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Lies, damn lies, and ....
genomics

you, your data, your perceptions and
reality

Christopher West Wheat

Goal of this lecture

« Present a critical view of ecological genomics

* Make you uncomfortable by sharing my
nightmares

« Encourage you to critically assess findings and
your expectations in light of publication biases




Disclaimer

I'm a positive person
| love my job and the work we all do

'm just sharing scrumptious food for thought

What if .....

50% of your
favorite studies
had conclusions
that were just
wrong?

How would that
affect your
expectations
and work?
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If the biomedical science has the
most money and oversight, then ...

Their findings should be robust:

Publication replication failures

- clincal studies, 45 showed intervention was effective
— Most were randomized control studies (robust design)

« Mouse cocaine effect study, replicated in three cities

- HTI‘ standardized studi

loannidis 2005 JAMA; Lehrer 2010
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Assessing reality using

Proportion male
=)

funnel plots
Small sample sizes affect

Sex ratio in birds measurement accuracy

Pvalue = 0.05

Each dot = a study and has error

Study estimates are randomly
distributed about the real value

Your study is just a random
estimate of some idealized value

Log Sample size (n) ‘

Effect size (r)

ication bias increases effect size
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true

;»"”Q'O- o < effect
. size

® Published study

N s

Log Sample size (n) Palmer 2000 Ann. Rev. Eco. Sys.
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What if there is no replication?
What is most likely to publish first & where?
08les @2 What publishes late?

.10 100

Log Sample size (n) Palmer 2000 Ann. Rev. Eco. Sys.

Why Most Published Research Findings Are False

A research finding is less likely to be true when:

he studies conducted in a field have a small sample size
J hen effect sizes are small
%hen there are many tested relationships using tests without a priori
election
%vhere there is greater flexibility in designs, definitions, outcomes,
nd analytical modes
%«hen there is greater financial and other interest and prejudice
w

hen more teams are involved in a scientific field, all chasing after
statistical significance by using different tests

loannidis 2005 Plos Med.
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But surely, this doesn't
apply to genomics ....

8 topics first reported with P < 0.05
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loannidis, J. P., E. E. Ntzani, T. A. Trikalinos, and D. G. Contopoulos-loannidis. 2001. Replication
validity of genetic association studies. Nat Genet 29:306—309.
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There are lies, damn lies,
and ...

Where does this bias come from?

« Population heterogeneity

« Publication bias

impact

— Small & non=significant effects publish slow with low
impact
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Where does this bias come from?

.

—_—
And me .... All of us

YOU!!

lts arises from humans doing science
The way we think
The way our institutions work

Apophenia

A universal human tendency to seek
patterns in random information and view
this as important

Story telling of Type 1 errors

Celebration of the
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Outline

« Are there biases understanding the genomic
architecture of adaptations?

» What is the power of molecular tests of selection?

« What does the dissection of some classic comparative
genomics study reveal?

Metabolic Pathways |

Publications using molecular fests demonstrate we can sequence -
our way to answers e

Current paradigm:
Sequence, map, find sig. patterns, make causal story, move on




What is the architecture of a causal variant?

Enhancer 2 TAT%box \ Intron 1 Intron 2 /
nd GC b
Enhancer 1 a ox Start codon gé%n Polyadenylation
Transcription site
initiation
cis WeodingW cis Eoding cis IWEOGGM  cis

C Coding mutations: affect the mature RNA or protein

D Cis-regulatory mutations: affect gene expression

X X X mw X e X
What type of variant?
_ SNP, indﬁl, TE, inversion, (NV? Stern & Orgogozo 2008 Evolution

How predictable are

@ 250
S
B
H ? 5 200
adaptations? =
o
3 150
Plants Animals [S
3 100
Coding' 71 163 2
Cis-regulatory 26 48 g 50 cis-regulatory
Other? 16 7 § 0 . ' other
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Null® 67 32 Year of Publication
Morphology Physiology Behavior
Coding? 62 170 2
Cis-regulatory 43 29 2
Other* 3 20 0
Total 108 219 4
Null® 41 58 0

Stern & Orgogozo 2008 Evolution
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Individual genome sequencing: powerful insights

g3
33
5 8
g £
o
8
t £
5 2

3 Low Fst High Fst

z

S S

2

8

g . EDA

g y

° ! >

c | 5

g’ E

3 <

. &

0 .
0 "
Euclidean distance to freshwater centroid Chromosome 4 position
2-5 X per individual, sliding 2500 bp window, 500 bp step Jones et al. 2012 Nature

Which regions are more important? Coding or expression?

