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Objectives — Part 1: Short Read Genomics Introduction

e Understand how short reads are generated.
¢ Understand paired-end reads

e See possible sources of errors

e Learn about adaptors

Objectives - Part 2: QC, alignment and variant calling

e Interpret FASTQ quality metrics

¢ Remove poor quality data

e Trim adaptor/contaminant sequences from FASTQ data

e Count the number of reads before and after trimming and quality control

¢ Align reads to a reference sequence to form a SAM file (Sequence AlignMent file) using BWA
e Convert the SAM file to BAM format (Binary AlignMent format)

¢ Identify and select high quality SNPs and Indels using SAMtools

¢ Identify missing or truncated genes with respect to the reference genome

¢ Identify SNPs which overlap with known coding regions

Objectives — Part 3: Examining unmapped reads
e Extract reads which do not map to the reference sequence
¢ Assemble these reads de novo using SPAdes
e Generate summary statistics for the assembly
¢ Identify potential genes within the assembly
e Search for matches within the NCBI database via BLAST and against the Pfam database
e Visualize the taxonomic distribution of BLAST hits
e Perform gene prediction and annotation using RAST

Objectives — Part 4: De-novo assembly using short reads

e Perform QC and adaptor-trim lllumina reads.

¢ Assemble these reads de novo using SPAdes

o Generate summary statistics for the assembly

¢ Understand how to incorporate long PacBio reads into the assembly.

e |dentify open reading frames within the assembly

e Search for matches within the NCBI database via BLAST and against the Pfam database
e Visualize species distribution of potential matches
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Objectives - Part 5 (optional):

e Run parts 2-4 of the workshop on up to new 6 datasets

e Use pre-prepared scripts to compare SNPs and Indels between strains

¢ Generate pseudo-sequences based on synonymous SNPs

o Draw simple trees to illustrate the likely evolutionary relationship between strains
e Compare Pfam matches between strains

Objectives - Part 6: Long read Introduction and de-novo assem-
bly using long reads

¢ Understand how to perform basic QC on PacBio and Oxford Nanopore MinlON data

¢ Generate and polish long read assemblies using PacBio and Oxford Nanopore MinlON data
e Generate and polish long read assemblies using PacBio data and lllumina

¢ Compare your assemblies to the reference genome using Quast
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Part 1:

Short read genomics: Introduction

Introduction

Welcome to the Genomics workshop. Generating reams of data in Biology is easy these days. In
little more than a fortnight we can generate more data than the entire human genome project
generated in over a decade of work. Making biological sense out of that data, understanding its
limitations and how the analysis algorithms work is now the major challenge for researchers. The
aim of this workshop is to take you through an example project. On the way you will learn how to
evaluate the quality of data as provided by a sequencing facility, how to align the data against a
known and annotated reference genome and how to perform a de-novo assembly. In addition you
will also learn how to compare results between different samples.

This workshop is broken into 5 parts. You should feel free to take as long as you like on each
part. It is much more important that you have a thorough understanding of each part, rather than
try to race through the entire workshop.

The five parts are:

1. Introduction

2. Remapping a strain of E.coli to a reference sequence

3. Assembly of unmapped reads

4. Complete de-novo assembly of all reads

5. Repeating parts 3-5 on strains of Vibrio parahaemolyticus and comparing them

For this first workshop we will assume little background knowledge, save a basic familiarity with
the Linux operating system and the Amazon cloud. We will cover the basics of how genomic DNA
libraries are generated and sequenced, and the principles behind short read paired-end
sequencing. We will look at why data can vary in quality, why adaptor sequences need to be
filtered out and how to quality control data.

In the second part we will take the plunge and align the filtered reads to a reference genome, call
variants and compare them against the published genome to identify missing, truncated or altered
genes. This will involve the use of a publicly available set of bacterial E.coli lllumina reads and
reference genome.

In parts 3 and 4 we will look at how one can identify novel sequences which are not present in the
reference genome. In part 5, you will be asked to repeat the steps 2, 3 and 4 on other data sets and to
compare the results.

A word on notation. If you see something like this:

cd ~/genomics_tutorial/reference_sequence

It means, type the highlighted text into your terminal.
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Principles of lllumina-based sequencing:

There are several second generation sequencers currently on the market. These include the lon
Torrent, and the lllumina HiSeq, NextSeq and MiSeq systems. Other (now obsolescent) platforms
included Life Tech SoLID and Roche 454. All of these systems rely on making hundreds of thousands
of clonal copies of a fragment of DNA and sequencing the ensemble of fragments using DNA
polymerase or in the case of the SOLID via ligation. This is simply because the detectors (basically
souped-up digital cameras), cannot detect fluorescence (lllumina, SollD, 454) or pH changes (lon
Torrent) from a single molecule. The 'third-generation' Pacific Biosciences SMRT (Single Molecule
Real Time) RSIl and Sequel sequencers are able to detect fluorescence from a single molecule of
DNA. However, the machines are very large (the RSIl is almost 2 tons) and produces less than a tenth
of the data of an lllumina MiSeq run and for long reads >10kb error rates are generally around 10-
12%. The Oxford Nanopore MinlON is another ‘third-generation’ single-molecule system which
measures changes in electrical current through a Nanopore as a single molecule is ratcheted through
it. Although error rates are higher (5-10%) and per-base costs are higher the technology has improved
rapidly and will probably replace second generation systems over the next few years. Currently
however, the second generation sequencers are dominating the sequencing world.

We will mainly look at the lllumina sequencing pipeline here, but the basic principles apply to other
second-generation sequencers. If you would like further details on other platforms then | recommend
reading Mardis ER. Next-generation DNA sequencing methods. Annual Reviews Genomics Hum Genet 2008;
9 :387-402.

A typical sequencing run would begin with the user supplying 1ng-1 ug of genomic DNA to a facility
along with quality control information in the form of an automated electrophoresis output (e.g. Agilent
Bioanalyser/Tapestation trace) or gel image and quantification information.

DNA Library preparation

For most sequencing applications, paired-end libraries are generated. Genomic DNA is sheared into
300-500bp fragments (usually via sonication) and size-selected accordingly. Ends are repaired and an
overhanging adenine base is added, after which oligonucleotide adaptors are ligated. In many cases
the adaptors contain unique DNA sequences of 6-12bp which can be used to identify the sample if
they are 'multiplexed' together for sequencing. This type of sequencing is used extensively when
sequencing small genomes such as those of bacteria because it lowers the overall per-genome cost.
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A) Workflow of the automated library preparation B) Automated size selection

M[MM]D{I a) Genomic DNA

3} s

FMMU b) Fragmentation o —_—
onto beads
W c) End Repair

«[[MMHT d) dA Tailing

DNA precptation
onto beads

I)W e) Adapter Ligation

A) Steps a through e explain the main steps in lllumina sample preparation: a) the initial genomic DNA, b)
fragmentation of genomic DNA into 500bp fragments, c) end repair, d) addition of A bases to the fragment ends and e)
ligation of the adaptors to the fragments.

B) Overview of the automated the size selection protocol: The first precipitation discards fragments larger than the
desired interval. The second precipitation selects all fragments larger than the lower boundary of the desired interval.

Borgstrém E, Lundin S, Lundeberg J, 2011 Large Scale Library Generation for High Throughput Sequencing. PLoS ONE 6:
€19119. doi:10.1371/journal.pone.0019119
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Sequencing
(adapted from Margulis, E.R., reference below)

Once sufficient libraries have been prepared, the task is to amplify single strands of DNA to form
monoclonal clusters. The single molecule amplification step for the lllumina HiSeq 2500 starts with an
lllumina-specific adapter library and takes place on the oligo-derivatized surface of a flow cell, and is
performed by an automated device called a cBot Cluster Station. The flow cell is either a 2 or 8-
channel sealed glass microfabricated device that allows bridge amplification of fragments on its
surface, and uses DNA polymerase to produce multiple DNA copies, or clusters, that each represent
the single molecule that initiated the cluster amplification.

Separate or multiple libraries can be added to each of the eight channels, or the same library can be
used in all eight, or combinations thereof. Each cluster contains approximately one million copies of
the original fragment, which is sufficient for reporting incorporated bases at the required signal
intensity for detection during sequencing. The lllumina system utilizes a sequencing- by-synthesis
approach in which all four nucleotides are added simultaneously to the flow cell channels, along with
DNA polymerase, for incorporation into the oligo-primed cluster fragments (see figure below for
details). Specifically, the nucleotides carry a base-unique fluorescent label and the 3 -OH group is
chemically blocked such that each incorporation is a unique event. An imaging step follows each base
incorporation step, during which each flow cell lane is imaged in three 100-tile segments by the
instrument optics at a cluster density of 600,000-800,000 per mm?. After each imaging step, the 3'
blocking group is chemically removed to prepare each strand for the next incorporation by DNA
polymerase. This series of steps continues for a specific number of cycles, as determined by user-
defined instrument settings, which permits discrete read lengths of 40—-300 bases. A base-calling
algorithm assigns sequences and associated quality values to each read and a quality checking
pipeline evaluates the lllumina data from each run.

The figure on the following page summarises the process:
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The lllumina sequencing-by-synthesis approach: Cluster strands created by bridge amplification are primed and all four
fluorescently labelled, 3 -OH blocked nucleotides are added to the flow cell with DNA polymerase. The cluster strands are
extended by one nucleotide. Following the incorporation step, the unused nucleotides and DNA polymerase molecules are
washed away, a scan buffer is added to the flow cell, and the optics system scans each lane of the flow cell by imaging units
called tiles. Once imaging is completed, chemicals that effect cleavage of the fluorescent labels and the 3 -OH blocking
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groups are added to the flow cell, which prepares the cluster strands for another round of fluorescent nucleotide
incorporation. Next-Generation DNA Sequencing Methods Mardis, E.R. Annu. Rev. Genomics Hum. Genet. 2008. 9:387—402

Base-calling:

Base-calling involves evaluating the raw intensity values for each fluorophore and comparing them to
determine which base is actually present at a given position during a cycle. To call bases on the
lllumina or SOLID platform, the positions of clusters need to be identified during the first few cycles.
This is because they are formed in random positions on the flowcell as the annealing process is
stochastic. This is in contrast to the 454 system where the position of each cluster is defined by steel
plate with pico-litre sized holes in which the reaction takes place.

If there are too many clusters, the edges of the clusters will begin to merge and the image analysis
algorithms will not be able to distinguish one cluster from another (remember, the software is dealing
with upwards of half a million clusters per square millimeter — that's a lot of dots!).

1 2 5 6 7 8 9
EREERENEE

The above figure illustrates the principles of base-calling from cycles 1 to 9. If we focus on the
highlighted cluster, one can observe that the colour (wavelength) of light observed at each cycle
changes along with the brightness (intensity). This is due to the incorporation of complementary
ddNTPs containing fluorophores. So at cycle 1 we have a T base, at 2 a G base and so on. If the
colour or intensity is ambiguous the sequencer will mark it as an N. Other clusters are also visible in
the images; these will represent different monoclonal clusters with different sequences.

The base calling algorithms turn the raw intensity values into T,G,C,A or N base calls. There are a
variety of methods to do this and the one mentioned here is by no means the only one available, but it
is often used as the default method on the lllumina systems. Known as the 'Chastity filter' it will only
call a base if the intensity divided by the sum of the highest and second highest intensity is less than a
given threshold (usually 0.6). Otherwise the base is marked with an N. In addition the standard
lllumina pipeline will reject an entire read if two or more of these failures occur in the first 4 bases of a
read (it uses these cycles to determine the boundary of a cluster).

Note that these processes are carried out at the sequencing facility and you will not need to
perform any of these tasks under normal circumstances. They are explained here as useful
background information.
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CHASTITY formula:
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What are paired-end reads and why are they necessary?

