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Exact likelihoods
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functions
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Unlinked bi-allelic SNVs
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Diploid genotypes from one
individual

Whole genome, phased
haplotypes

Whole genome, phased
haplotypes

Medium-length, phased
haplotypes

Short, phased haplotypes
Short, phased haplotypes
Short, phased haplotypes
Short, (un)phased

haplotypes
Short, phased haplotypes

Inference

Population structure,
admixture

Population structure,
admixture

Population structure,
admixture

Population structure,
admixture

Population structure,
admixture
Chromosome painting

Population
structure, admixture,
chromosome painting

Population

structure, admixture,
chromosome painting
Chromosome painting
Chromosome painting,
population structure
Demographic history
Demographic history
Admixture graph
Demographic history
Demographic history

Demographic

Demographic history

Demographic history
Demographic history

Demographic history

Demographic history

Species trees, effective
population sizes

Divergence times
between populations

Demographic history

Demographic history

Notes

User-friendly GUI; can be computationally demanding
Alexander et al."* argue that convergence is not guaranteed
Estimates the number of populations via cross-validation error

Obtains variational Bayesian estimates of posterior probability
distribution

Uses a Dirichlet process to estimate the number of populations
Requires populations to be specified a priori

Can be used to identify the number and identity of populations

Extends the fineSTRUCTURE approach to estimate unsampled
ancestral populations and admixture times

Identifies local ancestry in windows, rather than using an HMM,
so is more discrete than other approaches

Uses PCA in small chunks followed by an HMM to estimate local
ancestry

Requires some Python-coding skills; applicable to up to three
populations

Can also be used to simulate data under the SMC

Highly multimodal likelihood surface and heuristic search; redo
inference from many starting points

Applicable only to a single population; designed specifically for
extremely large sample sizes

IBD must be inferred (for example, using Beagle or GERMLINE);
specification of lower cut-off minimizes false-negative IBD tracts

IBS can easily be confounded by missing data and/or sequencing
errors

Bestused in MSMC’s PSMC mode, which uses the SMC to
more accurately model recombination than the original PSMC;
applicable to a single population

Requires large amounts of RAM; cross-coalescence rate should
not be interpreted as migration rate

Multiple applications, including inference of population sizes,
migration rates and incomplete lineage sorting

Uses shorter sequences than MSMC, but can be applied to
multiple individuals in complex demographic models; infers
explicit population genetic parameters for migration rates

Requires Monte Carlo sampling of coalescent genealogies; very
flexible

Used mainly as a method of phylogenetic inference. Can also
infer population size history

Now incorporated into the software BPP*3!

Incorporates migration into the MCMCcoal framework. Averages
over unphased haplotypes

Implemented in Mathematica; applicable only to specific classes
of multi-population models
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Why model demographic history!?

® Essentially, all models are wrong,

but some are useful.
— George Box
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Notes

User-friendly GUI; can be computationally demanding
Alexander et al.** argue that convergence is not guaranteed
Estimates the number of populations via cross-validation error

Obtains variational Bayesian estimates of posterior probability
distribution

Uses a Dirichlet process to estimate the number of populations
Requires populations to be specified a priori

Can be used to identify the number and identity of populations

Extends the fineSTRUCTURE approach to estimate unsampled
ancestral populations and admixture times

Identifies local ancestry in windows, rather than using an HMM,
so is more discrete than other approaches

Uses PCA in small chunks followed by an HMM to estimate local
ancestry

Requires some Python-coding skills; applicable to up to three
populations

Can also be used to simulate data under the SMC

Highly multimodal likelihood surface and heuristic search; redo
inference from many starting points

Applicable only to a single population; designed specifically for
extremely large sample sizes

IBD must be inferred (for example, using Beagle or GERMLINE);
specification of lower cut-off minimizes false-negative IBD tracts

IBS can easily be confounded by missing data and/or sequencing
errors

Bestused in MSMC’s PSMC mode, which uses the SMC to
more accurately model recombination than the original PSMC;
applicable to a single population

Requires large amounts of RAM; cross-coalescence rate should
not be interpreted as migration rate

Multiple applications, including inference of population sizes,
migration rates and incomplete lineage sorting

Uses shorter sequences than MSMC, but can be applied to
multiple individuals in complex demographic models; infers
explicit population genetic parameters for migration rates

Requires Monte Carlo sampling of coalescent genealogies; very
flexible

Used mainly as a method of phylogenetic inference. Can also
infer population size history

Now incorporated into the software BPP*3!