EDA

Chrlv = sy
it
o == 17% (11)
t IR 419 (26)
.M Regulatory
Chrll
_HM
= Las 42% (27)

| I Probably
— = regulatory
chiix

v | E .4..5!‘
Chexil
ChrUn Jones et al. 2012 Nature

1/20/17

11



How do we identify the genes that matter?

« Molecular tests of selection are popular, but ...
—What are their assumptions and power?

« What are these tests defecting?
—What is a footprint of selection?

Finding the genes:
a decision tree

positive

Type of Sweep
hard soft

I~

i« nucleotide diversity (x)

i .allele frequency spectrum
(Tajima’s D)

. LD (iHS)

{ -LD(HS) i

Time Scale
short long

e

...............

Hohenlohe et al. 2010 Int. J. Plant Science
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What power do we
have fo detect
evolution by
natural selection?

What is
statistical
power?

Power is the probubilimihut the test will re||'1ed the
null hypothesis when IT I({equlternuiive hypothesis is

Using a t-test, you would want power > 90% af
reasonable sample size, right?

Breed specific
morphologies

Test set of Schlamp et al.
2016:

25 breeds
12 causal loci
N =25/ breed

7 tests of selection
— iHS,nSL,H,TajD, etc.

von Holdt et al. 2010. Nature

How accurate are molecular tests of
selection detect?
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French Bulldog sample: low power (high type Il error)

chr 27 chr 32

Schlamp et al. 2016. Evaluating the performance of selection scans to detect selective sweeps in
domestic dogs. Molecular Ecology 25:342-356.

Why don't these these tests
have much power?

1/20/17
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ATGGTAGGTCATATTGATCAGGGTGALTGTGCTAGAACATA
M M M o L TGCTAGATCALAGTGATCATGGTGAATGTGCTAGAACATA

I re C" 0 n u Se e C" 0 n . L TGGTAGATCALATTGATCATGGTGCATGTGCTAGATCATA
TGECTAGATCATATTGATGATGGTGAATGTGCTAGATCATA

TGCTAGATCATATTGATCATGGTGAATGTGCTTGAACATA
u n exu m p I e Of II h e TGCTAGGTCATATTGATCATGCTGAALAGTGGTAGATCATA

expectations of hard
selection

Positive selection

Population genomics has been
dominated by developing methods to
detect hard sweeps for past two
decades

(b)

Locus 1 Locus 2 Locus 3 Locus 4

to be elusive, resulting in a high
false positive rate since their
inception

WLLLLELLLL

Storz 2005 Mol. Ecology

a Classic selective sweep . Test
Over time, the advantageous
Neutral variation An advantageous mutation arises mutation approaches fixation power
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b Selection from standing variation

A variant becomes adaptive in a Over time, the advantageous
Neutral variation new environment mutation approaches fixation
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¢ Selection on a complex trait

A set of variants becomes adaptive Over time, the set of variants
Neutral variation in a new environment becomes more common
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Scheinfeldt & Tishkoff. 2013. Nat Rev Genet 14:692-702.
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Estimate of error rates using , Tajima’s D, and haplotype
homozygosity under the models for a human population

A False Discovery

Bottlenecked Population Constant Population Size

x Tajima's D Haplotype Homozygosity ® Tajima's D Haplotype Homozygosity
Co-dominant New Mutation

o
12 3 4 5
Recessive New Mutation

proportion of selected loci

0
1.2 3 4 5
x% lover tail

Teshima et al. 2006 Genome Research

Estimate of error rates using , Tajima’s D, and haplotype
homozygosity under the models for a human population