Paired-end sequencing is a remarkably simple and powerful modification to the standard sequencing
protocol. It is nearly always worth obtaining paired-end reads if performing genomic sequencing.
Typically sequencers of any type are only able to sequence a portion of DNA (e.g. 100bp in the case
of lllumina) before the fidelity of the enzyme and de-phasing of clusters (see later) increase the error
rate beyond tolerable levels. As a result, on the lllumina system, a fragment which is 500bp long will
only have the first 100bp sequenced.

If the size selection is tight enough and you know that nearly all the fragments are close to 500bp long,
you can repeat the sequencing reaction from the other end of the fragment. This will yield two reads
for each DNA fragment separated by a known distance. In the figure below the dashed regions
represent the complete DNA fragment and the solid lines the regions we are able to sequence:

Single-end read
Read 1

100bp

Known distance (~300bp)

e e LR RN RN RN _ Paired-end read
Read 1 Read 2
100bp 100bp

The added information gained by knowing the distance between the two reads can be invaluable for
spanning repetitive regions. In the figure below, the light coloured regions indicate repetitive sections
of DNA. If a read contains only repetitive DNA, an alignment algorithm will be able to map the read to
many locations in a reference genome. However, with paired-end reads, there is a greater chance that
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at least one of the two reads will map to a unique region of DNA. In this way one of the reads can be
used to anchor the other read in the pair and help resolve the repetitive region. Paired-end reads are
often used when performing de-novo genome sequencing (i.e. when a reference is not available to
align against) because they enable contiguous regions of DNA to be ordered, or when characterizing
variants such as large insertions or deletions.

Other forms of paired-end sequencing with much larger distances (e.g. 10kb) are possible with so
called 'mate-pair’ libraries. These are usually used in specific projects to help order contigs in de-novo
sequencing projects. We will not cover them here, but the principles behind them are similar.

Repetitive DNA
Unique DNA
{1} N

Paired read maps uniquely

—_\ N —

—

Single read maps to
multiple positions
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Inherent sources of error

No measurement is without a certain degree of error. This is true in sequencing. As such there is a
finite probability that a base will not be called correctly. There are several possible sources:

Frequency cross-talk and normalisation errors:

When reading an A base, a small amount of C will also be measured due to frequency overlap and
vice-versa. Similarly with G and T bases. Additionally, from the figure below, it should be clear that the
extent to which the dyes fluoresce differs. As such it is necessary to normalize the intensities. This
normalisation process can also introduce errors.

A

Frequency response curve for A and C dyes
(Intensity y-axis and frequency on the x-axis)

Phasing/Pre-phasing:

This occurs when a strand of DNA lags or leads the other DNA strands within a cluster. This
introduces additional background noise into the signal and reduces the intensity of the true base. In
the example below we have a cluster with 7 strands of DNA (very small, but this is just an example).
Five strands are on a C-base, whilst 1 is lagging behind (called phasing) on a G base and the
remaining strand is running ahead of the pack (confusingly called pre-phasing) on an A base. As such
the C signal will be reduced and A and G boosted for the rest of the sequencing run. Too much
phasing or pre-phasing (i.e. > 15-20%) usually causes problems for the base calling algorithm and

result in clusters being filtered out.
Prephasing

st S4 44444
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Other issues:

o Biases introduced by sample preparation — your sequencing is only as good as your
experimental design and DNA extraction. Also, remember that your sample will be put through
several cycles of PCR before sequencing. This also introduces a potential source of bias.

¢ High AT or GC content sequences — this reduces the complexity of the sequence and can result
in higher error rates.

o Homopolymeric sequences — long stretches of a single base can make it difficult to determine
phasing and pre-phasing rates. This can introduce errors in determining the precise length of a
hompolymeric stretch of sequence. This much more of a problem on the 454 and lon Torrent than
lllumina platforms but still worth bearing in mind. Especially if you encounter indels which have
been called in homopolymeric tracts.

e Some motifs can cause loops and other steric clashes

See Nakamura et al, Sequence-specific error profile of lllumina sequencers Nuc. Acid Res. first published online

May 16, 2011 doi:10.1093/nar/gkr344

Quality scores

To account for the possible errors and provide an estimate of confidence in a given base-call, the
Illumina sequencing pipeline assigns a quality score to each base called. Most quality scores are
calculated using the Phred scale. Each base call has an associated base call quality which estimates
the chance that the base call is incorrect.

Q10 =1 in 10 chance of incorrect base call
Q20 =1 in 100 chance of incorrect base call
Q30 =1 in 1000 chance of incorrect base call
Q40 = 1in 10,000 chance of incorrect base call

For most 454, SOLID and lllumina runs you should see quality scores between Q20 and Q40. Note
that these as only estimates of base-quality based on calibration runs performed by the manufacturer
against a sample of known sequence with (typically) a GC content of 50%. Extreme GC bias and/or
particular motifs or homopolymers can cause the quality scores to become unreliable.

Accurate base qualities are an essential part in ensuring variant calls are correct. As a rough and
ready rule we generally assume that with lllumina data anything less than Q20 is not useful data and
should be excluded from the analysis.

Reads containing adaptors

Some reads will contain adaptor sequences after sequencing, usually at the end of the read. This is
usually because of short sample DNA fragments, which result in the polymerase reading into the
adaptor region. Occasionally this can also happen because of mis-priming. It is important to remove or
trim sequences containing these reads as the adaptor sequences can prevent reads mapping to a
reference sequence and will adversely affect de-novo assembly
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Part 2:

Short read genomics: remapping

Introduction

In this section of the workshop we will be analysing a strain of E.coli which was sequenced at Exeter.
Itis closely related to the K-12 substrain MG1655 (http://www.ncbi.nIm.nih.gov/nuccore/U00096).
We want to obtain a list of single nucleotide polymorphisms (SNPs), insertions/deletions (Indels) and
any genes which have been deleted.

Quality control

In this section of the workshop we will be learning about evaluating the quality of an lllumina MiSeq
sequencing run. The process described here can be used with any FASTQ formatted file from any
platform (e.g 454, lllumina, lon Torrent, PacBio etc).

2nd (and 3rd) generation sequencers produce vast quantities of data. A single lllumina MiSeq lane will
produce over 10Gbases of data. However, the error rates of these platforms are 10-100x higher than
Sanger sequencing. They also have very different error profiles. Unlike Sanger sequencing, where the
most reliable sequences tend to be in the middle, NGS platforms tend to be most reliable near the
beginning of each read.

Quality control usually involves:
e Calculating the number of reads before quality control
e Calculating GC content, identifying over-represented sequences
e Remove or trim reads containing adaptor sequences
e Remove or trim reads containing low quality bases
e Calculating the number of reads after quality control
¢ Rechecking GC content, identifying over-represented sequences

Quality control is necessary because:
e CPU time required for alignment and assembly is reduced
o Data storage requirements are reduced
¢ Reduce potential for bias in variant calling and/or de-novo assembly

Quality scores:

Most quality scores are calculated using the Phred scale (Ewing B, Green P: Basecalling of automated
sequencer traces using phred. Il. Error probabilities. Genome Research 8:186-194 (1998)). Each base call has
an associated base call quality which estimates chance that the base call is incorrect.

Q10 =1 in 10 chance of incorrect base call
Q20 =1 in 100 chance of incorrect base call
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Q30 =1 in 1000 chance of incorrect base call
Q40 =1 in 10,000 chance of incorrect base call

For most 454, SoLID and lllumina runs you should see quality scores between Q20 and Q40.

Note that these as only estimates of base-quality based on calibration runs performed by the
manufacturer against a sample of known sequence with (typically) a GC content of 50%. Extreme

GC biases and/or particular motifs or homopolymers can cause the quality scores to become
unreliable. Accurate base qualities are an essential part in ensuring variant calls are correct. As a
rough and ready rule we generally assume that with lllumina data anything less than Q20 is not useful

@D3P26HQ1:110:d0ehlacxx:8:1101:1116:2122 1:N:0:
AGGTGTCTCCTACAACCAAAGCTACAACAGAGCAATGGGCTATCTGGTGGGATTTAAAGGGGTGAAAATGCATCCCCCTTAAAATNAAAGTGGTTTT
+

ADDADCFHHHDHGHIII<GIICH4FGCIHIEGFHGHGIIIGDHFDFG?DEHH>FGIG=E@GGADDDCCCCC@A>ABB>BBC : A>A#,228(4>:77B
data and should be excluded.

Once you understand the FASTQ format try to work out what is happing to the quality scores here and
why:

FASTQ format:

A FASTQ entry consists of 4 lines

1. A header line beginning with '@' containing information about the name of the sequencer, and
the position at which the originating cluster was located and whether it passed purity filters.

2. The DNA sequence of the read

3. A header line or line beginning with just '+'

4. Quality scores for each base encoded in ASCII format

Typical FASTQ formatted file:

To reduce storage requirements, the FASTQ quality scores are stored as single characters and
converted to numbers by obtaining the ASCII quality score and subtracting either 33 or 64. For
example, the above FASTAQ file is Sanger formatted and the character ‘I’ has an ASCII value of 33.
Therefore the corresponding base would have a Phred quality score of 33-33=Q0 (i.e. totally
unreliable). On the other hand a base with a quality score denoted by ‘@’ which has an ASCII value
of 64 would have a Phred quality score of 64-33=Q31 (i.e. less than 1/1000 chance of being incorrect).
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Just to confuse matters, there are several different methods of encoding quality scores in the ASCII
format.

0 T e Ty T 0T T e T T T T T e T T T T E T e o T T T Eq g T T T T Iy o, 5 6 6 0 0 0 0 6 6 60000 0 0000000000000 00000000000000000000000

I"#S%6" () *+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ [\]"_ “abcdefghijklmnopgrstuvwxyz{ |}~

33 59 64 73 104 126
Ot e 26...31. ..., 40
=5....0.. .00 D e e e 40
Ot D e e 40
0.2 i e 26...31. 00 41
S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa Solexa+64, raw reads typically (-5, 40)

I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)

L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)

Note that the latest lllumina CASAVA 1.8 pipeline (released June 2011), outputs in fastq-sanger rather
than lllumina 1.3+. Thus lllumina 1.3+ and other lllumina scoring metrics are unlikely to be
encountered if you are using lllumina sequencing data generated after July 2011.

Quality control — evaluating the quality of lllumina data

The first task when one receives sequencing data is to evaluate its quality and determine whether all
the cash you have handed over was well-spent! To do this we will use the FastQC toolkit
(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/). FastQC offers a graphical visualisation of QC
metrics, but does not have the ability to filter data.
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Task 1:

From your home directory change into the
workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/ directory and list the directory
contents. E.g.:

cd ~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/
Is -l

ec2-user@ip-10-169-87-62:~/genomics_tutorial/data/sequencing/ecoli_exeter

File Edit View Search Terminal Help

[ec2-user@ip-10-169-87-62 ~]$ cd genomics_tutorial/data/sequencing/ecoli_exeter/
[ec2-user@ip-10-169-87-62 ecoli_exeter]$ 1ls -1

total 832220

-rw-r—-r-—. 1 ec2-user ec2-user 426091067 Dec 1 10:46 E _Coli_ CGATGT _LOOl1_R1l_001l.fastqg
-rw-r—--r——. 1 ec2-user ec2-user 426091067 Dec 1 11:21 E_Coli CGATGT_LOO1_R2 001l.fastq
[ec2-user@ip-10-169-87-62 ecoli_exeter]$ I

Note that this is a paired-end run. As such there are two files
e one forread 1 (E_Coli_ CGATGT_L001_R1_001.fastq)
¢ and the other for the reverse read 2 (E_Coli_CGATGT_L001_R2_001.fastq)

Reads from the same pair can be identified because they have the same header. Many programs
require that the read 1 and read 2 files have the reads in the same order. To view the first few headers
we can use the head and grep commands:

head E_Coli_ CGATGT_L001_R1_001.fastq | grep MISEQ
head E_Coli CGATGT_L001_R2_001.fastq | grep MISEQ

[ec2-user@ip-10-169-87-62 ecoli_exeter]$ head,E _Coli_ CGATGT_LO001_R1l_001.fastq | grep MISEQ
@MISEQ:8:000000000-A7vC1:1:1101:14839:1482 1:11:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:1101:18239:1496 1:11:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:1101:13371:1512 1:11:0:CGATGT
[ec2-user@ip-10-169-87-62 ecoli_exeter]$ head E_Coli_ CGATGT_LO01_R2 001.fastq | grep MISEQ
@MISEQ:8:000000000-A7vVC1:1:1101:14839:1482 2:11:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:1101:18239:1496 2:11:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:1101:13371:1512 2:11:0:CGATGT

The only difference in the headers for the two reads is the read number. Of course this is no
guarantee that all the headers in the file are consistent. To get some more confidence repeat the
above commands using 'tail' instead of 'head' to compare reads at the end of the files.

