Participant Introduction

JASON SARDELL

University of Miami, USA

Divergence & speciation

Haplochromine cichlids, isolated crater lakes

Alexandra Tyers, Bangor University, UK

Sympatric divergence

- Massoko GWAS
- Behavioural variation
- Phenotypic plasticity

Parallel evolution

- Environment & morphology
- Parallel speciation

T.J. McGreevy, Ph.D. Wildlife Genetics & Ecology Laboratory Natural Resources Science Department University of Rhode Island

Eastern Cottontail

PhotoCredit: Rand Herron

Photo Credit: Lou Perrotti

Esri, HERE, DeLorme, MapmyIndia, O OpenStreetMap contributors, and the GIS user community A

Photo: www.nhptv.org

Photo: Westernwildlife.com

Guadeloupean anole

From: Universidade Federal do Paraná - Curitiba - Brazil

Patrícia Regina Ströher

working on

Phylogeography of Brazilian Atlantic Rainforest

Laboratories:

Laboratório de Dinâmica Evolutiva e Sistemas Complexos

Advisor: Prof. Dr. Marcio Pie

Contact: patricia.stroher@gmail.com

Adaptive divergence in the cichlid fish Astatotilapia burtoni

Morphological differences

- Body depth
- mouth position
- Trophic apparatus

Genome divergence during speciation

- 5 « replicate » lake stream systems (10 pop)
- Different stages of speciation continuum
- 12 individual genomes per pop (120 genomes)
- Genes involved in adaptation to different envt?
 - \rightarrow same among replicates?
 - → local adaptation?

Alexandra A-T. Weber - Ale.weber@unibas.ch - www.salzburgerlab.org

Adaptation in the open ocean

Erica Goetze, Department of Oceanography, University of Hawaii at Manoa

Adaptive divergence along a lake-stream environmental gradient in East African cichlid fishes: a comparative approach

Lake Tanganyika

Affluent rivers

Jelena Rajkov www.salzburgerlab.org

University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic

Academy of Sciences of the Czech Republic, Institute of Parasitology, České Budějovice, Czech Republic

Xinyuan Ma "Max" PhD student, Plant and Environ. Sciences. Clemson University. Clemson, SC. USA Plant Nematology Lab. Advisor: Dr. Paula Agudelo

LAB RESEARCH FOCUS: Biology and ecology of lance nematodes in agroecosystems.

PERSONAL INTERESTS: Speciation and phylogenetic relationships among lance nematodes (*Hoplolaimus* spp.). Biogeographic patterns. Genetic diversity and population structure.

Michael Matschiner

Konstanz \rightarrow Basel \rightarrow Auckland \rightarrow Oslo

CladeAge

F4

Introgression in cichlid fishes:

Derycke Sofie Verheyen Erik

GENBAS: GENomic BAsis of Speciation

From left to right: O. ventrolis, O. nosuta and O. boops. Pictures courtesy of Ad Konings and Siegfried Loose.

JULIA M.I. BARTH University of Oslo

www.zebrafin.ch

Postcopulatory sexual selection: the genetics of sperm traits and female extrapair mate preferences

PhD project University of Oslo

Silje Rekdal

Part I – SPERM COMPETITION: genetic bases for sperm traits

willow warbler (*Phylloscopus trochilus*)

- Variation in sperm traits
- Genome-wide SNPs
- Identification of related genomic regions (GWAS)
- Linkage map

Part II – CRYPTIC FEMALE CHOICE:

Extra pair mate preferences and MHC diversity

bluethroat (Luscinia svecica)

- MHC diversity
- Relation to mating systems (EPY vs WPY)
- Amplicon sequencing (Ion Torrent)

 \rightarrow sexual selection and the resulting evolutionary consequences

Camille Ameline, PhD

Zoological Institute, Evolutionary Biology Dieter Ebert group Basel, Switzerland

The Swiss pond

- Red Queen hypothesis
- Negative Frequency
 Dependant Selection
- Matching Allele Model

Coevolution of Host – Parasite interactions

Dynamics of resistance/infection alleles in the populations

Genetic insights into the Bantu-speaking migrations

UPPSALA UNIVERSITET

Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden

Mário Vicente

- Language spread associated with human dispersal starting ~5 kya from Grassfields of Cameroon
- Carrying agricultural system

Cong Liu

Okinawa Institute of Science and Technology Graduate University

Ant systematics, Community ecology/phylogeny, Phylogeography, and Population genetics

Current project:

Phylogeny, population genomics, speciation and adaptation of ant genus *Camponotus* in the Pacific archipelagoes using RADseq.