Incorporates migration into the MCMCcoal framework. Averages
over unphased haplotypes

Implemented in Mathematica; applicable only to specific classes
of multi-population models
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Why model demographic history?

® Understand population history
Bottlenecks, gene flow, etc.




Why model demographic history?

® Conservation
Present versus historical genetic diversity

Today
TiMe ———pp- N, 8,800 and
A I Bornean lineage ~50,000
ncestra N, 10,600 individuals
orang-utan in the wild
population Low-level gene flow t t
N, 17,900
e N, 7,300
/ Sumatran lineage
I = 400,000 Exponential N expansion
PT " years ago N 37.700
e )
and ~7,000
individuals
in the wild

Locke et al. (201 1) Nature



Why model demographic history?

® Selection
Demographic history sets neutral background

10000
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Yi et al. (2010) Science



Workflow
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Beware: Almost all inference tools assume data is clean!
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Ne: Effective population size

The size of an idealized population (in individuals) that
would give the same behavior in some regard as the real
population of interest.

Most commonly, variance effective population size, the
population size in a Wright-Fisher model that has variance in
allele frequencies over time equal to that of the real
population.

Almost always, Ne is less than the census size.
Ne is affected by breeding ratio, historical demography, etc.
Other definitions of Ne are possible.

Arguably, in some populations (Drosophila), variation may be
more strongly influenced by selection than drift.



Simulation via coalescent

Rosenberg and Nordborg
(2002) Nat Rev Genet

Developed in the early 1980s, principally by Kingman.
Approach is to model the genealogy of sampled sequences.
Rate of coalescence is proportional to |/Ne.

Simulators first sample genealogies consistent with specified
demographic history.

To generate sampled sequences, mutations are then added to
the genealogy via a Poisson process.

Can model recombination with the Ancestral Recombination
Graph. But selection is extremely challenging.



Simulation via diffusion

Developed by Fisher and others in
the 1930s. Further developed by
Kimura in the 1960s.

Approach is to model the
distribution of allele frequencies in
the population(s).

Kimura

(1964) | Applied Prob

Approximating allele frequencies as
continuous allows partial
differential equations to be applied.

Simulation of selection is
straightforward. Linkage is very
challenging.



Comparing model and data

Likelihood: Probability of the data given the model
(with specified parameter values).

Frequentist approach: Maximize likelihood to find
best-fit parameters, estimate confidence intervals,
perform hypothesis tests.

Bayesian approach: Sample posterior distribution of
parameters based on likelihood function and prior
distribution over parameters.



Composite likelihoods

Often in population genetics, we can’t calculate the
likelihood of our data.

But we can often calculate the likelihood for a single site.

The composite likelihood function is the product of the
likelihoods over all sites, implicitly assuming that sites
evolve independently.

Under neutrality, it can be shown that the composite
likelihood approximation does not bias inferred

parameters (Wiuf (2006) | Theor Biol).

But composite likelihood does mean that many standard
statistical inference approaches will be too liberal, because
they effectively overestimate the amount of data.



Approximate Bayesian Computation

Seminal work by Tavare et al. (1997) Genetics
Simulate data by sampling from the prior distribution

Calculate summary statistics from the simulation, and
compare with summary statistics from the data.

Accept the sampled parameter set if “distance” between
summary statistics is less than some small threshold.

The set of sampled parameters is an approximation to
posterior distribution.

Very computationally intensive, but very flexible,
approach to model fitting, because you can chose
summary statistics that are most sensitive to your
particular problem.