You can also check that there is an identical number of reads in each file using cat, grep and wc —I:

cat E_Coli_ CGATGT_L001_R1_001.fastq | grep MISEQ | wc I
cat E_Coli_CGATGT_L001_R2_001.fastq | grep MISEQ | wc I
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Now, let's start the fastqc program.

fastqc

Load the E_Coli_CGATGT_L001_R1_001.fastq file from the
workshop_meterials/genomics_tutorial/data/sequencing/ecoli_exeter directory.

FastQC

b FastQC = [@l 3
File Help
‘ New Folder} ]Bename File]
’.-"home-‘ec2-usen"genomics_tutorial.v‘datav‘sequencing.v‘ecoli_exeter ‘ v \
|Folders | |Files

[>)L

E_Coli_CGATGT_L001_R2_001.fastq .

"
Ul

v v

Selection: /home/ec2-user/genomics_tutorial/data/sequencing/ecoli_exeter

|E_Coli_CGATGT_Lo01_R1_001 fastq

Filter:
Sequence Files [v|

- ‘Q Qancelrl ‘ CEJQK

After a few minutes the program should finish analysing the FASTQ file.

While this is running, please start the filtering step described in Task 3 as this takes about 20
minutes - when it is running return here and complete these steps
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The fastqc program performs a number of tests which determines whether a green tick (pass),
exclamation mark (warning) or red cross (fail) is displayed. However it is important to realise that
fastqc has no knowledge of what your library is or should look like. All of its tests are based on a
completely random library with 50% GC content. Therefore if you have a sample which does not
match these assumptions, it may 'fail' the library. For example, if you have a high AT or high GC
organism it may fail the per sequence GC content. If you have any barcodes or low complexity
libraries (e.g. small RNA libraries) they may also fail some of the sequence complexity tests.

The bottom line is that you need to be aware of what your library is and whether what fastqc is
reporting makes sense for that type of library.

FastQC - 0O X
File Help
| E_Coli_CGATGT_Loot_R1_oo1 fastq|
@ Basic Statistics B sequ.g-:nnce LU
\Measure [Value
@ Per base sequence quality  |Filename E_Coli_CGATGT_L0o1_R1_001 fastq
R ) ) File type Conventional base calls
\{)) Pertile sequence quality Encoding Sanger / lllumina 1.9
@ Per sequence quality scores Fotal Saquenoes haa
Y Sequences flagged as poor quality 0
@ Per base sequence content Sequence length 301
%GC 50

@ Per sequence GC content

@ Per base N content

@ Sequence Length Distribution
@ Sequence Duplication Levels

f | Overrepresented sequences

In this case we have a number of errors and warnings which at first sight suggest there has been a
problem - but don't worry too much yet. Let's go through them in turn.
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Quality scores:

This is one of the most important metrics. If the quality scores are poor, either the wrong FASTQ
encoding has been guessed by fastqc (see the title of the chart), or the data itself is poor quality. This
view shows an overview of the range of quality values across all bases at each position in the FASTQ
file. Generally anything with a median quality score greater than Q20 is regarded as acceptable;
anything above Q30 is regarded as 'good'. For more details, see the help documentation in fastqc.

FastQC - 0 x
File Help
[ E_Coli_ CGATGT_L001_R1_001.fastq I
@ Elagko:Sietlstion Quality scores across all bases {Sanger / lllumina 1.9 encoding)
; 33 =
@Perbasesequencequahty [T 0. IR A8 B8 |
— 36 I I
(1) Pertile sequence quality ul H

@ Per sequence quality scores 2o
@ Per base sequence content |30

@ Per sequence GC content

@ Per base N content 24 H
@ Sequence Length Distribution| 22 E

@ Sequence Duplication Levels 2
18
) Overrepresented sequences 16

@ Adapter Content 14
@ Kmer Content 12

10
g

8
4
> LLLLLnnl
0

1 83 5 7 92024 4549 70-74 9599 120-124 150-154 180-184 210-214 240-244 270-274 300-301
Position in read (bp)

In this case this check is red - and it is true that the quality drops off at the end of the reads. It is
normal for read quality to get worse towards the end of the read. You can see that at 250 bases the
quality is still very good, we will later trim off the low quality bases so reserve judgment for now..
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Per tile sequence quality

This is a purely technical view on the sequencing run, it is more important for the team running the
sequencer. The sequencing flowcell is divided up into areas called cells. You can see that the read
quality drops off in some cells faster than others. This maybe because of the way the sample flowed
over the flowcell or a mark or smear on the lens of the optics.

’ E_Coli_CGATGT_L001_R1_001.fastq ‘

@ Basic Statistics Quality per tile

@ Per base sequence quality

| Pertile sequence quality

2118
2117

- 2115
@ Per sequence quality scores 5113

2112
@ Per base sequence content
2110

@ Per sequence GC content 2108

2107
@ Per base N content
2105

@ Sequence Length Distribution o4 g3

2102
@ Sequence Duplication Levels 115

Overrepresented sequences |1117
11186

@ Adapter Content 1114

@ Kmer Content 1112
1111

1109

1107
1106

1104
1108

1M
1 83 5 7 92024 4549 70-74 9599 120124 150-154 180-184 210-214 240-244 270-274 300-301

Position in read (bp)
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Per base sequence content:

For a completely randomly generated library with a GC content of 50% one expects that at any given
position within a read there will be a 25% chance of finding an A,C,T or G base. Here we can see that
our library satisfies these criteria, although there appears to be some minor bias at the beginning of
the read. This may be due to PCR duplicates during amplification or during library preparation. It is
unlikely that one will ever see a perfectly uniform distribution. See
http://biosciences.exeter.ac.uk/facilities/sequencing/dataguide/qualitycontrol/ for examples of good vs
bad runs as well as the fastqc help for more details.

FastQC - 0 X
Eile Help
‘ E_Coli_CGATGT_L001_R1_001.fastq I
@ Aaslo:Stetlstias Sequence content across all bases
’ 100
Per base sequence quality %T
( ‘ Per tile sequence quality %0
o 90 %A
@ Per sequence quality scores %G
@ Per base sequence content
@ Per sequence GC content |4
@ Per base N content
oo o 180
@ Sequence Length Distribution
@ Sequence Duplication Levels|5q
,1 Overrepresented sequences
40
@ Adapter Content
@ Kmer Content 20
e )
W _—
20
10
0

1 83 5 7 92024 4549 70-74 9599 120-124 150-154 180-184 210-214 240-244 270-274 300-301
Position in read {bp)
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Sequence duplication levels:

In a library that covers a whole genome uniformly most sequences will occur only once in the final set.
A low level of duplication may indicate a very high level of coverage of the target sequence, but a high
level of duplication is more likely to indicate some kind of enrichment bias (e.g. PCR over-

amplification).

This module counts the degree of duplication for every sequence in the set and creates a plot showing
the relative number of sequences with different degrees of duplication.

File Help

‘ E_Coli_CGATGT_L001_R1_001.fastq ‘

@ Basic Statistics

@ Per base sequence quality

(\-.,, ) Pertile sequence quality

100

90
@ Per sequence quality scores

@ Per base sequence content
@ Per sequence GC content |55
@ Per base N content

... |80
@ Sequence Length Distribution

@ Sequence Duplication Levels 55

GR
@ Overrepresented sequences

40
@ Adapter Content

80

FastQC

Percent of seqs remaining if decluplicated 85.08%

% Deduplicated sequences
% Total sequences

6 7 8 9 =10
Sequence Duplication Level

=50

>100 =500 =1k =5k =10k
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Overrepresented Sequences

This check for sequences that occur more frequently than expected in your data. It also checks any
sequences it finds against a small database of known sequences. In this case it has found that a small
number of reads 4000 out of 600000 appear to contain a sequence used in the preparation for the
library. A typical cause is that the original DNA was shorter than the length of the read - so the
sequencing overruns the actual DNA and runs in to the adaptors used to bind it to the flowcell.

At this level there is nothing to worry about - they will be trimmed in later stages.

FastQC - O x
Eile Help
[ E_Coli_CGATGT_L001_R1_001.fastq ‘
@ Basic Statistics | ‘ Overrepresented sequences ‘ : ‘
Sequence |Count |Percentage |Possible Source |
@ Per base sequence quality |GATCGGAAGAGCACACGTCTGAAC... | 4113 0.639[TruSeq Adapter, Index 2 (100... |

Per tile sequence quality
@ Per sequence quality scores
@ Per base sequence content
@ Per sequence GC content
@ Per base N content

@ Sequence Length Distribution

@ Sequence Duplication Levels

[ | | Overrepresented sequences

@ Adapter Content
@ Kmer Content

There are other reports available:
Have a look at them and at what the author of FastQC has to say.

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/Help/3%20Analysis%20Modules/

Remember the error and warning flags are his (albeit experienced) judgement of what typical data
should look like. It is up to you to use some initiative and understand whether what you are seeing is
typical for your dataset and how that might affect any analysis you are performing.
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Task 2

Do the same for read 2 as we have for read 1. Open fastqc and analyse the read 2 file. Look at the
various plots and metrics which are generated. How similar are they?

Note that the number of reads reported in both files is identical. This is because if one read fails to
pass the lllumina chastity filter, its partner is automatically excluded too.

Overall, both read 1 and read 2 can be regarded as 'good' data-sets.

Quality control — filtering of lllumina data

In this section we will be filtering the data to ensure any low quality reads are removed and that any
sequences containing adaptor sequences are either trimmed or removed altogether. To do this we will
use the fastq-mcf program from the ea-utils package (available at http://code.google.com/p/ea-utils/).
This package is remarkably fast and ensures that after filtering both read 1 and read 2 files are in the
correct order.

Note: Typically when submitting raw lllumina data to NCBI or EBI you would submit unfiltered data, so
don't delete your original fastq files!

A note on checking for contaminants:

A number of tools are available now which also enable to you to quickly search reads and assign them
to particular species or taxonomic groups. These can serve as a quick check to make sure your
samples or libraries are not contaminated with DNA from other sources. If you are performing a de-
novo assembly for example and have unwittingly have DNA sequence present from multiple
organisms, you will risk poor results and chimeric contigs.

