
Simulation with Python (and NumPy)

Page 1 of 2

In this exercise, you will use NumPy to build a general simulator for the Wright-Fisher model
and use matplotlib to plot some simple properties of the evolution. You will simulate N
individuals in your population, and in each generation each individual will reproduce with
probability proportional to its share of the total fitness. So if individual i has fitness si, then each
off spring has probability 𝑠! 𝑠 of descending from individual i.

In a new terminal window, change to the dadiExercise/simulation directory and edit a
new script file: nano wfsim.py. This is where you’ll write your Python script. Open another
terminal window, change to the simulation directory, and start iPython with
ipython --pylab. In the iPython window, you can run your script at any time with %run
wfsim.py. (Be sure to save your script when you change it!) If your script hangs, use ctrl-C
to stop execution.
1. We begin our script by importing Numpy and by defining values for our population size and

simulation time. We’ll start with a very small population and number of generations, for
easier debugging.
import numpy as np
N = 5
generations = 2

We’ll initialize our population with random fitnesses. Add the following line to your script.
pop = np.ones(N) + np.random.uniform(-0.5,0.5,N)

Run your script using %run wfsim.py in the iPython window. Check that pop is a
sequence of random fitnesses, with a reasonable range.

2. Now we begin looping for a number of generations. Our first step in each loop is to calculate
the proportion of the total fitness possessed by each individual.
for gen in range(generations):
 fitnessprops = pop/np.sum(pop)

Run your script. Compare fitnessprops with pop to ensure that the calculation gave
what you expected.

3. Next we need to randomly sample the number of offspring for each individual. This is an
example of multinomial sampling. We’ll be sampling N new individuals, with
fitnessprops being the probability of descent from each individual in the previous
generation. We can use a function built into Numpy for this. So inside your for loop, add:
numoffspring = np.random.multinomial(N, fitnessprops)

Run your script. The numoffspring array should consist of integers, where the ith entry
corresponds to the number of offspring for individual i. Check that the length of this array,
len(numoffspring), and the sum of this array, np.sum(numoffspring), both
equal N.

4. Next, we need to assemble the population for the next generation. To do so, we’ll use a for
loop and zip to simultaneously iterate over pop and numoffspring, so we’ll pull out each
fitness and the number of offspring that carry it. We’ll then assemble the newpop list using
extend commands. (Note that [val]*ii, where val is any value and ii is an integer
will create a list of length ii that consists of repeated val entries.) So inside your for loop,
add the lines:

Page 2 of 2

newpop = []
for fitness, num in zip(pop, numoffspring):
 newpop.extend([fitness]*num)

Run your script. Check that newpop is a list of length N whose elements came from pop.

5. Before we can go back to the top of the loop, we’ll need to replace pop with newpop. We’ll
also need to convert newpop into a numpy array so it can feed into the arithmetic line we
have at the top of the loop. To do this, add the line below to the end of your outer for loop.
(Be careful that indentation matches your outer loop, not the inner loop.)
pop = np.array(newpop)

Run your script. Ensure it doesn’t crash with an error.
6. We have a running simulation now, but we’re losing all the intermediate results. Let’s save

them. Before your outer for loop, add the line history=[pop] to create a list that starts
off holding the initial population data. Inside, but at the end of your loop over generations,
append the newly created pop to that history as well.
history.append(pop)

Run your script. Check that history has length 3 and that each element is a different array of
fitnesses.

7. Next, we’ll calculate some statistics about the fitness history of the population. In particular,
we’ll calculate the mean and standard deviation of the fitness over the generations. To do so,
add these lines to the end of your script.
mean_fitness = np.mean(history, axis=1)
std_fitness = np.std(history, axis=1)
The axis=1 arguments tell Numpy that we want to take the mean for each row in history,
treating it as a 2D array, so we’ll have the mean fitness versus time.

Run your script. Check that mean_fitness and std_fitness have length 3. Also
check that their values make sense when compared with your history.

8. Lastly, we’ll use matplotlib to plot our results. We’ll create a figure with two subplots, one
for mean and one for standard deviation.
import matplotlib.pyplot as plt
fig = plt.figure(5, figsize=(3,5))
fig.clear()
plt.subplot(2,1,1)
plt.plot(mean_fitness, '-o')
plt.ylabel('mean fitness')
plt.subplot(2,1,2)
plt.plot(std_fitness, '-o')
plt.ylabel('std. dev. Fitness')
plt.xlabel('generation')
plt.tight_layout()
plt.show()

Edit your script to set N=100 and generations=100. Run it several times. What
generally happens to the mean and standard deviation of fitness? Does mean fitness always
increase monotonically?

