
 1

Analysis of high-throughput sequence
data with the R language – a
compilation of useful commands

Daniel Berner, Zoological Institute, University of Basel
January 2016

The commands include both standard R commands you might already know from
analyses with R in non-genetic contexts, and commands specific to
R/Bioconductor packages tailored to high-throughput DNA sequence data analysis.
In addition, you can find SAMtools commands at the end of the file that will allow
you to convert alignments in SAM format (as produced by aligner software like
Novoalign, Bowtie etc.) to BAM format, which can be imported into R.

General info:

Download R: http://www.r-project.org/

Download Bioconductor packages: http://www.bioconductor.org/

Mailing lists for discussing problems: http://www.bioconductor.org/help/mailing-list/

A tutorial giving an overview of various Bioconductor applications:
http://manuals.bioinformatics.ucr.edu/home/ht-seq

SAMtools: http://samtools.sourceforge.net/

Standard R commands (alphabetically):

The hash says that what follows is not interpreted by R; useful for annotation

/ Make sure you use forward slashes when specifying file paths

<- R’s assignment symbol for creating objects

[] Square brackets immediately following an expression allow accessing specific
elements of an object (e.g. a<-c(5,7,1); a[2] is 7)

$ Extract a part of an object, matching by name (e.g. a column from a data frame)

: Operator generating sequences (e.g. 5:8 is 5, 6, 7, 8)

 2

agrep(pattern, X, max.distance=list(all=1, insertions=0,
deletions=0, substitutions=1)) Approximate pattern search.
returns the indices of the elements of X that match the search pattern while
allowing for a level of mismatch defined by the max.distance= argument. See
also grep() below

as.character() Converts on object to character string(s). useful to access
DNAString or DNAStringSet objects, see below. as.numeric() and
as.integer() work analogously

c() Combines elements to form a vector (e.g. a<-c(1,4,12))

cbind(X,Y) combines vectors and/or matrices by column (see rbind())

dim() Returns the dimension (number of rows and columns) of an object

for(i in 1:N){} Construct a control-flow that loops from 1 to N

grep(pattern, X, invert=FALSE) Pattern search. returns the indices of
the elements of X that match the search pattern. invert=TRUE reports the
elements NOT matching the pattern. note that ‘^’ and ‘$’ should be used if the
match should be exact at the start and at the end. See also agrep() above

help("subset") If the syntax of a command (here subset()) is unclear,
use help() to call the html description file

if(condition) {action} Control-flow operator specifying an action
conditional on a test criterion

ifelse(condition, action, alternative) Control-flow operator
specifying an action and an alternative, conditional on a test criterion

length() Returns the number of elements in an object. e.g. a<-c("C","y");
length(a) is 2

library(Biostrings) Load an R package (here the Bioconductor
package Biostrings)

merge(X, Y, by=) Join two data frames by common column or row names

names() Returns the names of an object (e.g. the names of the columns of a
data frame)

paste(X,Y,sep="") Concatenates characters or vectors to character strings,
with a specific separator (including none). e.g. paste("/path/",
"filename", ".fastq", sep="")

plot() R’s general graphing command

read.table("/path/file.txt", header=T, sep="\t") Read a file
into R

rbind() Combines vectors and/or matrices by row (see cbind())

 3

rm() Remove an R object; rm(list=ls()) completely empties your work
space

sapply(X,fun) Applies a function to each element of vector X (e.g. fun<-
function(z) {z+5}; a<-c(1,4,12); sapply(a,fun) is 6,9,17)

sort(X, decreasing=TRUE) Sort elements of a vector (see also order())

subset(X, X[,1]=="blabla", select=) Extracts a row-subset of a
matrix according to the specified level of a factor column of the matrix. select=
allows specifying the columns to extract

table() Generates a contingency table with counts for factor levels

unique() Returns the unique elements of an object. e.g. a<-
c(2,6,2,1,1,6); unique(a) is 2,6,1

which(X==pattern) Returns the indices of the elements of X exactly
matching the search pattern. Much faster than grep()

write.table(X, file="/path/file.txt") Write R object to text file

Commands specific to the packages ShortRead, Biostrings, and Rsamtools
(alphabetically):

clean() Removes all those reads from a ShortRead object that contain one or
more non-A,T,G,C bases

complement() Complements a sequence (e.g. a<-DNAString("AAGGC");
complement(a) is TTCCG)

DNAString("ATCG") Allows efficient storage and manipulation of a DNA
sequence; accepts only IUPAC genetic alphabet entries, and the gap symbol ‘-‘

DNAStringSet() Efficient storage of MULTIPLE sequences (e.g. the
sequences of a ShortRead object) in a single object

id() Calls the IDs of sequences in a ShortRead object

narrow(X, start=, end=, width=) Trims an object (e.g. ShortRead
object) to the span specified (only two arguments needed, e.g. start & end)

PhredQuality("IIIHHHHHHH@@@") Turns character string into standard
Sanger encoded ASCII characters; convert to integer with as.integer()

quality() Calls the quality string of sequences in a ShortRead object

read.DNAStringSet("/path/file","fasta") Import sequences stored
in fasta format

readFastq(dirPath="/path", pattern="X.fastq", withIds=T)

 4

Imports information in fastq format as ShortRead object. the sequences can be
of different length, but sequence and quality need to match

replaceLetterAt(X, at, letter) Makes a copy of a DNAString(Set)
object (=sequence, or a set of sequences) and then replaces some of the
original letters by new letters at the specified locations

reverse() Reverse a sequence or quality string (e.g. q<-
PhredQuality("HHI##"); reverse(q) is ##IHH)

reverseComplement(X) Reverse-complement a sequence. e.g. a<-
DNAString("AAGGC"); reverseComplement(a) is GCCTT

ScanBamParam(flag=scanBamFlag(isUnmappedQuery=FALSE),
what=c("qname", "rname", "pos", "seq", "qual", "strand"),
reverseComplement=TRUE) Specify settings for importing an
alignment in BAM format into R. see ScanBam()

scanBam("/path/file.bam", param=ScanBamParam())[[1]] Uploads
an alignment in BAM format according to the parameters specified using
ScanBamParam(). Components can be accessed using $. e.g. X<-
scanBam(infile, param= ScanBamParam())[[1]]; X$seq calls the
sequences

sread() Calls the sequences of a ShortRead object; output is DNAStringSet
object

subseq(X, start=, end=, width=) Extract the subsequence from a
DNAStringSet specified by start, end, and/or width, just like narrow()

trimLRPatterns(Lpattern="AGCCD", subject=X, max.Lmismatch=0)
Trims a certain pattern from the start (Lpattern) or end (Rpattern) of
ShortRead object X

writeFastq(X, file="X.fastq", mode="w") Writes ShortRead object
X to a fastq file. mode="w" creates a new file, "a" appends to an already
existing file X.fastq

write.XStringSet(X, file="path/name.txt", format="fasta",
width=80) Writes out a string set object; here a DNAStringSet to fasta

SAM to BAM conversion of alignments by using SAMtools:

cd/user/local Go to directory where SAMtools is stored

./samtools view --b --S /path/file.sam >/path/file.bam