Some ‘contaminants’ can turn out to be inevitable by-products of sampling and DNA extraction. This is
often the case with algae or other symbionts. In addition some groups have made some amazing
discoveries such as the discovery of a third symbiont (which turned out to be a yeast) in lichen.
http://science.sciencemag.org/content/353/6298/488.full

Some tools you can use to check the taxonomic classification of reads include:

e Kraken
e Centrifuge
e Blobology

e Blast (in conjunction with sub-sampling your reads) and Krona to plot results

We won’t do this now but will do an example in the final section of the workshop on long reads.
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Task 3

Make sure you are in the ~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/
directory. We will execute the fastq-mcf program which performs both adaptor sequence trimming and
low quality bases. To remove adaptor sequences, we need to supply the adaptor sequences to the
program. A list of the most common adaptors used is given in the file

~/workshop_materials/genomics_tutorial/data/reference/adaptors/adaptors.fasta :

View it by typing:
more ~/workshop_materials/genomics_tutorial/data/reference/adaptors/adaptors.fasta

T _ 2016 [~/workshop_data/genomics_tutorial/data/sequencing/ecoli_exeter] more ~/workshop_data/genomics_tutorial/data/reference/adaptors/adaptors.fasta
>Nextera_enrichment
CTGTCTCTTATACACATCT

>TruSeq_Readl

AGAT CGGAAGAGCACACGT CTGAACTCCAGTCA
>TruSeq_Read2

AGAT CGGAAGAGCGT CGT GT AGGGAAAGAGT GT
>Nextera_mate_pair_Readl
CTGTCTCTTATACACATCT
>Nextera_mate_pair_Read2

AGAT GT GT AT AAGAGACAG

>PolyA
AAAAAAAAAAAAAAAAAAAAAAAAAAA

To run the fastq-mcf program, type the following (all on one line):

fastg-mcf ../../reference/adaptors/adaptors.fasta E_Coli_CGATGT_L001_R1_001.fastq
E_Coli CGATGT _L001_R2 001.fastqg-o E _Coli CGATGT_L001_R1_001 filtered.fastq -o
E_Coli CGATGT _L001_R2 001 filtered.fastq -C 1000000 -q 20 -p 10 -u -x 0.01

While this is running enter the command fastg-mcf in another terminal and try to understand what all
the options do. We have found that these parameters generally work well for lllumina data.

If you would like to learn more about these options, you can look at the manual here
https://code.google.com/p/ea-utils/wiki/FastgMcf . In short we are using 1 million reads to form a
model of the sequence quality and then applying the filters which remove bases with g-score less than
20, trims adaptors allowing up to 10% mismatch in the adaptor sequence, allowing only pass-filter
reads (virtually all sequencing data is pass-filter these days, so this is just included to be safe) and
trims back reads which contain more than 1% Ns until they contain 1% or less Ns.

In case you jumped here from the Task 1, you can go back now. FastQC should be done by now.
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After a few minutes the filtering should be complete and you should see something similar to:

[ec2-user@ip-10-169-87-62 ecoli_exeter]$ fastg-mcf ../../reference/adaptors/adaptors.fasta E_Coli CGATGT LOO1_R1 0
0l1.fastqg E_Coli CGATGT LO01_R2_00l1l.fastq -o E_Coli CGATGT_LOO1 Rl _00l.filtered.fastq -o E_Coli CGATGT_LOO1_R2_001.
filtered.fastq -C 1000000 -q 20 -p 10 -u -x 0.01

Command Line: ../../reference/adaptors/adaptors.fasta E_Coli_ CGATGT_L0OO1_R1_001.fastq E_Coli_ CGATGT_L001_R2 001.fa
stq —o E_Coli_ CGATGT LO01_R1l 00l.filtered.fastq —o E_Coli_ CGATGT_LOO1l_R2 001l.filtered.fastq -C 1000000 -q 20 -p 10
-u -x 0.01

Scale used: 2.2

Filtering Illumina reads on purity field

Phred: 33

Threshold used: 1609 out of 643253

Adapter TruSeq Readl (AGATCGGAAGAGCACACGTCTGAACTCCAGTCA): counted 8548 at the 'end' of 'E_Coli CGATGT LOO1_R1_001.
fastq', clip set to 5

Adapter TruSeq Read2 (AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT): counted 6204 at the 'end' of 'E_Coli CGATGT LO01_R2_001.
fastq', clip set to 5

Adapter Short Nextera fragment of adaptor (TCGGAAGAGCACACGT): counted 12634 at the 'end' of 'E_Coli CGATGT_LOOl1_R1

_001.fastq', clip set to 4

Adapter Nextera_read 1 external adapter (ATCGGAAGAGCACACGTCTGAACTCCAGTCAC): counted 12786 at the 'end' of 'E_Coli_

CGATGT_LOO1_R1l_001.fastq', clip set to 4

Adapter Nextera_read 2 external adapter (GATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT): counted 6254 at the 'end' of 'E_Coli C

GATGT_LO001_R2_001.fastqg', clip set to 5

Too short after clip: 8895

Clipped 'end' reads (E_Coli_ CGATGT LOO1_R1l_00l.fastq): Count 18042, Mean: 34.11, sd: 40.08

Trimmed 505652 reads (E_Coli_ CGATGT_LOO1_R1_001l.fastq) by an average of 16.89 bases on quality < 20
Clipped 'end' reads (E_Coli_ CGATGT _LO0l1_R2_001l.fastq): Count 9426, Mean: 52.99, sd: 40.18

Trimmed 621151 reads (E_Coli CGATGT_LOO1_R2_001.fastq) by an average of 60.69 bases on quality < 20

You can see that the trimming has been harsher on the R2 reads than on the R1 - this is generally to
be expected in lllumina paired end runs.

If we look at the sizes of the files produced:

Is -l

[ec2-user@ip-10-169-87-62 ecoli_exeter]$ 1ls -1

total 1568644

-rw-r--r-—. 1 ec2-user ec2-user 426091067 Dec 1 10:46 E_Coli_ CGATGT_LOO1_R1l _001l.fastq
-rw-rw-r—-—. 1 ec2-user ec2-user 405632367 Dec 1 13:33 E _Coli CGATGT LOO1_R1l 00l.filtered.fastqg
-rw-r—--r——. 1 ec2-user ec2-user 426091067 Dec 1 11:21 E_Coli_ CGATGT_LOO1l_R2 001.fastq
-rw-rw-r—-—-. 1 ec2-user ec2-user 348453609 Dec 1 13:33 E Coli CGATGT LO01_R2 00l.filtered.fastqg

You can see that the original files are exactly the same size, but the R2 filtered file is smaller than R1.
Now count the lines in all the files

wc -l * filtered.fastq

[ec2-user@ip-10-169-87-62 ecoli_exeter]$ wc -1 *.filtered.fastq
2537432 E_Coli_CGATGT_LOO1_R1l_00l.filtered.fastq
2537432 E_Coli_ CGATGT_LOO1_R2 00l.filtered.fastq

Ay A~ . .

Although the reads have been trimmed differently - the number of reads in the R1 and R2 files are
identical. This is required for all the tools we will use to analyse paired end data.
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Task 4

Check the quality scores and sequence distribution in the fastqc program for the two filtered
fastq files. You should notice very little change (since comparatively few reads were filtered).

However, you should notice a significant improvement in quality and the absence of adaptor
sequences.

Task 5

We can perform a quick check (although this by no means guarantees) that the sequences in
read 1 and read 2 are in the same order by checking the ends of the two files and making sure
that the headers are the same.

head E_Coli_CGATGT_L001_R1_001 filtered.fastq | grep MISEQ

head E_Coli_CGATGT_L001_R2_001 filtered.fastq | grep MISEQ

tail E_Coli_CGATGT_L001_R1_001 filtered.fastq | grep MISEQ

tail E_Coli_CGATGT_L001_R2_001 filtered.fastq | grep MISEQ

[ec2-user@ip-10-169-87-62 ecoli_exeter]$ head E_Coli_ CGATGT_LO01_R1l_001.filtered.fastq | grep MISEQ
@MISEQ:8:000000000-A7vC1:1:1101:17200:1633 1:N:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:1101:10456:1673 1:N:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:1101:16582:1688 1:N:0:CGATGT
[ec2-user@ip-10-169-87-62 ecoli_exeter]$ head E_Coli_ CGATGT_LO01_R2 001.filtered.fastq | grep MISEQ
@MISEQ:8:000000000-A7vC1:1:1101:17200:1633 2:N:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:1101:10456:1673 2:N:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:1101:16582:1688 2:N:0:CGATGT
[ec2-user@ip-10-169-87-62 ecoli_exeter]$ tail E_Coli_ CGATGT_LO01_R1l_001.filtered.fastq | grep MISEQ
@MISEQ:8:000000000-A7vC1:1:2119:19669:25236 1:N:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:2119:10145:25237 1:N:0:CGATGT
[ec2-user@ip-10-169-87-62 ecoli_exeter]$ tail E_Coli_ CGATGT L001_R2_001.filtered.fastq | grep MISEQ
@MISEQ:8:000000000-A7vC1:1:2119:19669:25236 2:N:0:CGATGT
@MISEQ:8:000000000-A7vC1:1:2119:10145:25237 2:N:0:CGATGT

Task 6

Check the number of reads in each filtered file. They should be the same. To do this use the
grep command to search for the number of times the header appears. E.g:

grep -c MISEQ E_Coli_ CGATGT_L001_R1_001 filtered.fastq

Do the same for the E_Coli_CGATGT_L001_R2_001.filtered.fastq file.
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Aligning lllumina data to a reference sequence

Now that we have checked the quality of our raw data, we can begin to align the reads against a
reference sequence. In this way we can compare how the reference sequence and the strain we have
sequenced compare.

To do this we will be using a program called BWA (Burrows Wheeler Aligner Li H. and Durbin R. (2009)
Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25:1754-60. ). This
uses an algorithm called (unsurprisingly) Burrows Wheeler to rapidly map reads to the reference
genome. BWA also allows for a certain number of mismatches to account for variants which may be
present in strain 1 vs the reference genome. Unlike other alignment packages such as Bowtie (version
1) BWA allows for insertions or deletions as well.

By mapping reads against a reference, what we mean is that we want to go from a FASTQ file listing
lots of reads, to another type of file (which we'll describe later) which lists the reads AND where/if it
maps against the reference genome. The figure below illustrates what we are trying to achieve here.
Along the top in grey is the reference sequence. The coloured sequences below indicate individual
sequences and how they map to the reference. If there is a real variant in a bacterial genome we
would expect that (nearly) all the reads would contain the variant at the relevant position rather than
the same base as the reference genome. Remember that error rates for any single read on second
generation platforms tend to be around 0.5-1%. Therefore a 300bp read is on average likely to contain
at 2-3 errors.

Let's look at 2 potential sources of artefacts.
1. Sequencing error:

The region highlighted in green on the right shows that most reads agree with the reference sequence
(i.e. C-base). However, 2 reads near the bottom show an A-base. In this situation we can safely
assume that the A-bases are due to a sequencing error rather than a genuine variant since the
‘variant’ has only one read supporting it. If this occurred at a higher frequency however, we would
struggle to determine whether it was a genuine variant or an error.

2. PCR duplication:
The highlighted region red on the left shows where there appears to be a variant. A C-base is present

in the reference and half the reads, whilst an A-base is present in a set of reads which all start at the
same position.
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Is this a genuine difference or a sequencing or sample prep error? What do you think? If this was a
real sample, would you expect all the reads containing an A to start at the same location?

The answer is probably not. This 'SNP' is in fact probably an artefact of PCR duplication. l.e. the same
fragment of DNA has been replicated many times more than the average and happens to contain an
error at the first position. We can filter out such reads during after alignment to the reference (see
later).

Note that the entire region above seems to contain lots of PCR duplicates with reads starting at the
same location. In the case of the region highlighted in red, this will likely cause a false SNP call. The
area in green also contains PCR duplicates — the As at these positions are probably either sequencing
errors or errors introduced during PCR.

It's always important to think critically about any finding - don't assume that whatever bioinformatic
tools you are using are perfect. Or that you have used them perfectly.

