Lies, damn lies, and genomics

you, your data, your perceptions and reality

Christopher West Wheat

Goal of this lecture

- Present a critical view of ecological genomics
- Make you uncomfortable by sharing my nightmares
- Encourage you to critically assess findings and your expectations in light of publication biases

Disclaimer

I'm a positive person

I love my job and the work we all do

I'm just sharing scrumptious food for thought

If the biomedical science has the most money and oversight, then

Their findings should be robust:

- Repeatable effect sizes
- The same across different labs
- The same across years

But surely, this doesn't apply to genomics

Or does it?

There are lies, damn lies, and

But wait, is that fair?

Are these really lies?

Where does this bias come from?

- Population heterogeneity
- Publication bias

impact

Small & non-significant effects publish slow with low impact

Outline

- Are there biases understanding the genomic architecture of adaptations?
- What is the power of molecular tests of selection?
- What does the dissection of some classic comparative genomics study reveal?

Why don't these these tests have much power?

Biological reality vs. theoretical population genetics?

Simulation conclusions

- Simulations suggest
 - empirical approaches will identify several interesting candidates
 - But will also miss many-in some cases, most-loci of interest
- False-discovery rate is higher when
 - directional selection involves a recessive rather than a codominant allele
 - when it acts on a previously neutral rather than a new allele
 - Demographic size changes rather than constant population size

Genomic scans yield an unrepresentative subset of loci that contribute to adaptations

Molecular tests ... BASED ON 20 YEARS OF PUBLICATIONS Are still chasing an elusive null model Each performs better than previous ones under a specific set of conditions, all have poor null model But ... under realistic biological conditions, they all Have very low power (high type II error rates) Have high false positive rates

Certainly not everyone agrees								
nature								
REVIEW Received 24 Mar 2014 Accepted 17 Sep 2014 Published 27 Oct 2014 DOI: 10/1089/ncomms/6781								
On the unfounded enthusiasm for soft selective sweeps								
Jeffrey D. Jensen ^{1,2}								
 This is an important read, critical of assumptions underlying soft sweep (selection on standing variation) the low power of molecular tests to detect hard & soft sweeps 								

How likely does natural selection use standing variation in your species?

Thought experiment:

What does this

mean for tests

of selection?

We have not been studying the dominant form of selection in the wild & cannot reliably detect it

Published studies allow ...

Follow up studies to reveal limitations

But, must have enough details to be repeatable

Aligner tool has a larger effect than biology

	12 genomes, M7/8		12 genomes, M1a/2a		12 genomes, M7/8, with removed gaps		<i>Melanogaster</i> group, M7/8	
Aligner	95% (a)	99% (b)	95% (c)	99% (d)	95% (e)	99% (f)	95% (g)	99% (h)
AMAP MUSCLE ProbCons T-Coffee ClustalW Total in 5 PRANK	817 1043 1013 1290 902 1902 468	213 306 281 479 261 673 49 ignifica ss 1, 2,	256 379 346 612 244 799 49	110 192 180 353 117 441 16 es in or all	558 764 801 824 666 1562 258	104 155 182 173 112 384 42 1,48% ×1 ×2 ×1 118,17%	973 1134 1128 1248 (909) 1269 1737 (1723) 581 99% 106, 1 x5 3 x4 69, 10	257 366 371 463 (218) 453 652 (620) 70
J of the unglittent memous					Markova-Raina & Petrov 2011 Genome Biology			

What about recent genomes?

Surely they are better?

and mammals ... they have good genomes

and alignment problems rarely happen

... right?