B False Negative

Bottlenecked Population Constant Population Size

= Tajima's D Haplotype Homozygosity = Tajima's D Haplotype Homozygosity
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Teshima et al. 2006 Genome Research
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Simulation conclusions

« Simulations suggest
— empirical approaches will identify several inferesting candidates
— But will also miss many—in some cases, most—loci of interest

« False-discovery rate is higher when

— directional selection involves a recessive rather than a co-
dominant allele

— when it acts on a previously neutral rather than a new allele
— Demographic size changes rather than constant population size

Genomic scans yield an unrepresentative subset
of loci that contribute to adaptations

Molecular tests ...

BASED ON 20 YEARS OF PUBLICATIONS

« Are still chasing an elusive null model ....

— Each performs better than previous ones under a
specific set of conditions, all have poor null model

« But ... under realistic biological conditions, they all
— Have very low power (high type Il error rates)
— Have high false positive rates

1/20/17
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How common are hard sweeps in nature?

« “we argue that soft sweeps might be the dominant mode of
udupiuiion in many species” Messer and Petrov 2013 TREE

The lab?

« “Signatures of selection ... [are] not associated with ‘classic’ sweeps
.. More parsimonious explanations include [selection on standing
variation]” Burke et al. 2010 Nature

How common were hard sweeps in our history?
* “dlassic sweeps were not a dominant mode of human adaptation

over the past 250,000 years”

« “much local adaptation has occurred by selection acting on existing
variation rather than new mutation” 1000 Genomes PC 2010 Scienc

Hernandez et al. 2011 Science

o

Certainly not everyone agrees ....

m——

REVIEW
Received 24 Mar 2014 | Accepted 17 Sep 2014 | Published 27 Oct 2014

On the unfounded enthusiasm for soft
selective sweeps

Jeffrey D. Jensen'2

« This is an important read, crifical of
— assumptions underlying soft sweep (selection on standing variation)
— the low power of molecular tests to detect hard & soft sweeps

1/20/17
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How likely does natural selection use standing variation
in your species?
Thought experiment:
What fraction of species respond to selection in the lab? |l
vy I
If populations have variation, how likely is selection to use if? =

What's likelihood of selection on standing variation in wild?

We have not been studying
the dominant form of
selection in the wild &

cannot reliably detect it

Age and type of selection matters

- indel, TE, CNV)
— Ongoing gene flow & grouping by phenotype across replicate populations helps a lot

— Nearly all species have experienced a major demographic change in the past 10,000 generations
— Demographic change significantly reduces power and increases false positive rates.

— What will be the architecture of your phenotype?
What does your method have the highest power to detect?

1/20/17
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Get ready, here come the
1000 genomes

opportunity for
large scale errors?

— Genome evolution

— Functional insights into genes and genomic
features (e.g. requlation and inheritance)

sequenciing of’ Life

Classic study: Evolution of genes and genomes
on the phylogeny

r D. melanogaster

‘* D. sechellia

D.simulans

melanogaster group ‘ D. yakuba

D. erecta

D. ananassae
Sophoph
subgenus bscura group T D. pseudoob:
L D. persimili
willistoni group D. willist
repleta group
[
L D
virilis group
Drosophil
subgenus

Hawaiian Drosophila

r T T T T T
70 60 50 40 30 20 10 O
Divergence in Myr

Drosophila 12 Genomes Consortium 2007 Nature
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Tempo and mode of chromosome evolution
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« > 20 My, chromosomal order completely reshuffled in Diptera

Drosophila 12 Genomes Consortium 2007 Nature

Genome evolution

Drosophila 12 Genomes
Consortium 2007 Nature

D. melanogaster
D. simulans

D. sechellia

D. yakuba

D. erecta

D. ananassae

D. pseudoobscura
D. persimilis

D. willistoni

D. virilis

D. mojavensis

D. grimshawi

® Single-copy orthologues

Total no. of protein- coding  Coding sequence/
genes (per cent with D,
melanogaster homologue)

intron (Mb)