Indexing a reference genome:

Before we can start aligning reads to a reference genome, the genome sequence needs to be
indexed. This means sorting the genome into easily searched chunks.
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Task 7: Generating an index file from the reference sequence
Change directory to the reference directory:
cd ~/workshop_materals/genomics_tutorial/data/reference/U00096/
List the files:
Is -l
[ec2-user@ip-10-169-87-62 U00096]$ 1s -1
total 6760

-rw-r——-r—-—. 1 ec2-user ec2-user 4708048 Dec 1 10:43 U00096.fna
-rw-r--r-—. 1 ec2-user ec2-user 2208485 Dec 1 10:43 U00096.gff

In this directory we have 2 files. U00096.fna is a FASTA file which contains the reference genome
sequence. The U00096.gff file contains the annotation for this genome. We will use this later.

First, let's looks at the bwa command itself. Type:
bwa

This should yield something like:

: bwa (alignment via Burrows-Wheeler transformation)
: 0.7.15-r1142-dirty
: Heng L1 <lh3@sanger.ac.uk>

bwa <command> [options]

: 1ndex index sequences 1in the FASTA format
mem BWA-MEM algorithm
fastmap 1dentify super-maximal exact matches
pemerge merge overlapping paired ends (EXPERIMENTAL)
aln gapped/ungapped alignment
samse generate alignment (single ended)
sampe generate alignment (paired ended)
bwasw BWA-SW for long queries

shm manage indices 1in shared memory

fa2pac convert FASTA to PAC format

pac2bwt generate BWT from PAC

pac2bwtgen alternative algorithm for generating BWT
bwtupdate update .bwt to the new format

bwt2sa generate SA from BWT and Occ

Note: To use BWA, you need to first index the genome with “bwa index'.
There are three alignment algorithms in BWA: “mem', “bwasw', and
“aln/samse/sampe’'. If you are not sure which to use, try “bwa mem’
first. Please "man ./bwa.l' for the manual.

BWA is actually a suite of programs which all perform different functions. We are only going to use two
during this workshop, bwa index, bwa mem

If we type:

bwa index
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We can see more options for the bwa index command:

bwa index [options] <in.fasta>

-a STR BWT construction algorithm: bwtsw, is or rb2 [auto]
-p STR prefix of the index [same as fasta namel _
-b INT block size for the bwtsw algorithm (effective with -a bwtsw) [10000000]

-6 index files named as <in.fasta=>.64.* instead of <in.fasta>.*

“-a bwtsw' does not work for short genomes, while “-a 1s' and
“-a div' do not work not for long genomes.

By default bwa index will use the IS algorithm to produce the index. This works well for most genomes,
but for very large ones (e.g. vertebrate) you may need to use bwtsw. For bacterial genomes the
default algorithm will work fine.

Now we will create a reference index for the genome using BWA:

bwa index U00096.fna

- 1 : e age S ata s al/mas ata 96% bwa 1ndex UGEE96.fna
Pack FASTA... 0.04 sec
Construct BWT for the packed sequence...
0.83 seconds elapse.
Update BWT... 0.02 sec
Pack forward-only FASTA... 0.02 sec
| Construct SA from BWT and Occ... 0.44 sec
[main] Version: 0.7.15-r1142-dirty
[main] CMD: bwa index U@E096.fna
[main] Real time: 1.720 sec; CPU: 1.352 sec

If you now list the directory contents using the 'Is' command, you will notice that the BWA index
program has created a set of new files. These are the index files BWA needs.

genomics@ger i

00096.fna UOOO%.fha.alﬁt.J U00096.fna.ann UOOOéG.fna.bwt U00096.fna.pac UOOOQB,fna.sa UO0Q96.gff

1 t/ge torage ta/ge . e ta/reference/U00096% [

genomics@ger
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Task 8: Aligning reads to the indexed reference sequence:

Now we can begin to align read 1 and read 2 to the reference genome. First of all change back into
the ~/workshop_meterials/genomics_tutorial/data/sequencing/ecoli_exeter/ directory and create a
subdirectory to contain our remapping results.

cd ~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/

mkdir remapping_to_reference

cd remapping_to_reference

cd ~/workshop data/genomics_tutorial/data/sequencing/ecoli_exeter/

mkdir remapping_to_reference
cd remapping_to_reference

genomics_201¢
jenomics_2016
jenomi 2016

jenomi a c L remapping_to_reference] pwd
/home/genomlcs/workshop data/genomlcs tutor1al/data/sequenc1ng/ecol1 exeter/remapplng to_reference
genomics_2016 [~ rkshop_data/genomics_tutorial/data/sequencing/ecoli_exeter/remapping_to_reference] JJ

Let's explore the alignment options BWA MEM has to offer. Type:

bwa mem



Part 2: Task 8: Aligning reads to the indexed reference sequence:
sage: bwa mem [options] <idxbase> <inl.fqgq> [in2.fq]
Algorithm options:

number of threads [1]

minimum seed length [19]

band width for banded alignment [100]

off-diagonal X-dropoff [100]

look for internal seeds inside a seed longer than {-k} * FLOAT [1.5]
seed occurrence for the 3rd round seeding [20]

skip seeds with more than INT occurrences [500]

drop chains shorter than FLOAT fraction of the longest overlapping chain [0.50]
discard a chain if seeded bases shorter than INT [0]

perform at most INT rounds of mate rescues for each read [50]

skip mate rescue

skip pairing; mate rescue performed unless -S also in use

Vo
TWI TOUOO T QAL Xt

options:

INT score for a sequence match, which scales options -TdBOELU unless overridden [1]
INT penalty for a mismatch [4]

INT[,INT] gap open penalties for deletions and insertions [6,6]

INT[,INT] gap extension penalty; a gap of size k cost "{-0} + {-E}*k' [1,1]

INT[,INT] penalty for 5'- and 3'-end clipping [5,5]

INT penalty for an unpaired read pair [17]

STR read type. Setting -x changes multiple parameters unless overriden [null]
pacbio: -k17 -W40 -rl0 -Al -Bl -01 -E1 -LO (PacBio reads to ref)
ont2d: -k14 -W20 -rl0 -Al -Bl -01 -E1 -LO (Oxford Nanopore 2D-reads to ref)
intractg: -B9 -016 -L5 (intra-species contigs to ref)

Input/output options:

smart pairing (ignoring in2.fq)

STR read group header line such as '@RG\tID:foo\tSM:bar' [null]

STR/FILE insert STR to header if it starts with @; or insert lines in FILE [null]
treat ALT contigs as part of the primary assembly (i.e. ignore <idxbase>.alt file)
always take the leftmost alignment on a read as primary

]
M= T DT

INT verbose level: l=error, 2=warning, 3=message, 4+=debugging [3]
INT minimum score to output [30]
INT[,INT] if there are <INT hits with score >80% of the max score, output all in XA [5,200]
output all alignments for SE or unpaired PE
append FASTA/FASTQ comment to SAM output
output the reference FASTA header in the XR tag
use soft clipping for supplementary alignments
mark shorter split hits as secondary

E<X<O0 T A<

'
—

FLOAT[,FLOAT[,INT[,INT]]1]
specify the mean, standard deviation (10% of the mean if absent), max
(4 sigma from the mean if absent) and min of the insert size distribution.
FR orientation only. [inferred]

The basis format of the command is:

Usage: bwa mem [options] <idxbase> <inl.fqg> [in2.fq]

We can see that we need to provide BWA with a FASTQ files containing the raw reads (denoted by
<in.fg> and <in2.fq>) to align to a reference file (unhelpfully this is listed as <idxbase>). There are also
a number of options. The most important are the maximum number of differences in the seed (-k i.e.
the first 32 bp of the sequence vs the reference), the number of processors the program should use (-t
— our machine has 2 processors).

Our reference sequence is in
~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.fna

Ouir filtered reads in
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/E_Coli_CGATGT_L001_R1_0
01 filtered.fastq
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~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/E_Coli_CGATGT_L001_R2_0
01 filtered.fastq

So to align our paired reads using processors and output to file E_Coli_CGATGT_L001_filtered.sam:

type, all on one line:

bwa mem -t 2 ~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.fna
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/E_Coli_ CGATGT_L001_R1_0
01 filtered.fastq
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/E_Coli_ CGATGT_L001_R2_0
01 .filtered.fastq > E_Coli_CGATGT_L001_filtered.sam

This will take about 5 minutes to complete.
There will be quite a lot of output but the end should look like:

::process] read 70094 sequences (18721937 bp)...
m_pestat] # candidate unique pairs for (FF, FR, RF, RR): (1, 26431, 0, 3)
m_pestat] skip orientation FF as there are not enough pairs
m \_pestat] analyzing insert size distribution for orientation FR...
m_pestat] (25, 50, 75) percentile: (518, 580, 642)
m_pestat] low and high boundaries for computing mean and std.dev: (270, 890)
m pestat] mean and std.dev: (577.01, 102.93)
m _pestat] low and high boundaries for proper pairs: (146, 1014)
m_pestat] skip orientation RF as there are not enough pairs
m _pestat] skip orientation RR as there are not enough palrs
m_process_seqs] Processed 75290 reads in 7.280 CPU sec, 3.628 real sec
m pestat] # candidate unique pairs for (FF, FR, RF, RR) (1 24724, 0, 0)
m_pestat] skip orientation FF as there are not enough pairs
m_pestat] analyzing insert size distribution for orientation FR...
m pestat] (25, 50, 75) percentile: (519, 581, 641)
m_pestat] low and high boundaries for computing mean and std.dev: (275, 885)
m_pestat] mean and std.dev: (577.10, 100.85)
m pestat] low and high boundaries for proper pairs: (153, 1007)
m_pestat] skip orientation RF as there are not enough pairs
m_pestat] skip orientation RR as there are not enough palrs
m_process_seqs] Processed 70094 reads in 6.572 CPU sec, 3.306 real sec
maln] Version: 0.7.15-r1142-dirty
main] CMD: bwa mem -t 2 ../../reference/U00096/U00096.fna E_Coli_CGATGT_L0O1_R1_001.filtered.fastq E_Coli_CGATGT_L0OO1_R2_001.filtered.fastq
main] Real time: 63.015 sec; CPU: 124.824 sec
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Viewing the alignment

Once the alignment is complete, list the directory contents and check that the alignment file is present.
Is -lh

- 1 genomics workshop 780M Jan 2 15:37 E_Coli CGATGT L0OO1 filtered.sam

Note: Is -Ih outputs the size of the file in human readable format (780Mb in this case — yours may be
slightly different depending on the storage options you selected when you started the AMI)

The raw alignment is stored in what is called SAM format (Simple AlignMent format). It is in plain text
format and you can view it if you wish using the 'less' command. Do not try to open the whole file in a
text editor as you will likely run out of memory!

less E_Coli_CGATGT_LO001_filtered.sam

MISEQ:8:000000000-A7vC1:1:1101:17200:1633 83 gi|545778205|gb|U00096.3| 881006 60 137M =
880711 -432 GGTAAAGATGCCGGGGCGACGGGAAAGCCGGAACGGCGTGGTTCATCGGTAATGTTCCGCAAACCGGGCGATCAGGTTTCGGTGGCAGACT

TGAACAAAGGTGTGATTATCCAGTCCGGTAATGACGCCTGTATTGC @9, @D>@8+8+++>@>+?A+AE?A86+++B:+8++>+B,B:,, , 8, ,EA AC, 8++++, ,B

@8++cC@@,C:, ,Cc8++++EC, CC,CR<, , ,CCC, CCCRC, C, CC, IESCCFEEDGGC 5GC CCc9 NM:i:5 MD:Z:12T13T4C2T23T78

AS:i:112 Xs:i:0

MISEQ:8:000000000-A7vC1:1:1101:17200:1633 163 gi| 545778205 |gb|U00096.3| 880711 60 84M =
881006 432 TACTCGGGTGGCCTTTCTCCCGCACTACTCCTCTCTCCTTCGTGCTCTTCCAGCGGGTTCTGCATTTTTCTTCCTTTTTTCCCC 8,A