© alex wild

Lúa López Pérez – Workshop on Population and Speciation Genomics

THE "CRYPTIC" CASE OF EUROPEAN WOOD WHITE BUTTERFLIES

Venkat Talla

Niclas Backström

"Taken as a whole the Tanganyikan cichlids represent the most outstanding example of adaptive radiation of all those to be considered." G. Fryer and T. D. Iles (1972) The Cichlid Fishes of the Great Lakes of Africa

181 (B 100

Walter Salzburger

Zoological Institute University of Basel, Switzerland

Unraveling the ecological and genetic basis of adaptive divergence in two hybridizing songbirds

Camille Sottas, PhD student Supervisor: Radka Reifová

Faculty of Science, Charles University in Prague

Department of Zoology – Biodiversity Research Group

Common Nightingale (Luscinia megarhynchos)

Trush Nightingale (Luscinia luscinia)

Lubomír Piálek České Budějovice (Budweis) Czech Republic

Faculty of Science University of South Bohemia in České Budějovice Lab of Oldřich Říčan (USB) Jorge Casciotta (Museo de La Plata) Adriana Almirón (Museo de La Plata) Klára Dragová (USB)

Research interests: Evolution of Neotropical cichlids (and other fishes..)

Faunistic field work in Argentina (Iguazú/Paraná/Uruguay basins)

•9 new fish species discovered & described (so far)
• new species flock of *Crenicichla* discovered in the Iguazú River: *piscivore – grazer – picker – thick lips*

River 2

River 3

Parallel speciation in two unrelated *Crenicichla* species flocks from different basins

distinct 'ecomorphospecies' are polyphyletic
repeated diversification also in different subbasins?
evolutionary mechanisms being studied based on *ddRAD* genomic markers

Diversity & evolution of Middle American cichlids

new phylogenetic inference & taxonomy
general principles of ecomorphological diversification

genomics, morphology and ecology of the Tanganyikan cichlid radiation ~250 species

Population genomics and demographic history of non-Midas

Aim:

Population genomic analysis using SNP markers in non-Midas Cichlid fish to investigate their genetic diversity and population structure to reconstruct the demographic history of species inhabiting Nicaraguan crater lakes

A. longimanus

H. nematopus

Poecilia mexicana

Lucia Paiz Medina Laboratory for Zoology and Evolutionary Biology University of Konstanz

Cold-water Coral Genome Project

Jaqueline Hess Postdoctoral Researcher – University of Oslo, Norway

Computational Biologist in the team of Inger Skrede

"Genome evolutionary mechanisms and their role in ecological transitions"

Evolution of symbiosis

Invasive species

Transposable elements and their role in facilitating an early adaptive response to a change in environments

Ecological and historical drivers of range-wide genomic differentiation in *Arabidopsis arenosa*

Filip Kolář, University of Oslo & Charles University in Prague

Genetic structure (> 2000 SNPs), niche and phenotypic variation of diploid *A. arenosa*

Range-wide resequencing of ~ 300 indivs. (collaborative project with L. Yant & K. Bomblies, John Innes Centre, Norwich, UK)

BRITTA MEYER

Tanganyika

ribes

POPULATION (EPI)GENOMICS (POSTDOC)

marine sticklebacks

(epi)genetic variation local adaptation

PHYLOGENIES (PHD)

East African cichlids

multilocus phylogenies and species tree analyses biogeography and immune gene diversity (MHC)

Inger Skrede, University of Oslo

<u>Research topics:</u> population genetics, comparative genomics, population genomics, fungi, ecology and evolution