D. melanogaster

D. simulans

D. sechellia

D. yakuba

D. erecta

D. ananassae

D. pseudoobscura
D. persimilis

D. willistoni

D. virilis

D. mojavensis

20 >

Sl S| &

(o [

13,733 (100%)
15,983 (80.0%)
16,884 (81.2%)
16,423 (82.5%)
15,324 (86.4%)
15,276 (83.0%)
16,363 (78.2%)
17,325 (72.6%)
15,816 (78.8%)
14,680 (82.7%)
14,849 (80.8%)
15,270 (81.3%)

5,000

@ Conserved homologues 8 Patchy homologues (with mel.) B Patchy homologues (no mel.)

10,000

15,000 20,000

Number of gene models

25,000

38.9/21.8
45.8/19.6
47.9/219
50.8/22.9
49.1/22.0
57.3/22.3
49.7/24.0
54.0/21.9
65.4/23.5
57.9/21.7
57.8/219
54.9/22.5

O Lineage specific

1/20/17
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Selection dynamics across functional categories

Catabolic process - — —
lon transport - N ———
Protein metabolic process - — —
Protein transport o o m——
Carbohydrate metabolic process - — —
Generation of precursor metabolites and energy = ey
Cellular localization ——
Transport - e te—
Biosynthetic process t—
Amino acid and derivative metabolic process ——
Translation - ——t— -
Cell—cell signalling ——
———

Vesicle-mediated transport -~

[ T T T T 1
0.00 0.05 0.10 0.15 0.20 0.25

B -log(probability of positive selection)
Ho

* 33.1% of single-copy orthologues have experienced positive
selection on at least a subset of codons.

Drosophila 12 Genomes Consortium 2007 Nature

Gene Family Evolution across 12
Drosophila Genomes

« One fixed gene gain/ loss ==
across the genome every
60,000 yr

mmmmm

« 17 genes are estimated to be
duplicated and fixed in a
genome every million years

Drosophila 12 Genomes Consortium 2007 Nature
Hahn et al. 2007 Plos Genetics

1/20/17

22



Comparative Genomics : a house of cards?

« Data scale is too large to thoroughly assess errors ...
— Perhaps the findings are just .... wrong

« All conclusions, at some stage, rest upon
— Simple bioinformatics
— Assumptions that get incorporated into seemingly unbiased methods

Lets exploring two pillars of these studies, their error and
repercussions

— Gene alignments in detecting positive selection

— Calibrations in temporal analysis

Published studies allow ...

Follow up studies to reveal limitations

But, must have enough details to be
repeatable

1/20/17
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Genome-wide selection
dynamics:

Codon based tests of selection
dy

Positive selection
f.ex. effector genes

Neutral evolution
f.ex. pseudogenes

Purifying selection
f.ex. housekeeping genes

ds
d > 1 positive sel.
N/d, = 1 neutral
ratio < 1 purifying sel. IMPRS workshop,

Comparative Genomics

1/20/17
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Evolution of genes and genomes on the
Drosophila phylogen
-

melanogaster group

Sophophora
subgenus

willistoni group

D. melanogaster

D. sechellia
D. simulans

D. yakuba

D. erecta

D.ananassae

obscura group r D. pseudoobscura|

D. persimilis ~

D. willistoni

Drosophila
subgenus

repleta group

D. moji
D. virilis

virilis group

D. grit
Hawaiian Drosophila

70 60

T T T T T 1 Specialist species
50 40 30 20 10 O
Divergence in Myr

Drosophila 12 Genomes Consortium 2007 Nature

dN/dS estimates -

by aligner
* 6690 orthologs

* 5 alignment
methods

« Alignment
methods affect
dN/dS estimates

09
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06}
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04 :
H
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0 1 - - - -
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0,00
0
<0.005
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o02f .
0 500 10001500
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Markova-Raina & Petrov 2011 Genome Biology
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Comparing results across methods is responsible

Since we can't look at our data, we need approaches that
allow 1+ principal assessments