6C, ,+;++;,;CC,<,,;+8++7, ; 6CC<CRC<CECCC, ;,, 9CCC, <, , ; +++88BC, <, <99@B, 9:BEB@@@=+:??A NM:i:9 MD:Z:12A3A1G0A4A19G4G

19A9G4 AS:i:39 Xs:i:0

MISEQ:8:000000000-A7vC1:1:1101:10456:1673 83 gi|545778205|gb|U00096.3| 1864278 60 42M =
1863862 -458 GGGTAAAACTTGTGAAATCGATCTTGAATCACATGGCGAATT CC; ,@C<<, , 9EAFFFC7GGGGFGC 5GGGGGCCCCY

NM:i:0 MD:Z:42 AS:i:42 Xs:i:0

Each alignment line has 11 mandatory fields for essential alignment information such as mapping
position, and a variable number of optional fields for flexible or aligner specific information. For further
details as to what each field means see http://samtools.sourceforge.net/SAM1.pdf
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Task 9: Convert SAM to BAM file

Before we can visualise the alignment however, we need to convert the SAM file to a BAM (Binary
AlignMent format) which can be read by most software analysis packages. To do this we will use
another suite of programs called samtools. Type:

samtools view

Usage: samtools view [options] <in.bam>|<in.sam>|<in.cram> [region

Options:
-b output BAM
-C output CRAM (requires -T)
-1 use fast BAM compression (implies -b)
uncompressed BAM output (implies -b)
include header in SAM output
print SAM header only (no alignments)
print only the count of matching records
FILE output file name [stdout]
FILE output reads not selected by filters to FILE [null]
FILE FILE listing reference names and lengths (see long help) [null]
FILE only include reads overlapping this BED FILE [null]
STR only include reads in read group STR [null]
FILE only include reads with read group listed in FILE [null]
INT only include reads with mapping quality >= INT [0]
STR only include reads in library STR [null]
INT only include reads with number of CIGAR operations consuming
query sequence >= INT [0]
INT only include reads with all bits set in INT set in FLAG [0]
INT only include reads with none of the bits set in INT set in FLAG [0]
STR read tag to strip (repeatable) [null]
collapse the backward CIGAR operation
FLOAT integer part sets seed of random number generator [0];
rest sets fraction of templates to subsample [no subsampling]
--threads INT
number of BAM/CRAM compression threads [0]
print long help, including note about region specification
ignored (input format is auto-detected)
--input-fmt-option OPT[=VAL]
Specify a single input file format option in the form
of OPTION or OPTION=VALUE
--output-fmt FORMAT[,OPT[=VAL]]...
Specify output format (SAM, BAM, CRAM)
--output-fmt-option OPT[=VAL]
Specify a single output file format option in the form
of OPTION or OPTION=VALUE
--reference FILE
Reference sequence FASTA FILE [null]

We can see that we need to provide samtools view with a reference genome in FASTA format file (-T),
the -b and -S flags to say that the output should be in BAM format and the input in SAM, plus the
alignment file.
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Remember our reference sequence is in
~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.fna

Type (all on one line):

samtools view -bS -T
~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.fna
E_Coli_CGATGT_L001_filtered.sam > E_Coli_CGATGT_L001_filtered.bam

This should take around 2 minutes. Note that for larger datasets you may wish to set multiple threads
as well with the --threads option.

Is -lh

It's always good to check that your files have processed correctly if something goes wrong it's better to
catch it immediately.

genomics@g
total 1.1G

-r--r--1 genomlcs workshop 254M Jan 2 15 42 E Coll CGATGT_L0OO1_ flltered bam

Note that the bam file is smaller than the sam file - this is to be expected as the binary format is more
efficient.

Task 10: Sort BAM file

Once this is complete we then need to sort the BAM file so that the reads are stored in the order they
appear along the chromosomes (don't ask me why this isn't done automatically....). We can do this
using the samtools sort command.

samtools sort E_Coli CGATGT_L001_filtered.bam -0 E_Coli CGATGT_L001_filtered.sorted.bam

This will take another minute or so.

- 1 genomics workshop 254M Jan 2 15:42 E_Coli_CGATGT_LOO1_ filtered.bam

- 1 genomics workshop 780M Jan 2 15:37 E_Coli_CGATGT_LOO1 filtered.sam
- 1 genomics workshop 185M Jan 2 15:50 E Coli CGATGT LOO1 filtered.sorted.bam

A note on piping BWA and samtools commands:

In tasks 8-10 we aligned reads to the reference genome, converted SAM to BAM and then sorted the
resulting BAM file. For clarity we have shown these as individual steps. However, in real-life, it is faster
and easier to do these simultaneously using Unix pipes!
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E.g. (there is no need to do this)

bwa mem -t 2 ~/workshop_meterials/genomics_tutorial/data/reference/U00096/U00096.fna
~/workshop_meterials/genomics_tutorial/data/sequencing/ecoli_exeter/E_Coli_CGATGT_L001_R1_0
01 filtered.fastq
~/workshop_meterials/genomics_tutorial/data/sequencing/ecoli_exeter/E_Coli_CGATGT_L001_R2_0
01 filtered.fastq > E_Coli_CGATGT_L001_filtered.sam \

| samtools sort -O bam -0 E_Coli_CGATGT_L001_filtered.sorted.bam

Note that the latest versions of samtools sort can output BAM files.

Task 11: Remove suspected PCR duplicates

Especially when using paired-end reads, samtools can do a reasonably good job of removing potential
PCR duplicates (see the first part of this workshop if you are unsure what this means).

Again, samtools has a great little command to do this called rmdup.
On the command-line type:

samtools rmdup E_Coli CGATGT_L001 _filtered.sorted.bam
E_Coli CGATGT _L001_filtered.sorted.rmdup.bam

[bam_rmdup_core] processing reference U00096.3...
[bam_rmdup_core] inconsistent BAM file for pair 'MISEQ:8:000000000-A7VC1:1:2117:24462:9451'. Continue anyway.
[bam_rmdup_core] inconsistent BAM file for pair "MISEQ:8:000000000-A7VC1:1:2117:25993:22308'. Continue anyway.
[bam_rmdup_core] inconsistent BAM file for pair 'MISEQ:8:000000000-A7VC1:1:1113:11936:9295'. Continue anyway.
[bam_rmdup_core] 31 unmatched pairs

[bam_rmdup_core] 9680 / 458450 = 0.0211 in library '

genomics@genomi build-2:/mnt/genomics storage/wo
total 1.4

-rw-r--r-- 1 genomics workshop 254M Jan 2 15:42 E_Coli_CGATGT_L0OO1 filtered.bam
-rw-r--r-- 1 genomics workshop 780M Jan 2 15:37 E_Coli_CGATGT_L0OO1_filtered.sam
-rw-r--r-- 1 genomics workshop 185M Jan 2 15:50 E Coli_ CGATGT L0O01 filtered.sorted.bam
-rw-r--r-- 1 genomics workshop 183M Jan 2

15:57 E_Coli CGATGT_L0O1

filtered.sorted.rmdup.bam

You will notice some warnings about inconsistent BAM file for pair - this is just a warning that a pair of
reads does not align together on the genome within the expected tolerance - it is normal to expect
some of these, and you can ignore.

Task 12: Index the BAM file

Most programs used to view BAM formatted data require an index file to locate the reads mapping to a
particular location quickly. You can think of this as an index in a book, telling you where to go to find
particular phrases or words. We'll use the samtools index command to do this.

Type:
samtools index E_Coli_ CGATGT_L001_filtered.sorted.rmdup.bam
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genomics workshop 254M Jan 15:42 E_Coli_CGATGT_L0OO1 filtered.bam
genomics workshop 780M Jan 15:37 E_Coli

“CGATGT_L001 filtered.sam

genomics workshop 185M Jan 15:50 E_Coli_CGATGT_L0O1 filtered.sorted.bam

genomics workshop 183M Jan 15:57 E_Coli_CGATGT_L0OO1 filtered.sorted.rmdup.bam
ics workshop 15K Jan 15:59 FE Coli CGATGT L0Q1 filtered.: g . . .

We should obtain a .bai file (known as a BAM-index file).

Task 13: Obtain mapping statistics

Finally we can obtain some summary statistics.

samtools flagstat E_Coli_ CGATGT_L001_filtered.sorted.rmdup.bam > mappingstats.txt

This should only take a few seconds. Once complete view the mappingstats.txt file using a text-editor
(e.g. gedit or nano) or the 'more' command.

1250574 + 0 in total (QC-passed reads + QC-failed reads)
) + 0 secondary
1151 + O supplementary
D) + 0 duplicates
898936 + 0 mapped (71.88% : N/A)
1249423 + 0 paired in sequencing
0 readl

0 read2
O properly paired (71.55% : N/A)
0 with itself and mate mapped
singletons (0.11% : N/A)
D + O with mate mapped to a different chr
D + 0 with mate mapped to a different chr (mapQ>=b5)

So here we can see we have 1250574 reads in total, none of which failed QC.
71.88% of reads mapped to the reference genome and 71.55% mapped with the expected 500-600bp
distance between them. 1414 reads could not have their read-pair mapped.

0 reads have mapped to a different chromosome than their pair (0 has a mapping quality > 5 — this is
a Phred scaled quality score much as we say in the FASTQ files). If there were any such reads they
would likely due to repetitive sequences (e.g phage insertion sites) or an insertion of plasmid or phage
DNA into the main chromosome.
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Task 15: Cleanup
We have a number of leftover intermediate files which we can now remove to save space.
Type (all on one line):

rm E_Coli_ CGATGT_L001_filtered.sam E_Coli_CGATGT_L001_filtered.bam
E_Coli CGATGT _L001_filtered.sorted.bam

In case you get asked if you are sure to remove 3 arguments type in “yes” and hit enter.
You should now be left with the processed alignment file, the index file and the mapping stats.

total 183M
-rw-r--r-- 1 genomics workshop 183M Jan 2 15:57 E_Coli_CGATGT_L001 filtered.sorted.rmdup.bam

-rw-r--r-- 1 genomics workshop 15K Jan 2 15:59 E_Coli_CGATGT_L0OO1 filtered.sorted.rmdup.bam.bai
-rw-r--r-- 1 genomics workshop 422 Jan 2 16:00 mappingstats.txt

Well done! You have now mapped, filtered and sorted your first whole genome data-set!
Let's take a look at it!

Task 16: QualiMap

Qualimap (http://qualimap.bioinfo.cipf.es/) is a program that summarises the alignment in much more
detail than the mapping stats file we produced. It's a technical tool which allows you to assess the
sequencing for any problems and biases in the sequencing and the alignment rather than a tool to
deduce biological features.

There are a few options to the program, We want to run bamqc. Type:
qualimap bamqc
to get some help on this command.

To get the report, first make sure you are in the directory:
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/remapping_to_reference
then run the command:
qualimap bamqc -outdir bamqc -bam E_Coli_CGATGT_L001_filtered.sorted.rmdup.bam -gff
~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.gff

this creates a subfolder called bamqc

total 183M
drwxr-xr-x 5 genomics workshop 4.0K Jan

-rw-r--r-- 1 genomics workshop 183M Jan : Eott=CGATGT_LOO1_filtered.sorted.rmdup.bam
-rw-r--r-- 1 genomics workshop 15K Jan 2 15: 59 E C011 CGATGT LOOl filtered.sorted.rmdup.bam.bai
-rw-r--r-- 1 genomics workshop 422 Jan 2 16:00 mappingstats.txt

cd to this directory and run
firefox qualimapReport.html

There is a lot in the report so just a few highlights:
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Coverage across reference

Coverage across reference
E_Coli_CGATGT_L001_filtared.sorted fillmd.rmdup.bam (inside of regions)

Coverage (X)
o
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This shows the number of reads that 'cover' each section of the genome. The red line shows a rolling
average around 50x - this means that on average every part of the genome was sequenced 50X. It is
important to have sufficient depth of coverage in order to be confident that any features you find in
your data are real and not a result of sequencing errors.