Serpula lacrymans var. lacrymans natural distribution Serpula lacrymans var. shastensis

Serpula lacrymans var. lacrymans "Japanese population" Serpula lacrymans var. lacrymans "European population"

Current population genomic project:

- Identify genes/functions important for colonization of new habitat/human made habitat?
- Divergence, diversity and demographic history of populations from Japan, Europe and New Zealand?
- 37 genomes (about 100X coverage) ~500,000 SNPs

Frode Fossøy

Trondheim-Norway

NTNU Norwegian University of Science and Technology

- Avian brood parasitism WGS
- Ecosystem services eDNA

- Metabarcoding, eDNA
- RADSeq

fineSTRUCTURE

STRUCTURE

finerSTRUCTURE?

Karin Tremetsberger University of Natural Resources and Life Sciences, Vienna, Austria

Natalia Díaz Arce PhD Student 2015-2019

Marine Research Division AZTI (Sukarrieta, Spain)

PhD Supervisors: Dra. Naiara Rodríguez-Ezpeleta Haritz Arrizabalaga

Transforming Science into Business

Oscar Gaggiotti Scottish Oceans Institute University of St Andrews

Statistical inference of the demography and ecology of species from the spatial patterns of <u>neutral</u> genetic diversity

Study of <u>local adaptation</u> to understand the molecular bases of phenotypic variation

Vikings as Vectors

University of Oslo

Heidi Nistelberger
SpArc

Speciation genetics in Arctic plants and searching for cryptic species in the Mediterranean flora

Siri Birkeland, PhD-student at the Natural History Museum in Oslo (University of Oslo) Photo from http://nature.ca/aaflora/data/www/badrni.htm

Escape from the cryptic species trap: lichen evolution on both sides of a cyanobacterial acquisition event

Kevin Schneider

University of Graz, Austria

Adam Bazinet

Post-Doctoral Associate Laboratory of Molecular Evolution Center for Bioinformatics and Computational Biology

3122 Biomolecular Sciences Building #296 University of Maryland, College Park, MD 20742-3360 8314 Paint Branch Dr. E-mail: adam.bazinet@umiacs.umd.edu Office: (301) 405-7408 CV T

Advisor: Dr. Michael Cummings

RESEARCH PROJECTS

Grid computing — The Lattice Project lattice.umlacs.umd.edu | molecularevolution.org

Sequence classification programs
 A comparative evaluation
 BMC Bioinformatics (2012)

Lepidopteran molecular phylogenetics — "Leptree" PLOS ONE (December 2013 | March 2013) | BMC Evolutionary Biology (2009)

Species differentiation — Genealogical Sorting Index molecularevolution.org

After the Ice: hybrid male sterility in a grasshopper hybrid zone

Ricardo J Pereira ricardojn.pereira@gmail.com

Natural History Museum of Denmark University of Copenhagen

PHYLOCANCER

Aim

Reconstructing tumor evolution

Data

WGS / WES Bulk-seq / SC-seq **Bioinformatic analysis**

Somatic variant calling

Evolutionary analysis

Population growth Population structure Population effective size Divergence time Selection vs neutral

Tamara Prieto

Biology Centre CAS Institute of Entomology

Copyright Prosicks

&

University of South Bohemia Faculty of Science

Lukáš Drag

České Budějovice, Czech Republic

Molecular Ecology of Saproxylic Beetles in Europe

Great Capricorn beetle

(Cerambyx cerdo)

5 1 1.5 2 2.5 3 3.5 4 Geographic distance (log lov)

Rosalia Longicorn (Rosalia alpina)

Hermit beetle (*Osmoderma eremita*)

The genetic bases of convergent evolution: hypertrophic lips

Gonzalo Machado-Schiaffino (University of Konstanz, Germany)

QTL mapping in Neotropical and African cichlids (RADseq)

Incipient speciation driven by hypertrophied lips in Midas cichlids fish?