Demographic Inference Methods

® Many approaches

® My overview will be
somewhat selective

and historical

® See Schraiber and
Akey (2015) Nat Rev
Genet for a recent

review.
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HAPMIX

fineSTRUCTURE

GLOBETROTTER

LAMP
PCAdmix
dadi
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Exact likelihoods
using generating
functions

Data type

Unlinked multi-allelic
genotypes

Unlinked bi-allelic SNVs
Unlinked bi-allelic SNVs
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genotypes

Phased haplotypes;
reference panel

Phased haplotypes
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admixture
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population structure
Demographic history
Demographic history
Admixture graph
Demographic history
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Demographic

Demographic history
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Species trees, effective
population sizes

Divergence times
between populations

Demographic history
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Notes

User-friendly GUI; can be computationally demanding
Alexander et al.*! argue that convergence is not guaranteed
Estimates the number of populations via cross-validation error

Obtains variational Bayesian estimates of posterior probability
distribution

Uses a Dirichlet process to estimate the number of populations
Requires populations to be specified a priori

Can be used to identify the number and identity of populations

Extends the fineSTRUCTURE approach to estimate unsampled
ancestral populations and admixture times

Identifies local ancestry in windows, rather than using an HMM,
so is more discrete than other approaches

Uses PCA in small chunks followed by an HMM to estimate local
ancestry

Requires some Python-coding skills; applicable to up to three
populations

Can also be used to simulate data under the SMC

Highly multimodal likelihood surface and heuristic search; redo
inference from many starting points

Applicable only to a single population; designed specifically for
extremely large sample sizes

IBD must be inferred (for example, using Beagle or GERMLINE);
specification of lower cut-off minimizes false-negative IBD tracts

IBS can easily be confounded by missing data and/or sequencing
errors

Best used in MSMC’s PSMC mode, which uses the SMC to
more accurately model recombination than the original PSMC;
applicable to a single population

Requires large amounts of RAM; cross-coalescence rate should
not be interpreted as migration rate

Multiple applications, including inference of population sizes,
migration rates and incomplete lineage sorting

Uses shorter sequences than MSMC, but can be applied to
multiple individuals in complex demographic models; infers
explicit population genetic parameters for migration rates

Requires Monte Carlo sampling of coalescent genealogies; very
flexible

Used mainly as a method of phylogenetic inference. Can also
infer population size history

Now incorporated into the software BPP*3!

Incorporates migration into the MCMCcoal framework. Averages
over unphased haplotypes

Implemented in Mathematica; applicable only to specific classes
of multi-population models
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IM/IMa/IMa2

® Uses coalescent simulation to

calculate the full likelihood of =
the data given the model, for M
non-recombining regions
(mitochondria,Y chromosome,” —

small autosomal regions). T

| T

mij—3

N

\\4

® Bayesian inference based on
MCMC walk through ’ } 05
parameter space, can be
computationally expensive.

® Handles arbitrary number of
populations.

Hey and Nielsen (2004) Genetics
Hey (2010) Mol Biol Evol



Allele Frequency Spectrum

In a population of constant
size (the Standard Neutral
Model), expectation number
of SNPs at frequency i is
proportional to |/i.

Population growth creates
an excess of low-frequency
alleles.

Commonly quantified by
Tajima’s D.

Selection generates a similar
signal.

Model
schematic

Genealogy

SFS

Constant Expansion

c c

©) ©)
= =

C C

o ©)

o
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s

Derived allele frequency Derived allele frequency

rop

Schraiber and Akey (2015) Nat Rev Genet



Schaffner et al. (2005) Genome Research
® Fit model to Africa,Asian, nﬂﬂ[l[m ﬂﬂﬂm lnana
and European human data by
using coalescent simulations Mﬂ E.J]J]Jﬂ[l Mﬂﬂ
to match several summary M }\\“ M
statistics (single-population | & T |5 e T

frequency spectra, Fst, and
LD decay).

® Today, this would be called
ABC.

® Still no packaged methods
that integrate both allele
frequencies and LD.

