Evolutionary population genomics

- Background
- The number of loci
- Parallel evolution
- Recombination

Daniel Berner, University of Basel
daniel.berner@unibas.ch
http://www.salzburgerlab.org/team/daniel_berner

Cesky Krumlov
2 Feb 2016
Collaborators

Marius Roesti

Dario Moser

Andrew Hendry
McGill, Montreal

Walter Salzburger
Uni Basel
Focus and questions

- How many genes underlie adaptive divergence?
- How are they arranged in the genome?
- Where do the alleles come from?
- What is their function?
- What is their effect size?
- To what extent are alleles reused in multiple populations?
Background

Phenotypic information from natural populations and laboratory crosses

Genome-wide polymorphism data

Complexity reduction using in silico experiments
RADseq as a tool for de novo SNP discovery

RAD = Restriction site-associated DNA

Background

Genomic DNA

Enzymatic restriction

Adaptor 1 ligation

Shearing (500 -700 bp)

Adaptor 2 ligation

PCR Amplification

→ Multiplexing and single-end Illumina sequencing

PCR fw primer site

Illumina primer site

Barcode

PCR rv primer site

Restriction residuals (e.g. TGCAT)

RADseq

| GAGATTGCATGGTCCATAGC... | GAGAT | TGCAT | GGTCCATAGC... |
From reads to SNPs

Demultiplexing, alignment to reference (typical coverage: $\geq 40x$)

Consensus genotyping for each individual

Robust RAD genotyping based on the distribution of whole haplotypes
SNP calling

Background

Sample Data

<table>
<thead>
<tr>
<th>ID</th>
<th>POP</th>
<th>AL</th>
<th>chrI_11814_11931</th>
<th>chrI_49709_49790</th>
<th>chrI_89249_89330</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ga_lib_33_AACCC random</td>
<td>X</td>
<td></td>
<td></td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>2 Ga_lib_33_AACCC random</td>
<td>Y</td>
<td></td>
<td></td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>3 Ga_lib_33_AAGGG random</td>
<td>X</td>
<td></td>
<td></td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>4 Ga_lib_33_AAGGG random</td>
<td>Y</td>
<td></td>
<td></td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>5 Ga_lib_33_AATTT random</td>
<td>X</td>
<td></td>
<td></td>
<td>G</td>
<td>T</td>
</tr>
</tbody>
</table>
Basic logic of SNP-based genome scans for selection

- Colonization
- Selection
- Genetic markers

Ecologically relevant locus

Needed:
- genome-wide high-density markers
- Reference genome

Background

Allele frequency shift

Haplotype structure (LD)

Position on chromosome

F_{ST}
Chapter 1

How many genes underlie adaptive divergence?

Threespine stickleback

- Ancestrally marine
- Fossil record back to 13 My
- Colonization of freshwater, mainly postglacial
- Repeated and predictable divergence from marine ancestor
Lake-stream divergence in stickleback

- Parallel evolution - lake-stream divergence is replicated many times

- Predictable niche differentiation (pelagic vs. benthic prey)
Early divergence mapping in lake-stream stickleback

Roesti et al. 2012 Mol Ecol

- 4 lake-stream population pairs from Canada, 27 individuals from each habitat

- SNPs generated by RADseq (Sbf1 cutter, c. 20k restriction sites across the genome)

- Calculation of F_{ST} at all SNPs
• Variable magnitude of baseline genomic differentiation

• Divergence is heterogeneous across the genome

• Very many loci seem to be under divergent selection
Higher-resolution divergence mapping

Roesti et al. 2015 Nat Commun

- Lake Constance and 3 stream populations, 22-25 individuals from each habitat
- SNPs generated by RADseq (Nsi1 cutter, c. 140k restriction sites across the genome)
- Calculation of F_{ST} at all SNPs
Similar findings: variable magnitude of baseline genomic differentiation; highly polygenic, heterogeneous divergence

Median F_{ST} = 0.005

Median F_{ST} = 0.013

Median F_{ST} = 0.061
Support for highly polygenic selection offered by the *Eda* locus

Roesti et al. 2015 Nat Commun

Association mapping (low- vs. fully plated) confirms that *Ectodysplasin (Eda)* variants influence lateral plating

Adaptive polymorphism in lateral plating
Chapter 1

\[F_{ST} \] profiles around \textit{Eda}, based on the populations

‘Outlier’ analysis using BayeScan, GRA vs. lake

\[F_{ST} \] genome-wide, GRA vs Lake

- Hundreds of loci are involved in lake-stream divergence
- Detection issue...
What is the fitness correlate of genomic divergence?