Genetic and morphological differentiation (+ demography + lip function + assortative mating)

Grafting

Hsiao-Lei Liu PhD Student University of Warwick E-mail: H.Liu.6@warwick.ac.uk lei.oct.1985@gmail.com

Matteo Fumagalli

PhD in Bioengineering **Polytechnic University of Milan**, Italy

Postdoc (EMBO fellow) Dept. Integrative Biology **Univ. of California, Berkeley**, USA Nielsen Group

Postdoc (HFSP fellow) UCL Genetics Institute **University College London**, UK Balloux Group

Human Evolution @ UCL

Ants of Fiji

- Archipelago 2-25 Ma.
- 43 genera; 187 species; 70% endemism
- Adaptive radiations
- Multiple speciation events
- Demographic histories
- Taxon cycle
- Ancient DNA (museum collections) RADseq

UPPSALA

Sandra Lorena Ament Velásquez

Evolutionary genomics of Spore Killing in the fungus *Podospora anserina*

ТхТ

SxT

- Molecular systematics
 - Mating systems
 - Asexual evolution and poliploidy

Origin and genomic history of the Greenlandic sledge dogs and wolves Mikkel Sinding

Jakub Vlček

Jihočeská univerzita v Českých Budějovicích University of South Bohemia in České Budějovice

- Wildlife immunogenetics
- Major Histocomp. Complex
- Toll-like receptors

DIETARY SHIFTS IN LADYBIRDS BEETLES

Oliver Niehuis & Ralph Peters

Cynegetis impuctata (Linnaeus, 1767)

Hypothesis:

MYCOPHAGOUS

HERBIVOROUS

OUTGROUP

COPHAGOUS OCCINELLIN

HI OCORM

OCCUPELIA IN

CODULIN

museum

Genetic markers of dietary shift phenotypes will be present within the transcriptomes of the insect's mid-gut, where food digestion occurs

Hermes E. Escalona AvH Postdoctoral Fellow G Museum A. Koenig, ZFMK

Supervisors -Oliver Niehuis -Bernhard Misof

STICHOLOTIDINAS ladybirds PREDATORS OCCIPULIN STICHOLOTION **EPILACHNINI** COCCIDENT SHIFT CHLOCORN

Endeavour Scholarship and Fellowships

Unterstützt von / Supported by

Stiftung/Foundation

Co-evolutionary Tales: A. thaliana vs. H.arabidopsidis

Research Questions

- How predominant ATH lineage sustains the pathogen pressure?
- Whether genetic structure and virulence spectra of HPA translates into local adaptation
- Are host-pathogen undergoing coevolution?

Methods

- Combination of RAD-Seq and wholegenome resequencing with both host accessions and pathogen strains
- Laboratory and field based disease and fitness phenotyping

Problem: How to deal with admixture?

Gautam Shirsekar <u>gshirsekar@tuebingen.mpg.de</u> **>** @gaushi www.weigelworld.org Max Planck Institute for Developmental Biology, Tuebingen, Germany

Bastiaan Star Centre for Ecological and Evolutionary Synthesis (CEES) University of Oslo, Norway

25.01.2016

The same neck of the woods? Neighborhood interactions and tree competition

Chelsea Chisholm PhD Fellow

Migration Patterns, Connectivity, and Population Sizes in Marine Keystone Organisms and their Implications in a Current Conservation Context

Katharina Fietz (PhD candidate)

* Centre for GeoGenetics, Natural History Museum of Denmark * Marine Evolution and Conservation Group, University of Groningen

UPPSALA

UNIVERSITET

Presentation slide

Federico Sanchez Quinto, Ph.D.

Postdoc at the Jakobsson group

Evolutionsbiologiskt centrum (EBC)

federico.sanchez@ebc.uu.se

What I do

WORKSHOP ON POPULATION AND SPECIATION GENOMICS

Research interests

Human evolutionary biology

(Statistical) models for hybridization and speciation

Alex Buerkle – University of Wyoming, USA

1.0

1.0

Milan Malinsky

My main interest is to understand the processes of adaptation and speciation, from molecular mechanisms to ecological interactions. I use diverse tools from ecology, genetics, genomics, molecular, and cell biology to address fundamental questions in evolution.