What do you think the regions of low/zero coverage correspond to?
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[nsert Size Histogram

Insert Size Histogram
E_Coli_CGATGT_L001_filtered.sorted fillmd.rmdup. bam (inside of regions)
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The Insert Size Histogram displays the range of sizes of the DNA fragments. It shows how well your
DNA was size selected before sequencing. Note that the 'insert' refers to the DNA that was inserted
between the sequencing adaptors, so equates to the size range of the DNA that was used.

In this case we have 300 paired end reads and our insert size varies around 600 bases - so there
should only be a small gap between the reads that was not sequenced.

Have a look at some of the other graphs produced.
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Task 17: Load the Integrative Genomics Viewer

The Integrative Genome Viewer (IGV) is a tool developed by the Broad Institute for browsing
interactively the alignment data you produced. It has a wealth of features and we can only cover some
basics to get you started. Go to http://www.broadinstitute.org/igv/ to get more information.

In your terminal, type
igv.sh
Or you can click the icon on the desktop.

IGV viewer should appear:

w IGV 51 ¢
File Genomes View Tracks Regions Tools GenomeSpace Help

Human hg18 w | |All v ’

co i @ [ = =2 oo &

1 3 5 7 Q 1 13 15 17 1

9 2
2 4 -] 8 10 12 14 18 18 20

1 X
22 Y
| | | [ IS (NS (N [ S S S— S N I I I . —

I [KH

< D«

RefSeq genes m‘ PRTTIITTE IPU ,hl JERITY PPN .MML_._.LJM“MJLLM

[f1 Il |[aosm of 758M

Notice that by default a human genome has been loaded.
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Task 18a: Import the E.coli U0009 reference genome to IGV

By default IGV does not contain our reference genome. We'll need to import it.

Click on 'Genomes ->Create .genome file..."

Unique identifier ’U00096 ‘

Descriptive name ’E.coli u00096 ‘

FASTA file "home/genomicS/workshop_data/genomics_tutoriaI/data/reference/UOOOQG/UOO096.fna‘ Bro...
Optional

Cytoband file ‘ ‘ Bro...
Gene file ‘/home/genomics/workshop_data/genomics_tutorial/data/reference/U00096/U00096.gff‘ Bro...

Alias file ] [ ero...

} OK ’ } Cancel l

Enter the information above and click on ‘OK’ .

IGV will ask where it can save the genome file. Your home directory will be fine.

Save .genome file x
Save In: |[]genomics v E
[J Desktop [ Pictures
Documents Public
[ Downloads (] Templates
Jigv [ videos
] media (] workshop_data
miniconda2 [} evomics_2016.jpg
[ Music
File Name: 'UD0096.genome |
Files of Type: IAII Files iv]
Save I i Cancel |

Click 'Save' again.



Part 2: Task 18b: Load the BAM file

Note that the genome and the annotation have now been imported.

Ecoli U00096 w | |U00096.3 w | |U00096.3 ‘Go

*

-
Gene F___ =
H bd iy kcZ gk ma 1o ybjE forT HuE rbA hipA dep bp md fiD wza fdn akA yfeZ miF ascF ygel gss garl fis yfF yhjA ycR mC did nfi cfC yfF mm

Task 18b: Load the BAM file

Load the alignment file. Note that IGV requires the .bai index file to also be in the same directory.
Select File... and Load From File

 Select Files (on genomics-build-2) [
Look In: |Jremapping_to_reference v = 3:3:| o—
] bamgqc

[ E_Coli_CGATGT L001 filtered.sorted.rmdup.bam |
[} E_Coli_CGATGT_L001 filtered.sorted.rmdup.bam.bai
[y mappingstats.txt

File Name: [E Coli CGATGT LOO1 filtered.sorted.rmdup.bam |

Files of Type: |AII Files lvl

Open Cancel

Select the bam file and click open

Once loaded your screen should look similar to the following. Note that you can load more BAM files if
you wish to compare different samples or the results of different mapping programs.
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L4

File Genomes View Tracks Regions Tools GenomeSpace Help

IGV

E.coli U00096

- ‘ ‘gl|545778205|g...| -

=

@’ﬂfﬂﬁ@

E e [#

4532 kb

b 1,000 kb 2,000 kb 3,000 kb
| | | | | |

4,000 kb
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Use the +/- keys to zoom in or use the zoom bar at the top right of the screen to zoom into
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| I I |
[ i
ool
E_Coli CGATGT_Loo01_filtered.sorted fillmd.rmdup.ba

Rename Track...
Copy read details to clipboard

Group alignments by
Sort alignments by
Color alignments by

VI Shade base by quality
¥ Show mismatched bases
-] Show all bases

[J View as pairs
Go to mate
View mate region in split screen

[ Set insert size options ...

Re-pack alignments

(i

Right click on the main area and select view as pairs

The gray graph at the top of the figure indicates the coverage of the genome:

[0-74)

The more reads mapping to a certain location, the higher the peak on the graph. You'll see a coloured
line of blue, green or red in this coverage plot if there are any SNPs (single-nucleotide polymorphisms)
present (there are none in the plot). If there are any regions in the genome which are not covered by
the reads, you will see these as gaps in the coverage graph. Sometimes these gaps are caused by
repetitive regions; others are caused by genuine insertions/deletions in your new strain with respect to
the reference.

Below the coverage graph is a representation of each read pair as it is mapped to the genome. One
pair is highlighted.

This pair consists of 2 reads with a gap (there may be no gap if the reads overlap) Any areas of
mismatch either due to inconsistent distances between paired-end reads or due to differences
between the reference and the read and are highlighted by a colour. The brighter the colour, the
higher the base-calling quality is estimated to be. Differences in a single read are likely to be
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Task 19: Read about the alignment display format

sequencing errors. Differences consistent in all reads are likely to be mutations.

Hover over a read to get detailed information about the reads' alignment:

i

Leftalignment

Read name = MISEQ:8:000000000-A7VC1:1:2112:3986:8017
Location =U00096.3:2,319,925
Alignment start =2,319,293 (+)
Cigar =270M

Mapped =yes

Mapping quality = 60
Secondary = no
Supplementary = no

Duplicate = no

Failed QC =no

Mate is mapped =yes

Mate start = U00096.3:2319858 (-)
Insert size = 753

Firstin pair

Pair orientation = F1R2

¥ MD =221A10A37

NM =2

AS =260

XS =0

Right alignment

Read name = MISEQ:8:000000000-A7VC1:1:2112:3986:8017
Location = U00096.3:2,319,925
Alignment start = 2,319,859 (-)
Cigar = 187M

Mapped =yes

Mapping quality = 60
Secondary =no
Supplementary = no

Duplicate = no

Failed QC = no

Base =C

Base phred quality =25

Mate is mapped =yes

Mate start = U00096.3:2319292 (+)
Insert size =-753

Second in pair

Pair orientation = F1R2

MD =12T27T146

NM =2

AS =177

You don't need to understand every value, but compare this to the SAM format to get an idea of what

is there.

SNPs and Indels

The following 3 tasks are open-ended. Please take your time with these. Read the examples on the

following page if you get stuck.

Task 19: Read about the alignment display format

Visit http://www.broadinstitute.org/software/igv/AlignmentData

Task 20a: Manually identify a region without any reads mapping.

It can be quite difficult to find even with a very small genome. Zoom out as far as you can and still see
the reads. Use the coverage plot from QualiMap to try to find it. Are there genes associated?

Because of the way IGV handles BAM files, it will not display coverage information if you zoom out too
far. To get coverage information across the entire genome, regardless of how far you are zoomed out,
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you’ll need to create a TDF file which contains a coverage information across windows of X number of
bases across the genome. You can do this within IGV:

Select Tools->Run igvtools:

_
File Genomes View Tracks Regions Tools| GenomeSpace Help
E.coli U00096 v||luoooos.3 RunBatchScript, | 053555 |Gy
J Run igviools...
Find Motif...
BLAT ...
Combine Data Tracks
‘ Gitools Heatmaps » 2
BEDTools »
b 2,310 kb W Errrww =16 kb 2,312 kb 2,320 ki
| | | | | | | | | | | |
| &_coli_coaTeT Lo0L fitered.s| | | © 282
ed.rmndup.bam Coverage

Now load the BAM alignment file in the Input field and click Run:

igvtools (on genomics-build-2)

Command |Count

—— ..
—

Input File ics_tutorial/data/sequencing/ecoli_exeter/remapping_to_reference/E_Coli CGATGT LOOL

filtered.sorted.rmdup.bam| Browse
Output File|_tutorial/data/sequencing/ecoli_exeteriremapping_to_reference/E_Coli CGATGT LO01 filtered.sorted.rmdup.bam.tdf| Browse
Genome Browse

TDF and Count options
Zoom Levels :
Window Functions

[ Min [[IMax Mean []Median

[]2% []10% []90% []98%
Probe to Loci Mapping Browse
Window Size 25

Extension Factor

[] Count as Pairs

Sort Options
Temp Directory

Max Records

Browse

Messages
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Once completed, you can load this TDF file as by:
Select File -> Load from file...

Eelect Fies (on aenae st i e

-l o—
-l D—

Look In: |[[Jremapping_to _reference v| |H| |

] bamgc

[ E_Coli CGATGT L001 filtered.sorted.rmdup.bam

[ E_Coli_CGATGT L001 filtered.sorted.rmdup.bam.bai
[ E_Coli_CGATGT _L001 filtered.sorted.rmdup.bam.tdf
[y mappingstats.txt

File Name: [E_Coli_ CGATGT LO01 filtered.sorted.rmdup. bam.tdf |

Files of Type: |AII Files Ivl

Open Cancel

You should then see the extra coverage track which remains visible even after you zoom out.

File Genomes View Tracks Regions Tools GenomeSpace Help

E.coli U00096 ~||U00096.3 ~||U00096.2:2,121,899-2,519,753  |Go T @& M = 2 | Elririfrreeennn

397 kb

2,200 kb 2,300 kb 2,400 kb 2,500 kb
| 1 | 1 | | |

E_Coli_CGATGT_L00L fitered.s{ | 3!

E_Coli_ CGATGT_LODLfitered.s
ed.rndup.bam Coverage

o |le]

(0| KN

Zoom in to see coverage.

E_Coli_CGATGT_L001_fittered.s _
Zoom in to see alignments.
ed.rmdup.bam
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Task 20b: Manually identify a region containing repetitive sequences.

Again try to use the QualiMap report to give you an idea. What is this region? Is there a gene close-
by? What do you think this is? (Think about repetitive sequences, what does BWA do if a region in the
genome has been duplicated)

Task 21: Identify SNPs and Indels manually

Can you find any SNPs? Which genes (if any) are they in? How reliable do they look? (Hint — look at
the number of reads mapping, their orientation - which strand they are on and how bright the base-
calls are).

Zoom in to maximum magnification at the site of the SNP. Can you determine whether a SNP results
in a synonymous (i.e. silent) or non-synonymous change in the amino acid? Can you use PDB
(http://www.rcsb.org/pdb/home/home.do) or other resources to determine whether or not this occurs in
a catalytic site or other functionally crucial region? (Note this may not always be possible).

