of 
false positives will be smaller. 
./BayeScan2.1_macos64bits HsIMM-Us100-2.txt -o bayescanLongRunOD10 -
n 5000 -thin 10 -nbp 20 -pilot 5000 -burn 50000 -pr_odds 100 
 
A very important parameter of the method is the prior odds (PO) of the neutral 
model, highlighted in red in the above command lines. This parameter indicates our 
skepticism about the possibility that a given locus is under selection. In other words, 
it indicates how much more likely we think the neutral model is (which does not 
include the locus-specific effect α) compared to the model with selection (i.e. with the 
locus-specific effect α). For example a PO = 10 indicates that we think the neutral 
model is 10 times more likely than the model with selection. The larger the PO, the 
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more conservative the test of selection is. In principle, this parameter will not 
influence much the results if we have a large amount of data including many 
populations and many individuals per population. However, very frequently the 
number of populations or sample sizes are limited (e.g. less than 20 populations) so 
we do need to pay attention to this parameter. The PO value that should be used 
depends on how many loci are included in the data set. If there are less than 1000 
loci, then PO = 10 is reasonable but with more loci (say between 1000 and 10000) 
PO = 100 or larger is a better choice. With millions of markers, as it is the case in 
GWAS, values as large as 10000 may be necessary.  
 

Interpreting the results  
After verifying that the chain has converged using the methods described in 
subsection “Evaluating Convergence” (see below), then we can interpret the results. 
For this we focus on the *_fst.txt file, which includes six columns. 
The first column is the SNP index or ID as given in the input file. The next three 
(prob, log10(P0), and qval) are related to the test of local adaptation, and therefore 
the model including the locus specific effect. These include the posterior probability 
for the model including selection, the logarithm of the posterior odds for the model 
with selection, and the q-value for the model with selection. The fifth column gives 
the size of the locus-specific effect (alpha parameter). The last one provides the 
locus-specific FST averaged over all populations.  
In order to decide if a locus is a good candidate for being under the influence of 
selection we use the q_value.  
  
 

Running BayeScenv 
The method has been implemented in C++ and there are both GUI and command-
line versions for all operating systems (OS X, Lynux, and Windows) but here we will 
only use the command-line version, which as opposed to the GUI versions, is exactly 
the same for all operating systems.  
 

Input Fi les:  
Environmental data:  
Text file consisting of a single line with the environmental value corresponding to 
each population. Populations should be ordered as in the genetic input file. 
Environmental values should represent an “environmental distance” between the 
value observed in a local population and some reference value. 
The reference value should represent some sort of “ancestral environmental state”.  
For example, humans colonised high-altitude habitats from the lowlands so the 
obvious reference is 0. 
Very frequently, the mean across all populations is a good reference value. For 
example if one thinks about temperature, each species has an optimal temperature 
range. Thus temperatures above or below the thermal tolerance range could lead to 
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a selective pressure for local adaptation.    
 
Genetic data: 
The best approach is to prepare files with FSTAT, popgen, or Arlequin format. Then 
use PGDSpider  
http://www.cmpg.unibe.ch/software/PGDSpider/ 
to convert them into GESTE/BayScan format, which is the same format used by 
bayescenv. 
 

Output f i les 
There is a large number of files that can be obtained by running bayescenv. The 
most important ones, which are also the ones printed by default, are: 
*_Verif.txt: you should use this file in order to verify that bayescenv read tye input 

files properly.  
*.sel: provide the trace of some of the parameters estimated by the model. This 

include the loglikelihood and the local population Fst’s. This file is used to 
verify convergence of the chain. 

*_fst.txt: this file is used to interpret the results. In other words, identify the outlier 
loci.  

 

Command l ine: 

If you type “./bayescenv”, you get the list of options with a brief explanation 
 
 ---------------------------  
 | BayeScEnv usage:     |  
 ---------------------------  
 -help        Prints this help  
 ---------------------------  
 | Input                   |  
 ---------------------------  
 alleles.txt  Name of the genotypes data input file  
 -d discarded Optional input file containing list of loci to discard 
 -snp         Use SNP genotypes matrix 
 -env env.txt Name of the environmental factors input file 
 ---------------------------  
 | Output                  |  
 ---------------------------  
 -od          Output file directory, default is the same as program file 
 -o alleles   Output file prefix, default is input file without the 

extension 
 -fstat       Only estimate F-stats (no selection) 
 -all_trace   Write out MCMC trace also for alpha and g parameters (can be 

a very large file) 
 ---------------------------  
 | Parameters of the chain |  
 ---------------------------  
 -threads n   Number of threads used, default is number of cpu available  
 -n 5000      Number of outputted iterations, default is 5000  
 -thin 10     Thinning interval size, default is 10  
 -nbp 20      Number of pilot runs, default is 20  
 -pilot 5000  Length of pilot runs, default is 5000  
 -burn 50000  Burn-in length, default is 50000  
 ---------------------------  
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 | Parameters of the model |  
 ---------------------------  
 -upper_g 10   Upper bound for the Uniform prior for parameter g, default 

is 10. 
 -mean_alpha -1 Mean of alpha prior, default is -1 
 -pr_jump 0.1   Prior probability for non neutral models, default is 0.1 
 -pr_pref 0.5 Prior preference for the locus-specific model, default is 