TI-ARNO

COLOENCIAS

The repeatability of genomic architecture in a homoploid hybrid species

Italian sparrows inherit different proportions of their genomes from the parent species on Crete, Sicily, Corsica and Malta

Linkage, genomic conflict and TE-release in hybrid populations with different genomic architectures

- 1. Patterns of linkage disequilibrium (LD) House sparrow Italian sparrow Spanish sparrow in different populations of a hybrid species
- 2. Genomic conflict resolution and genetic ancestry
- The role of transposable elements
 (TEs) in molding a hybrid genome

UiO: University of Oslo

Caroline Øien Guldvog

Diede Maas, MSc PhD: "Elucidating mechanisms of response to climate change scenarios in marine lake populations"

Petr Nguyen

BIOLOGY CENTRE ASCR BIOLOGICE Institute of Entomology

DB 100400

Figh 50

GGCCCTATCGTGACTGATTACCAGGATCCTAGCG(TGGTCAGGTTGTTCAACTCGATGACTAGAATATAT GTAACGTTGCAAATTCAGTCGGTACGTTTCCAGG CTGTAGCURLYHAIRGCCCTTGAATCTTGGCAGTC AACTCATCCAGGAATGGGCCCTACGTACCGTAAC CTACACACACACTGACAGATAGACAGATTGTCGT(ATCTTGGCAGTCGTAACGTACGTACGGTACTGGTA TCTACTAGAAGAAAAATTGGGCCCTACGTACCGT# GGCTACACACACACTGACAGATAGACAGATTGTCC GAATCTTGGCAGTCGTAACGTACGTACGGTACTGH CCCTGGGAAAAATTGGGCCCTACGTACCGTAACG TACACACACACTGACAGATAGACAGATTGTCGTG1 ATGTAATGCAGTGGTCAGGTTGTTCAACTCGATG/

autosomes Z chromosome

Emiliano Trucchi

www.emilianotrucchi.it

UiO: Universitetet i Oslo

Centre for Ecological and Evolutionary Synthesis

Jakub Kreisinger

Dept. of Zoology, Charles Univ. in Prague Inst. of Vertebrate Biol., Czech Academy of Science

Genetic diversity in Grauer's gorillas Tom van der Valk

UPPSALA UNIVERSITET

<u>Philipp Kirschner</u> PhD-Student at the University of Innsbruck (Austria), Institute of Ecology

Research

- Origin of xerophilic European steppe biota
- Postglacial recolonisation of Alpine dry habitats
- Connectivity among xerothermic habitats in Europe

Studied organisms

- Two grasshoppers
 Omocestus petraeus
 Stenobothrus nigromaculatus
- One ant
 Plagiolepis taurica

Interests

- Processing RAD data
- Admixture models
- Phylogeographic modelling

Marie Krausová

Evolution and Phylogeny of Dicyemids (Mesozoa), parasites of cephalopods

Laboratory of molecular phylogeny and evolution of parasites third year of PhD, supervisor Jan Štefka

Genomic signature of sexually selected hybridization on common wall lizard

Weizhao Yang Lund University Sweden

France, Female

France, Male

Tuscany, Male

Tuscany, Female

Female

Male

Thierry B Hoareau Dept Genetics, Univ. Pretoria, South Africa

Evolution of marine organisms

New method:

Calibration of Demographic Transition = GREEN Fossil calibration = ORANGE
MORITZ MUSCHICK Postdoc, EAWAG, Switzerland Speciation and diversification in cichlid fishes and stick insects

The genomic architecture and evolutionary potential of a hybrid species

- Interspecific variation in genomic regions linked to local adaptation
- 2. Mapping ecological traits to genomic regions
 - Transect 2 Transect 3 Gargano Sardinia Sicily
- 3. Population structure and isolation by adaptation.
- 4. Epistatic interactions and Pleitropy between loci may restrict purging of DMI reducing adaptive potential
- 5. Species interactions