0.9 T T T T T T T

o (dn/ds), T-COFFEE
o

o o

1 1 1 1
04 05 06 07 08 09
© (dn/ds), AMAP

Markova-Raina & Petrov 2011 Genome Biology

Aligner tool has a larger effect than biology

12 genomes, 12 genomes, 12 genomes, M7/8, Melanogaster
M7/8 M1la/2a with removed gaps group, M7/8

Aligner  95% (a) 99% (b) 95% (c) 99% (d) 95% (e) 99% (f) 95% (g) 99% (h)

AMAP 817 213 256 110 558 104 973 257
MUSCLE 1043 306 379 192 764 155 1134 366
ProbCons 1013 281 346 180 801 182 1128 371
T-Coffee 1290 479 612 353 824 173 1248 (909) 463 (218)
ClustalW 902 261 244 17 666 112 1269 453
Totalin5 1902 673 799 441 1562 384 1737 (1723) 652 (620)
PRANK 468 49 49 16 258 42 581 70
99%

Number of significant genes in
common across 1,2, 3, 4, or all
5 of the alignment methods

Markova-Raina & Petrov 2011 Genome Biology
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Alignment results highlight importance of alignment score!

—Teoffee finds 3 selected sites indicated by arrows

— ProbCons identifies region with low alignment score, not used
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Markova-Raina & Petrov 2011 Genome Biology

What about recent genomes?

Surely they are better?

and mammals ... they have good genomes

and alignment problems rarely happen

... right?

1/20/17
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How did |
evolve to
be so cute?

2.8%
Deficient in: 0%

* Alignment T

* Coverage 17.5%
* Annotation 2.0%

23.3% [l
*

11.6% | i

0.042

Data=~3000 orthologs
Positive Selected Genes

r
w Revig PSG

Schneider et al. 2009. Genome Biology and Evolution.

10.4%
U

4.2%

o

1k

2.8%)

@
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Temporal inference:

fact or fiction?

« Directly affects rate estimates

« Deriving unbiased dates from molecular data
— Large field of software development

« Bayesian methods, while potentially informative
and unbiased
— Can be easily, and are routinely, abused

Wheat and Wahlberg 2013 TREE

1/20/17
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Evolution of genes and genomes on the
Drosophila phylogeny
D. melanogaster %

D. sechellia

D. simulans
melanogaster group D.yakuba
D. erecta
" D.ananassae g ;
Sophophora

subgenus obscura group r D. pseudoobscural m
L D. persimilis = -
willistoni group D. willistoni @
., A

repleta group

D. moj 7
|— D.virilis ]
virilis group

Drosophila - B

subgenus D. grimsh
Hawaiian Drosophila

r T T T T T T 1 Specialist species
70 60 50 40 30 20 10 O
Divergence in Myr

Drosophila 12 Genomes Consortium 2007 Nature

- / mauritiana 0.93 + 0.49 (5)
L pseudoobscura / miranda 2.0 + 0.6 (6)
picticornis / 16 Hawaiian species 5.1 (4)
F— melanogaster / simulans 5.4 + 1.1 (62)
AN yakuba / teissieri 6.8 + 2.1 (4) ﬂ!’
orena / erecta 6.8 + 1.7 (8) &_
104 yakuba & teissieri / orena & erecta 10.4 + 2.3 (9)
|~ melanogaster & simulans / orena & erecta 12.6 + 2.6 (31)
I~~~ melanogaster & simulans / yakuba & teissieri 12.8 + 2.7 (40)

MYA pseudoobscura 1 persimilis 0.85 + 0.29 (7
ﬁ% S

+— pseudoobscura / subobscura 17.7 + 4.4 (11) *

Hawaii
0 - 400,000 years

20—

Calibration: Kauai age of 5.1
my for divergence of two
Hawaiian species

30— Hawaiian Drosophila / Scaptomyza 30.5 + 6.6 (3)

+— melanogaster sgr. / takahashii sgr. 35.6 + 8.7 (3)

1. No phylogeny

2. Fixed clock rate

3. Between 3 — 64 genes in
pairwise comparisons

j = melanogaster sgr. / montium sgr. 41.3 + 9.0 (5)
+— virilis / Hawaiian Drosophila 42.9 + 8.7 (2)
+— melangaster sgr. / ananassae sgr. 44.2 + 8.9 (3) ﬁ