0.5. 
 -lb_fis 0     Lower bound for uniform prior on Fis (dominant data), 

default is 0 
 -hb_fis 1     Higher bound for uniform prior on Fis (dominant data), 

default is 1 
 -beta_fis     Optional beta prior for Fis (dominant data, m_fis and sd_fis 

need to be set) 
 -m_fis 0.05   Optional mean for beta prior on Fis (dominant data with -

beta_fis) 
 -sd_fis 0.01  Optional std. deviation for beta prior on Fis (dominant data 

with -beta_fis) 
 -aflp_pc 0.1  Threshold for the recessive genotype as a fraction of 

maximum band intensity, default is 0.1 
 ---------------------------  
 | Output files            |  
 ---------------------------  
 -out_pilot   Optional output file for pilot runs 
 -out_freq    Optional output file for allele frequencies 
 
The output files we will use were generated with the following command lines: 
 
Long run that lead to results that are reliable because convergence of the MCMC 
was achieved. The prior probabilities used for the RJMCMC are conservative so the 
number of false positives is likely to be low while power may be slightly decreased. 
./bayescenv allelefreqs.txt -env environment.txt -o exampleLongRun -
n 5000 -thin 10 -nbp 20 -pilot 5000 -burn 50000 -pr_jump 0.1 -
pr_pref 0.5 
 
Short run that did not attain convergence and leads to unreliable results 
./bayescenv allelefreqs.txt -env environment.txt -o exampleShortRun 
-n 5000 -thin 10 -nbp 10 -pilot 1000 -burn 1000 -pr_jump 0.1 -
pr_pref 0.5 
 
Long run using non-conservative prior probabilities for the RJMCMC. The results 
may be reliable in the sense that convergence has been reached but also contain 
many false positives. 
./bayescenv allelefreqs.txt -env environment.txt -o exampleLongRun -
n 5000 -thin 10 -nbp 20 -pilot 5000 -burn 50000 -pr_jump 0.5 -
pr_pref 0.5 
 

Interpreting the results  
Once we are confident that the output of bayescenv represents a sample from the 
posterior distributions (i.e. convergence has been reached), then we can interpret the 
results. As it was the case for BayeScan, we focus on the *_fst.txt file, which in this 
case includes seven columns: 
The first three (PEP_g, qval_g, g) are related to the test of local adaptation, and 
therefore the model including the locus specific effect due to the environmental 



 6 

variable. The three following ones are related to the locus-specific effect (alpha 
parameter). The last one provides the locus-specific Fst averaged over all 
populations.  
The effect size of locus specific effects (g and alpha) are given by the third and sixth 
columns respectively. In order to decide if a locus is a good candidate for being 
under the influence of selection we use the q_value for the model including the 
environmental factor (qval_g). However, if there is a need to be very conservative we 
could use the posterior error probability (PEP_g). The interpretation of this test 
statistics is as follows: 
The PEP (Posterior Error Probability) is an estimate of the posterior probability that 
the model including a focal parameter (g or alpha) is incorrect. It can be thought of as 
a local and more conservative version of the FDR. The smaller it is, the more 
confident we can be that it represents a true positive result. 
The q-value is a less conservative test statistic and is directly related to the FDR. It is 
obtained by averaging over the PEPs of all loci that have a lesser PEP than the focal 
locus. As a consequence, the q-values are generally lower (i.e. less conservative) 
than the PEP for all loci (except for the smallest one).  
The choice of statistic to use depends on what you plan to do with the results. PEP 
and q-values are complementary, and useful in different situations. The q-value is 
more appropriate when carrying out a genome scan aimed at identifying potentially 
interesting genomic regions. On the other hand, the PEP is a better choice if what we 
want to do is to obtain support for the hypothesis that a particular gene is under 
selection.  
 

Evaluating convergence 
 
We will use CODA, a R package that implements several convergence tests.  
 
Load the package 
> library(coda) 
 
Read the data. To avoid problems further down the line, remove the first column 
(step number) from the dataset 
> chain<-read.table("HsIMM-Uds100-2Short.sel",header=TRUE) 
> chain<-chain[-c(1)] 
 
Create a MCMC object with the correct thinning interval (in the exercises below is 
10) 
>chain<-mcmc(chain,thin=10) 
 
Always start with a plot. A rough way of verifying convergence is to plot the trace 
and the posterior distribution of some of the parameters 
> plot(chain) 
 
Obtaining summary statistics for the MCMC chain. We can obtain mean, 
standard deviation, naïve standard error of the mean (ignoring autocorrelation of the 
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chain) and time-series standard error (taking into account autocorrelation) as well as 
quantiles of the sample distribution. For this we use the command 
> summary(chain) 
 