Angélica Cuevas PhD research fellow UiO **: Universitetet i Oslo**

SCOTT A. HANDLEY WASHINGTON UNIVERSITY SCHOOL OF MEDICINE DEPARTMENT OF PATHOLOGY & IMMUNOLOGY

Metagenomics

 Identification of previously unrecognized pathogens or pathogenic microbiota associated with disease

AIDS

- Gastrointestinal virome and bacterial microbiome
 - Alterations during AIDS (HIV humans)
 - Alterations following vaccination (SIV macaques)
- Other mucosal surfaces: mouth, lungs, genital tract
- Inflammatory Bowel Disease
 - Bacteriophage predation of bacteria instigating pathogenic dysbioitic flora
 - Identify candidate viral causes of IBD for vaccine target development

Who is there?

Are they normally there?

Why are they there?

Health / Disease

Health / Disease

What is the adaptive potential of planktonic gastropods?

phenotypic variability
genomic variability

- · spatial partitioning
- · neutral vs adaptive

Burridge, Goetze, Raes, Huisman, Peijnenburg (2015). *BMC Evol. Biol.* <u>Cuvierina pteropods:</u>

- · 2 morphotypes
- · 3 samples, 26 libraries
- \cdot RAD tag sequencing

Katja T. C. A. Peijnenburg (peijnenburg@uva.nl)

Naturalis Biodiversity Center Leiden, University of Amsterdam, the Netherlands

Islands of sea: community assembly in marine systems

Lisa Becking Marine Animal Ecology group Wageningen University The Netherlands

Population genomics of migration

Karyotype-driven speciation

Gerard Talavera

Postdoctoral Associate Museum of Comparative Zoology Harvard University

Vanessa cardui

PhD-project: Polyploid Evolution in *Dactylorhiza* (Orchidaceae)

Data Two sibling allopolyploid species (+ parents)

- D. traunsteineri (2n=80)
- *D. majalis (2n=80)*
- (+D. purpurella)

Objective Investigating genetic structure and polyploid origin With RAD-seq data (5000+ loci)

Results

- 5 groups
 - Suggest two independent origins of *D. traunsteineri*

Marie Kristine Brandrud

marie.kristine.brandrud @univie.ac.at

SIS PULLANTIAN SIS TO THE THE STATE

Supervisor: Ovidiu Paun, Universität Wien

Genomics of Tripartite Nested Mealybug Symbioses

Filip Husnik

PhD student of Molecular and Cell Biology and Genetics Institute of Parasitology, Czech Academy of Sciences

@FilipHusnik filip.husnik@gmail.com

Origin of steppe flora and fauna in inner-Alpine dry valleys [comparative phylogeography]

PI. P. Schoenswetter & F. Steiner, Funded by: AT science Fund (FWF) no. P25955

(postdoc) Inst. of Botany, Uni. of Innsbruck Austria

Reticulate evolution in Acropora

Acropora digitifera

Acropora echinata

Acropora gemmifera

Acropora tenuis

Acropora subglabra

Acropora yongei

Okinawa Institute of Science and Technology Graduate University

Yafei Mao PhD student

William Nicholson

School of Life Sciences, University of Warwick

- Project on sorghum NGS data from about 10 modern and 10 ancient specimens including domestic, wild and feral varieties
 - variant calls made on the data
 - signatures of selection and selective sweeps
 - testing genetic diversity and looking for bottlenecks
 - domestication related loci
 - local adaptation to dry conditions, pest and disease resistance
 - introgression in modern and ancient genomes
- Project on barley
 - NGS data (using DNA capture arrays) from ancient specimens from Qasr Ibrim
 - working on developing software for haplotype phasing

Fungal species traits and dispersal Sundy Maurice

3. Northern Eu. Level: Correlate the population genetic structures of polypore species with a variety of life-history traits

13 species * 20 individuals *7 localities

2. Evaluate the resolution of RAD markers in structuring genetic population at **a finer geographic scale**

4 species * 20 genotypes *4 localities in Norway

1. Reveal the genomic diversity within species

1 forest 20 individuals * 13 species

Thanks!