W. Africa E. Asia W. Europe



Inference from the AFS

® Marth et al. (2004) Genetics
calculated expected frequency

spectrum under piecewise constant

: : : : : ;4 past
histories using (big) summation A
N3 T3 (o0)
formulas.
A
. . N T
® |mplemented projection of data 2 ’

down to smaller sample size (for .. N, T,
handling incomplete calling) and  dvration
correction for ascertainment bias

(for handling genotype data).

present

effective population size

® Fit growth and bottleneck models to
human populations from Africa,
Europe, and Asia.



Parameter identifiability
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® Often the likelihood surface has “ridges”, correlated
sets of parameters that give very similar high
likelihoods.

® For example, depth and duration of bottleneck.

Marth et al. (2004) Genetics



Absolute limits to inference

® Myers, Fefferman, and Aty e s i et
Patterson (2008) Theor Pop . /=
Biol E .
® Can show analytically that Q z
even an infinite amount of ||
frequency spectrum data o

Time (2N generations)

does not uniquely

A demographic history with the same spectrum as a constant size population

determine population =
history. : |
® Recent results from Song _ s
show that can uniquely £ %
determine piecewise i N
0 0.5 1 1.5 2 2.5 3 3.5

constant histories. Fime (2N generations



Joint Allele Frequency Spectrum

Single nucleotide polymorphisms (SNPs)
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dadi: Diffusion Approximations
for Demographic Inference

® Up to three interacting populations, with arbitrary
parameter time courses

® | pop, 20 samples, ~3 params: ~| minute to fit
2 pops, 20 samples each, ~6 params: ~10 minutes to fit
3 pops, 20 samples each, ~12 params: ~3 hours to fit

® Computational cost independent of SNP count, but
exponential in number of populations.

Gutenkunst et al.
PLoS Genet (2009)



fastsimcoal?

Estimate pairwise joint
frequency spectra using
coalescent simulations.

Scales to arbitrary number s :
1 A

of populations. N W—

Estimate parameters by | § ]‘ - )

maximum composite b ® L e

. . LWK ¥ Nyri ASW

likelihood. -

Optimization may be more
robust than dadi.

Excoffier et al.
PLoS Genet (201 3)



Jaatha

® Partition joint AFS into 23
distinct regions and use
simulations to fit to these
summary statistics.

Recently applied to
simultaneously infer
demography and selection.
(Mathew and Jensen (2015)

Frontiers Genet).
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Naduvilezhath et al.
(201 1) Molec Ecol




MOMI

Kamm, Terhorst, and Song (2015) arXiv

Use coalescent theory to calculate expected joint
frequency spectra for arbitrary number of populations
and demography that piecewise constant or
exponential.

Should be faster and more numerically stable than
diffusion or coalescent simulation methods.

Software forthcoming.



Sequentially Markovian Coalescent

® |ntroduced by McVean and Cardin (2005) Phil Trans R
Soc B as approximation to standard coalescent with
recombination.

® Essential assumption is that when recombination
occurs the genealogy to the right of the
recombination event depends only on the genealogy
to the left of the event. (Hence the name Sequentially
Markovian Coalescent.)

® Often an excellent approximation to the full
coalescent, while being much faster to computer, and
more amenable to analysis.



Haplotype lengths

® The genomes of admixed individuals will be mosaics of
the source populations.

® As time passes since admixture, recombination breaks
up admixture tracts.

® TRACTS infers admixture times
(potentially multiple pulses) and
proportions from the spectrum
of haplotype lengths.

m,(T-1)
m,(T)

Gravel et al.
Genetics (2012)



IBS tracts

® Sequences that are ldentical
By State (IBS) with and
between populations are
informative about
demographic history.

® (Calculate expected spectrum
of IBS tract lengths using
coalescent theory.

® Can fit very complex models.

AGGTCGAGCTTG
AC@TCGAGCBGG

Harris and Nielsen
(2013) PLoS Genet



Same model, same data,
different summary, different results

Na  Nup =

® Fit IBS tract lengths, predict AFS f o mes
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PSMC

YRI1.A ——
g YRI2.A ——

4 b | EUR.1.A[0.29] ——
: EUR2.A —
: KOR.A[0.10]

3 F—+— CHN.A[0.05] ——

Effective population size (x10%)
|

104 108 108 107

® Estimate effective population size over time from a
single unphased genome.