Is the sample from the MCMC large enough? An important step is to verify that 
the sample size used to estimate the posteriors is large enough. The effective 
sample size on which the parameter estimates are based can be much smaller than 
the sample size used (in our example 5000) because the MCMC algorithm explore 
the parameter space by moving in small steps. Thus, two consecutive values will be 
strongly correlated, that’s why we use a thinning interval (in our examples is 10 iterations).   
We can check the correlation between sampled parameter values that our thinned chain 
uses for estimation:  
> autocorr.diag(chain) 
 
If there is some correlation then, the effective sample size will be smaller than the 
sample size used as input. We can verify this with the command 
> effectiveSize(chain) 
 
As you will see when doing the exercises, the effective size of the likelihood sample 
is much smaller than the input value (5000) while those of the Fst parameters are 
less affected by the correlation. It is clear why this is the case: the correlation 
decreases much more rapidly for the Fst’s than for the likelihood.  
 
Has the chain converged? Now we can use some more formal approaches for the 
detection of non-convergence.  
A very simple test is Geweke’s convergence diagnostic based on the comparison of 
the means of the first and last parts of a Markov chain. The diagnostic reports the z-
scores for each parameter. For example, with α = 0.05, the critical values of z are -
1.96 and +1.96.  We reject H0 (equality of means => convergence) if z < -1.96 or z > 
+1.96. 
 
> geweke.diag(chain, frac1=0.1, frac2=0.5) 
 
Another popular test is Heidelberg and Welch’s convergence diagnostic, which is 
also based on a single chain: 
 
> heidel.diag(chain, eps=0.1, pvalue=0.05) 
 
It is generally better to run more than one chain and then use tests that compare 
them. One popular test is the Gelman and Rubin’s diagnostic. To use it you need first 
to combine two chains into a single mcmc list: 
 
> combined = mcmc.list(chain1,chain2) 
> plot(combined) 
> gelman.diag(combined) 
> gelman.plot(combined,ask) 
 
The gelman.diag is based on a comparison of between and within chain 
variances. If the chains converged, these two variances should be equal. The output 
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of gelman.diag are the scale reduction factors for each parameter. A factor of 1 
means that between- and within-chain variance are the same; larger values mean 
that they are fairly different, indicating convergence problems. The rule of thumb is 
that values below 1.1 or so are OK but, being a rule of thumb, this is not an 
extremely rigorous criterion.  
 
A very useful graphic representation of this convergence test is given by the 
command gelman.plot, which shows you the trace of the scale-reduction over 
time (chain steps). Thus, it is very useful to see whether a low chain reduction is also 
stable (you will see that sometimes the factors go down and then go up again). More 
importantly it allows us to find out how long the burn-in should be in order to 
eliminate any bias that arises from the starting point of the chain. The length of the 
burn-in depends on both the method and the dataset. Values between 1000-10000 
steps are fairly common and lead to low computational overhead but there are many 
population genetics methods that can require a much longer burn-in (sometimes 
millions of steps).  
 
 



 9 

Exercises 
 
As it is typical of all MCMC methods, bayescenv is computationally intensive and a 
single run can take several hours unless you use a workstation or a cluster with 
many processors. Thus, we won’t be able to generate the output here. Instead, I 
have produced several output files using the command lines provided in the tutorial. 
Nevertheless, you can go ahead and start a short run to see how the run progresses 
for half an hour or so. In the meantime we will work with the output files I produced. 
 
There are output files (in separate folders) for a total of four runs: 
§ Long Run with π = 0.10 and p = 0.5 (longRun-pi01p05) 
§ Short run 1 with π = 0.10 and p = 0.5 (shortRun1) 
§ Short run 2 with π = 0.10 and p = 0.5 (shortRun2) 
§ Long run with π = 0.50 and p = 0.5 (longRun-pi05p05) 

 
All runs were generated using the same input files (also provided -see folder “Data”).  
 
1) Follow the tutorial and verify convergence of Short run 1 and Short run 2. Do the 

same for Long run with π = 0.10 and p = 0.5. Describe the results. 
 

2) Using the results of the two long runs, answer the following questions (hint: you 
have to sort the files using the third column “qval_g”): 
a. How many SNPs can be considered as outliers if the target FDR = 0.01? 
b. How many would there be if we aim for FDR = 0.05? 
c. In both cases (a & b) what is the expected number of false positives for the 

chosen threshold? 
 

3) Compare the results obtained with the two long runs when we choose to allow for 
a FDR = 0.05 (i.e. the proportion of false positives among all positives is 5%). 
Why do they differ? 
 

4) You will find two outputs of BayeScan in the folder “BayeScan”. They correspond 
to runs with prior odds 10 and 100. How many outlier loci do you identify if the 
target FDR is (a) 0.01, (b) 0.001, and (c) 0.0001. Explain how results change 
depending on the prior odds. 
 