- Field enclosure experiment (3x3)
- Stocking with 90 lab-reared, marked individuals (lake, stream, F1 hybrid)
- Tracking of survival by recapture over 29 weeks
Strong fitness differences despite weak baseline genomic differentiation

Modest allele frequency differences at many ecologically important loci allow strong adaptive divergence
Evidence on the number of loci from other systems

Lamichhaney et al. 2015 Nature

Lawniczak et al. 2010 Science

Soria-Carrasco et al. 2014 Science
Conclusions

• Evolutionary population genomics benefits from integrative research approaches

• It does not always have to be full-genome sequencing

• A robust genome assembly is the key to informative genomic investigations

• Divergence into different ecological niches generally involves a great number of allele frequency shifts

• We should abandon the idea that we can count or characterize these shifts comprehensively
Parallel evolution

- Recurrent evolution of habitat-associated phenotypes
- Deterministic outcome of natural selection
- Focus initially phenotypic, now often genetic

Berner & Salzburger 2015 Trends Genet

Logic: screening for high-differentiation genome regions shared among the replicate lake-stream pairs
Can we be certain that F_{ST} peaks reflect loci under parallel divergent selection?

- Ectodysplasin (Eda) gene
- Oceanic (ancestral) morph
- Freshwater morph

Freshwater populations share the low-plated phenotype, driven by Eda variants.

- Benthic-pelagic genome scan: Jones et al. 2012 Curr Biol
- Other lake-stream genome scan: Deagle et al. 2012 Proc R Soc B
- Cresko et al. 2007 PNAS
Chapter 2

Hypothesis
Peak-valley-peak pattern among derived populations is driven by repeated adaptation from shared genetic variation at a single locus
Chapter 2

Simulation study

• Multiple independent colonization of new habitats from ancestral source with standing variation at selected locus

• Adaptation with gene flow

\(F_{ST} \)
- Parameters explored: time, N colonizers, carrying capacity, migration rate, selection strength, recombination rate

The selected locus acts as a localized barrier to gene flow

Source-derived contrasts reveal the classical signature of divergence with gene flow

Derived-derived contrasts: repeated adaptation from shared variation drives a peak-valley-peak pattern
Confirming the model through targeted sequencing

on the peak

Complete marine-freshwater isolation at Eda but not away from it – localized barrier to gene flow

Extensive haplotype sharing among the freshwater populations – adaptation from shared genetic variation
Chapter 2

The peak-valley-peak signature as a discovery tool

- Marine-freshwater divergence is highly polygenic and involves extensive allele recycling
- Derived freshwater populations still carry the footprints of the ancestral marine-freshwater divergence
- Parallel evolution is useful for the detection of adaptation loci – but one must look for the right signature at the right ecological level
Chapter 2

2. Searching for adaptation loci using parallel evolution in lake-stream stickleback from the Lake Constance region

Roesti et al. 2015 Nat Commun

Logic: screening for high-differentiation genome regions shared across multiple lake-stream contrasts
Chapter 2

Assumptions ...

- The lake population is the ancestor
- Stream adaptation has occurred three times in parallel

... and reality

The lake population seems derived from stream fish
The lake population has the lowest genetic diversity.

Demography with fastsimcoal, 14.8 million positions.