® No parametric model (e.g. exponential growth)
assumed.

Li and Durbin
(201 1) Nature



MSMC

— Simulation — MXL-YRI
— 2 haplotypes ) 1— CEU-YRI
~ 4 haplotypes > 1.0 {— CHB-YRI
) ~ 8 haplotypes ©  {— CEU-MKK
X S 0.8 91— CEU-LWK
7 n i 1
c s YRI-MKK
£ 3 0.6 1— LWK-MKKT"
2 @ 1— YRI-LWKT
o D 0.4 -
2 o
B 2 02-
i © :
LA | ! LI | ! LR | ! LR | ! &) O |
10° 10 10° 10° 108 10%
Time (years ago) Time (years ago)

® SMC model for multiple phased sequences

® |[nferences of population sizes for more recent times
than PSMC.

® |nferences of cross-coalescent rates between
populations, which are indicative of population

divergence and migration. Schiffels and Durbin
Nature Genet (2014)



Demographic Inference Methods

Many options...

For inference from non-recombining regions, IMa2 is
most powerful.

For inference from many short sequences (RAD-seq,
transcriptomes), frequency spectrum methods are
most powerful.

If you can reliably phase and align your data, haplotype
methods are very powerful.



mography and selection¥
in orang-utans
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Orang-utans

The Hominidae (great apes)

Rhesus
macaque Gibbon Sumatran Bornean
Macaca Nomascus orang-utan orang-utan Gorilla Human Bonobo Chimpanzee
mulatta leucogenys Pongo abelii Pongo pygmaeus Gorilla gorilla  Homo sapiens Pan paniscus  Pan troglodytes
0.997 0.996 (ref. 29)
~1 Myr ago ~1 Myr ago
0.990
4.5-6 Myr ago
0.984 (ref. 30)
6-8 Myr ago
0.974
Hylobatidae 12-16 Myr ago
Small apes
. . 0.971
Cercopithecidae 18-20 Myr ago
Old World monkeys
"\“\

0.949
25-33 Myr ago




Sequencing

AT
o

FAMILY. TS
R

Reference genome sequencing Locke etal.
ature

5.6-fold Sanger coverage of Sumatran female
~2.5% divergence from human

Population genomic sequencing
5 Sumatran and 5 Bornean individuals on lllumina GAIl
one Bornean individual to 20-fold, rest to ~8-fold
~0.3% divergence between Bornean and Sumatran

Custom Bayesian SNP caller
overall 99% concordance with Sanger validation
~8% false positive rate for singletons



Demographic inference

~50,000
059 Bornean 3,009 in wild
| 1TRR00
10° 1-s
200690~ Sumatran
1105 years ago 37 788) ~7,000
in wild
0 i
0 Sumatran . .
1.8 million SNPs Max likelihood
in folded spectrum - model
8

Tsplic more recent than earlier
estimates, but consistent with

coalescent HMM inference
Mailund et al. PLoS Genet (201 1)

Bornean

FAMILY. TIES" 7%

3 ;
Locke et al. .

Nature (2011) Sumatran



Selection against non-synonymous mutations

6,434 synonymous SNPs
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Hsieh et al.
(In press)

e [Jata and demographic history

B | Whole Genome Data
£ ,""l" ~ Biaka pygmy: 4 individuals from Hammer lab
T T Baka pygmy: 3 individuals from Tishkoff lab

' Yoruba farmer: 9 individuals

Contact between
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100,000 years ago

\

Population
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200,000 years ago
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Genetic exchange

A
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— ']
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Inferred using dao0i

Gutenkunst et al.
(2009) PLoS Genet
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Genomic null model

Chen, Marjoram & Wall
(2009) Genome Research
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Scanning for adaptive loci
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Adaptive loci

P value cutoff — top 0.5%
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Chromosome

® Bone synthesis: FLNB,AXDND |,EPHBI, TSPANS, ZBTB38, GAREM
® Muscle development: OBSCN, COX10, LARGE