50

+— melanogaster gr. / obscura gr. 54.9 + 11.0 (44)

60—/melanogaster gr. / willistoni gr. 6 2.7 (18) ’ E5

Temporal patterns in fruitflies 2241
t— sg. Drosophila / sg. Sophophora 62.9 + 12.4 (64)

(Tamura et al. 2004 MBE)
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Drosophila clade:

— Schizophora
constrained to
maximum of 70 Ma

— Without constraint,
goes to 115 Ma

What is reality?

10,000 Tephritoidea
spp.
. other
Schizophora | families

I
|

|_ Calyptratae

Cyclorrhapha

Ephydroidea

Eremoneura Syrphidae

Brachycera Empidoidea

Asiloidea

Hilarimarphidae
Acroceridae
Tabanomorpha

Culicomorpha

Psychodomorpha
Ptychopteridae

Tipulomorpha

D

200 150 100 50 Million years ago

Episodic radiations in the fly tree of life
(Wiegmann et al. 2011 PNAS)

Determining
objective priors
is challenging

D. biseriata
(O'ahu)

D. mitchelli
(Moloka'i)

D. hystricosa

D. hemipeza

(O'ahu)
D. differens

i Kaua'l

(Maui) . 502424 O'ahu

D. silvestris é 4.32-3.54
Moloka'i

(Hawaii) 2.58-+1.80
D. heteroneura =

(Hawai) T00km ‘) xR

(Hawai'i)

(@)= .
- 14 1210 8 6 4 2 OMya
; —
3| &
> © Al
2 8 | c2
g - c1
 —
S 8
- O
2
8 3
a ©
s |
o
g - + -
T T T T
50 100 150 200
Drosophila-Sophophora | Mya

D. heteroneura

Priors in Bayesian rel. clock analysis:

Mu = lab observed mutation rate
A1,2 = geological calibration, small Ne
(1,2 = geological calibration, large Ne

Obbard et al. 2012 Mol. Biol. Evol.
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Priors directly influence posteriors

Dwil g

0.70 Dvir ’ T ] 0.57 p——
T
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o1
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40 20 0 20 40 60 80 100 120 140 160
Mutation-rate calibration Millions of years Hawaiian calibration (Model A1)

Obbard et al. 2012 Mol. Biol. Evol.

Thus, the age of this clade is fiction

D. melanogaster

D. sechellia
D.simulans

melanogaster group D. yakuba

D. erecta

D. ananassae
Sophophora

subgenus obscura group r D. pseudoobscural

D. persimilis

willistoni group D. willistoni

repleta group

D. moji
D. virilis

virilis group

Drosophila
subgenus D. gri i L
Hawaiian Drosophila
T T T T T T 1 Specialist species o
70 60 50 40 30 20 10 O
Divergence in Myr

Drosophila 12 Genomes Consortium 2007 Nature
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Post-genomics challenge

“What we can measure is by definition uninteresting and what we are
interested in is by definition unmeasureable”
- Lewontin 1974

“What we understand of the genome is by definition uninteresting
and what we are interested in is by definition very damn difficult to

sequence and assemble and annotate and analyze at genomic
scale”
- Wheat 2015
For example:
- indels & inversions
- gene family dynamics
- evolutionary dynamics

What does a
good
P-value
really tell
you?

Is method
mismatched

Are you

chasing a to

good P- mechanism?
value?,

What does a
bad
P-value
really tell
you?
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Significant Pvalues

Genomic
analyses

Transcriptome
analyses

Hypothesis
generators that
interact
synergistically

Tests of
selection

Robust understanding requires validation:
« Genetic manipulation

« Field study manipulations

Goal of this lecture

« Present a non-typical view of ecological genomics

— So you have a more complete view of the field
* Make you uncomfortable

— Provide a context for understanding your results
« Encourage you to rethink the reality presented by
publication biases

— Overcoming this bias is a continual challenge

1/20/17

34



1/20/17

35