Site frequency spectra from the four populations.
Hypothesis: The lake population has diverged from an ancestral stream form

Evidence from selected regions

F_{ST} extremes from all lake-stream comparisons

Haplotyp[e tract length around F_{ST} extremes

Selection has occurred mainly in the lake

Selective sweeps have eliminated genetic variation
Resolving the history of adaptive divergence in Lake Constance stickleback

- Two alternative processes can result in similar patterns of population differentiation
- The population structure in the Lake Constance region is consistent with ecological vicariance
- Adaptation has occurred only once; conclusions about the determinism of natural selection are flawed
Conclusions

• Studying parallel evolution can be tricky: signatures in the genome might reflect ancient selection unrelated to the focal population contrast

• Parallel evolution can be mimicked by alternative evolutionary histories

• Robust ecological and demographic information, and sequence data from loci under selection, are valuable when inferring parallel evolution
Recombination and genomics

• Divergence with gene flow – a migration-selection antagonism
• The recombination rate influences this antagonism

Migration-selection balance at two recombinating loci
Recombination suppression captures two favorable alleles
The two alleles now act as single locus of larger effect and reach stronger divergence
Theoretical evidence of the adaptive benefit of reduced recombination
Yeaman 2013 PNAS

- Two habitats, 10 loci under migration-selection balance along a single chromosome
- Mutation: cut-paste positional relocation of the different alleles

Selection favors a more compact genomic architecture (physical proximity = lower recombination frequency)
An easy way to suppress recombination: inversion

The inversion loop hinders recombination

When recombination still occurs within the inversion, the recombined gametes display gene duplications/deletions
Prediction: inversions coupling adaptive alleles should be important to adaptive divergence

Exploring the significance of inversions in lake and stream stickleback Roesti et al. 2015 Nat Commun

Co-adapted allele complex

Standard

Inverted

[Map of Lake Constance and surrounding areas]
Chapter 3

- Screen for inversions in Lake Constance stickleback
- Method: distortion in sequence coverage among RAD loci

Coverage scans in lake-stream stickleback
Confirming the inversions using PCR primers across breakpoints

Three major inversions segregate in the Lake Constance basin

Detected previously in marine-freshwater stickleback Jones et al. 2012 Nature
Exploring the ecology of the inversions based on inversion-specific haplotype genealogies

- Ancient inversions have been re-cycled for lake-stream divergence
- Likely ecological factor: pelagic vs. benthic life style
- Parallel evolution at a global scale

Jones et al. 2012 Nature
Evidence from other systems for a role of inversions in adaptive divergence

Hypothesis: inversion coupling plumage color and perception alleles
Inversion coupling behavior and plumage color alleles
Wing color elements coupled in adjacent inversions
Aren’t we overlooking something rather important?

Genomic divergence between lake and stream stickleback from Vancouver Island is biased toward chromosome centers Roesti et al. 2012 Mol Ecol

Let’s call this CCBD for Chromosome Center-Biased Divergence
A recombination-based explanation for CCBD

Linkage mapping (F2 intercross, N = 280) reveals reduced recombination rate in stickleback chromosome centers

Genomic divergence in lake-stream stickleback is highly polygenic

Hypothesis: The coupling of alleles in chromosome centers makes the introgression of DNA in chromosome centers more difficult than in the peripheries
Validation using adaptive divergence *in silico* Berner & Roesti, in progress

- Adaptive divergence with gene flow between two populations, using standing variation at many loci under selection
- Single chromosome; neutral loci interspersed between the selected ones
- Recombination is biased to the peripheries
- Parameters: Pop size, time, selection strength, migration rate, recombination bias, etc
One of many consequences of CCBD

Biased outlier detection: standard F_{ST} outlier scan using BayeScan

Recombination rate homogeneous along chromosome

Recombination rate biased toward chromosome center

False positive

False negatives
We ARE overlooking something rather important!

Elevated recombination in chromosome peripheries seems taxonomically universal.
Conclusions

- Recombination suppression via inversions clearly contributes to adaptive divergence.

- Our perspective on the general adaptive significance of inversions, however, is biased by simple large-effect systems.

- The consequences broad-scale heterogeneity in recombination rate along chromosomes is largely ignored in current genomics (theory coming up!)
Thanks

- Marius Roesti, Dario Moser, Benjamin Kueng, Anja Frey, Walter Salzburger, Andrew Hendry, Sergey Gavrilets

- Christian Beisel, Ina Niessen (Department of Biosystems Science and Engineering, D-BSSE Basel)

- SNF

- University of Basel