® Immunity: 3 HLA genes



Demographic Inference

Ryan Gutenkunst
Molecular and Cellular Biology

University of Arizona

Name
STRUCTURE

FRAPPE
ADMIXTURE
fastSTRUCTURE
Structurama
HAPMIX

fineSTRUCTURE

GLOBETROTTER

LAMP
PCAdmix
dadi
Fastsimcoal2
Treemix
fastNeutrino
DoRIS

IBS tract
inference
PSMC
MSMC
CoalHMM

diCal

LAMARC
BEAST
MCMCcoal
G-PhoCS

Exact likelihoods
using generating
functions

Data type

Unlinked multi-allelic
genotypes

Unlinked bi-allelic SNVs
Unlinked bi-allelic SNVs
Unlinked bi-allelic SNVs

Unlinked multi-allelic
genotypes

Phased haplotypes;
reference panel

Phased haplotypes

Phased haplotypes

Phased haplotypes;
reference panel

Phased haplotypes

Frequency spectrum of
unlinked bi-allelic SNVs

Frequency spectrum of
unlinked bi-allelic SNVs

Frequencies of unlinked
bi-allelic SNVs

Frequency spectrum of
unlinked bi-allelic SNVs

Lengths of IBD blocks
between pairs of individuals

Lengths of IBS blocks
between pairs of individuals

Diploid genotypes from one
individual

Whole genome, phased
haplotypes

Whole genome, phased
haplotypes

Medium-length, phased
haplotypes

Short, phased haplotypes
Short, phased haplotypes
Short, phased haplotypes
Short, (un)phased

haplotypes
Short, phased haplotypes

Inference

Population structure,
admixture

Population structure,
admixture

Population structure,
admixture

Population structure,
admixture

Population structure,
admixture
Chromosome painting

Population
structure, admixture,
chromosome painting

Population

structure, admixture,
chromosome painting
Chromosome painting
Chromosome painting,
population structure
Demographic history
Demographic history
Admixture graph
Demographic history
Demographic history

Demographic

Demographic history

Demographic history
Demographic history

Demographic history

Demographic history

Species trees, effective
population sizes

Divergence times
between populations

Demographic history

Demographic history

Notes

User-friendly GUI; can be computationally demanding
Alexander et al."* argue that convergence is not guaranteed
Estimates the number of populations via cross-validation error

Obtains variational Bayesian estimates of posterior probability
distribution

Uses a Dirichlet process to estimate the number of populations
Requires populations to be specified a priori

Can be used to identify the number and identity of populations

Extends the fineSTRUCTURE approach to estimate unsampled
ancestral populations and admixture times

Identifies local ancestry in windows, rather than using an HMM,
so is more discrete than other approaches

Uses PCA in small chunks followed by an HMM to estimate local
ancestry

Requires some Python-coding skills; applicable to up to three
populations

Can also be used to simulate data under the SMC

Highly multimodal likelihood surface and heuristic search; redo
inference from many starting points

Applicable only to a single population; designed specifically for
extremely large sample sizes

IBD must be inferred (for example, using Beagle or GERMLINE);
specification of lower cut-off minimizes false-negative IBD tracts

IBS can easily be confounded by missing data and/or sequencing
errors

Bestused in MSMC’s PSMC mode, which uses the SMC to
more accurately model recombination than the original PSMC;
applicable to a single population

Requires large amounts of RAM; cross-coalescence rate should
not be interpreted as migration rate

Multiple applications, including inference of population sizes,
migration rates and incomplete lineage sorting

Uses shorter sequences than MSMC, but can be applied to
multiple individuals in complex demographic models; infers
explicit population genetic parameters for migration rates

Requires Monte Carlo sampling of coalescent genealogies; very
flexible

Used mainly as a method of phylogenetic inference. Can also
infer population size history

Now incorporated into the software BPP*3!

Incorporates migration into the MCMCcoal framework. Averages
over unphased haplotypes

Implemented in Mathematica; applicable only to specific classes
of multi-population models
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