What effect do you think this would have on the cell?
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Example: Identifying Variants manually

Here are some regions where there are differences in the organism sequenced and the reference:
Can you interpret what has happened to the genome of our strain? Try to work out what is going on
yourself before looking at the comment

Paste each of the genomic locations in this box and click go

Ecoli U00096 w | |U00096.3 w | |U00096.3:2,108,392-2,133,153 Go

—_—
Tt

U00096.3:2,108,392-2,133,153
U00096.3:3,662,049-3,663,291
U00096.3:4,296,249-4,296,510
U00096.3:565,965-566,489

Region U00096.3:2,108,392-2,133,153

24 kb

» 2,110 kb 2,112 kb 2114 kb 2116 kb 2,113 kb 2,120 kb 2,122 kb 2124 kb 2,126 kb 2,128 kb 2,130 kb
| | | | | | | | | | | | | | | | | | | | | |

0
L}
I
k|
m
I
[}
|
IR |
[} 1|
=
1§ |
a
0 I ]
| ]
a2
| Ik}

Y - - 0 - 1 I < [ [

wzxB  fbC foD ifbB weal weaM weal weak wzxC wead cpsG cpsB weal weaG  gmd weaF weaD

This area corresponds to the drop in coverage identified by Qualimap. It looks like a fairly large region
of about 17 kbases which was present in the reference and is missing from our sequenced genome. It
looks like about 12 genes from the reference strain are not present in our strain - it this real or an
artefact?
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Well it is pretty conclusive we have coverage of about 60X either side of the deletion and nothing at all
within. There are nice clean edges to the start and end of the deletion. We also have paired reads
which span the deletion. This is exactly what you would expect if the two regions of coverage were
actually joined together.

Region U00096.3:3,662,049-3,663,291

97 bp

bp 3,662,680 bp 3,662,670 bp 3,662,680 bp 3,662,500 bp 3,662,700 bp 4,652,710 bp 3,662,720 bp 3,662,730 bp 4,652,740 bp
| | | | | | | | | | | | | | | | | | |

b= I

Total count: 46
A:

oo

6 (100%, 18+, 28-)

Z400

o

[FTES ST aas o s S T

ACAATTTCCACCGCCTTCGGCAGCAGCTACGTGAACGACTTCCTCAACCAGGGGCGGGAGTGAAAAAAGTGTATGTCCAGGCAGGCACGCCGTTCCGT

Zoom right in until you can see the reference sequence and protein sequence at the bottom of the
display.

The first thing to note is that only discrepancies with respect to the reference are shown. If a read is
entirely the same as its reference, it will appear entirely grey. Blue and red blocks indicate the
presence of an 'abnormal’ distance between paired-end reads. Note that unless this is consistent
across most of the reads at a given position, it is not significant.

Here we have a C->T SNP. This changes the codon from CAG->TAG (remember to check what
strand the gene is on this one is on the forward strand, if it was on the reverse strand you would have
to take the reverse complement of the codon to interpret the amino acid it codes for.) and results in a
GIn->Stop mutation in the final protein product which is very likely to change the effect of the protein
product.

Hover over the gene to get some more information from the annotation... Since it is a drug resistance
protein it could be very significant.
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bp 3,852,700 bp 3,852,710 bp 3,852,720 bp
| | | |

—-- =

i v
i v

mdtF
U00096.3:3660414-3663527
Type =gene

id =gene3578

ID: gene3578

Name: mdtF

Dbxref: EcoGene:EG12241

gbkey: Gene

gene: mdtF

gene_synonym: ECK3498,JW3482 yhiV
locus_tag: b3514

4= HedH HAA A=

-

Exon number: 1
U00096.3:3660414-3663527
T _|AAC76539.1

PR T CA A CiC:A
= L N g ID: cds3450

Name: AAC76539.1

Parent: gene3578

Note: putative transport system permease protein

Dbxref: ASAP:ABE-0011480,UniProtKB/Swiss-Prot:P37637,NCBI_

GP:AAC76539.1 EcoGene:EG12241

gbkey: CDS

gene: mdtF

product: anaerobic multidrug efflux transporter, ArcA-regul S

ated

protein_id: AAC76539.1

trans|_table: 11

-[SI

One additional check is that the SNPs occur when reading the forward strand. We can check this by
looking at the direction of the grey reads,or by hovering over the coverage graph - see previous
diagram. We can see that approximately half of the bases reporting the C->T mutation occur in read 1
(forward arrow), and half in read 2 (reverse arrow). This adds confidence to the base-call as it reduces
the likelihood of this SNP being the result of a PCR duplication error.

Note that sequencing errors in lllumina data are quite common (look at the odd bases showing up in
the screen above. We rely on depth of sequencing to average out these errors. This is why people
often mention that a minimum median coverage of 20-30x across the genome is required for accurate
SNP-calling with lllumina data. This is not necessarily true for simple organisms such as prokaryotes,
but for diploid and polyploid organisms it becomes important because each position may have one,
two or many alleles changed.
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Regions U00096.3:2,106,835-2,140,480

5,360 bp 4,286,370 bp 4,206,330 bp 4,286,380 bp 4.2

[0- 4]

Left alig t Right alig nt

Insertion: CG  Read name = MISEQ:8:000000000-A7VC1:1:2111:27422:17596
Location = U00096.3:4,296,381
Alignment start = 4,296,626 (-)
Cigar =226M
Mapped =yes
Mapping quality = 60
Secondary = no
Supplementary = no
Duplicate = no
Failed QC =no

y

Qi A QEFQ BEICT QEQ ANTEY ATJA CGEE SCIRG FEE OFNA Mate is mapped =yes

Mate start = U00096.3:4296168 (+)
K543 Insert size =-683

Second in pair

Pair orientation = F1R2

MD =40T185

NM =1

AS =221

1096.3:4,296,381 I A3sn

Much the same guidelines apply for indels as they do for SNPs. Here we have an insertion of two
bases CG in our sample compared to the reference. Again, we can see how much confidence we
have that the insertion is real by checking that the indel is found on both read 1 and read 2 and on
both strands.

The insertion is signified by the presence of a purple bar. Hover your mouse over it to get more details
as above

We can hover our mouse over the reference sequence to get details of the gene. We can see that it
occurs in a repeat region and is unlikely to have very significant effects.

One can research the effect that a SNP or Indel may have by finding the relevant gene at
http://www.uniprot.org (or google 'mdtF uniprot' in the previous case).

It should be clear from this quick exercise that trying to work out where SNPs and Indels are manually
is a fairly tedious process if there are many mutations. As such, the next section will look at how to
obtain spread-sheet friendly summary details of these.

Region U00096.3:565,965-566,489
This last region is more complex try to understand what genomic mutation could account for this
pattern - discuss with a colleague or an instructor.
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Recap: SNP/Indel identification

1.  Only changes from the reference sequence are displayed in IGV

2. Genuine SNPs/Indels should be present on both read 1 and read 2

3. Genuine SNPs/Indels should be present on both strands

4. Genuine SNPs/Indels should be supported by a good (i.e. 20-30x)

depth of coverage

4. Very important mutations (i.e. ones relied upon in a paper) should be
confirmed via PCR/Sanger sequencing.

Automated analyses

Viewing alignments is useful when convincing yourself or others that a particular mutation is real
rather than an artefact and for getting a feel for short read sequencing datasets. However, if we want
to quickly and easily find variants we need to be able to generate lists of variants, in which gene they
occur (if any) and what effect they have. We also need to know which (if any) genes are missing (i.e.
have zero coverage).

Automated variant calling

To call variants we can use a number of packages (e.g. VarScan, GTK). However here, we will show
you how to use the bcftools package which comes with samtools. First we need to generate a pileup
file which contains only locations with the variants and pass this to bcftools.

Task 22: Identify SNPs and Indels using automated variant callers

Make sure you are in the directory.
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/remapping_to_reference
Type the following:

samtools mpileup

You should see a screen similar to the following
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Usage: samtools mpileup [options] inl.bam [in2.bam [...]]

Input options:
-6, --illuminal.3+ quality is in the Illumina-1.3+ encoding
-A, --count-orphans do not discard anomalous read pairs
-b, --bam-list FILE list of input BAM filenames, one per line
-B, --no-BAQ disable BAQ (per-Base Alignment Quality)
-C, --adjust-MQ INT adjust mapping quality; recommended:50, disable:0 [0]
-d, --max-depth INT max per-file depth; avoids excessive memory usage [250]
-E, --redo-BAQ recalculate BAQ on the fly, ignore existing BQs
-f, --fasta-ref FILE faidx indexed reference sequence file
-G, --exclude-RG FILE exclude read groups listed in FILE
-1, --positions FILE skip unlisted positions (chr pos) or regions (BED)
-q, --min-MQ INT skip alignments with mapQ smaller than INT [0]
-Q, --min-BQ INT skip bases with baseQ/BAQ smaller than INT [13]
-r, --region REG region in which pileup is generated
-R, --ignore-RG ignore RG tags (one BAM = one sample)
--rf, --incl-flags STR|INT required flags: skip reads with mask bits unset []
--ff, --excl-flags STR|INT filter flags: skip reads with mask bits set
[UNMAP , SECONDARY ,QCFAIL,DUP]
-X, --ignore-overlaps disable read-pair overlap detection

Output options:
-0, --output FILE write output to FILE [standard output]
-g, --BCF generate genotype likelihoods in BCF format
-v, --VCF generate genotype likelihoods in VCF format

Output options for mpileup format (without -g/-v):
-0, --output-BP output base positions on reads
-5, --output-MQ output mapping quality

Output options for genotype likelihoods (when -g/-v is used):
-t, --output-tags LIST optional tags to output:
DP,AD,ADF,ADR,SP,INFO/AD,INFO/ADF,INFO/ADR []
-u, --uncompressed generate uncompressed VCF/BCF output

SNP/INDEL genotype likelihoods options (effective with -g/-v):
-e, --ext-prob INT Phred-scaled gap extension seq error probability [20]
--gap-frac FLOAT minimum fraction of gapped reads [0.002]
--tandem-qual INT coefficient for homopolymer errors [100]
--skip-indels do not perform indel calling
--max-idepth INT maximum per-file depth for INDEL calling [250]
--min-ireads INT minimum number gapped reads for indel candidates [1]
--open-prob INT Phred-scaled gap open seq error probability [40]
--per-sample-mF apply -m and -F per-sample for increased sensitivity
--platforms STR comma separated list of platforms for indels [all]
--input-fmt-option OPT[=VAL]
Specify a single input file format option in the form
of OPTION or OPTION=VALUE

--reference FILE
Reference sequence FASTA FILE [null]

If you are running this on datasets with large numbers of datasets with limited coverage where
recombination is a factor, you can obtain increased sensitivity by passing all the BAM files to the
variant caller simultaneously (hence the multiple BAM file options in samtools).

As the samtools mpileup command outputs an unfriendly output, we will pass it directly to the bcftools
view command using the linux pipe ('|'). Type the following:




Part 2: Task 22: Identify SNPs and Indels using automated variant callers

samtools mpileup -v -u -P lllumina --reference
~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.fna
E_Coli_CGATGT_L001_filtered.sorted.rmdup.bam > var.raw.vcf

This may take 10 minutes or so and will generate a VCF file containing the raw unfiltered variant calls
for each position in the genome. Note that we are asking samtools mpileup to generate uncompressed
VCF output with the -v and -u options. -P tells samtools it is dealing with lllumina data so that it can
apply to the correct model to help account for mis-calls or indels.

This output by itself is not useful to us since it contains information on each position in the genome. So
lets use the sister package of samtools, called bcftools to call what it thinks are the variant sites:

SNP/indel variant calling from VCF/BCF. To be used in conjunction with samtools mpileup.
This command replaces the former "bcftools view" caller. Some of the original
functionality has been temporarily lost in the process of transition to htslib,

but will be added back on popular demand. The original calling model can be

invoked with the -c option.

bcftools call [options] <in.vcf.gz>

File format options:
--no-version do not append version and command line to the header
0, --output <file> write output to a file [standard output]
-0, --output-type <b|u|z|v> output type: ‘b’ compressed BCF; 'u' uncompressed BCF; ‘z' compressed VCF; ‘v’ uncompressed VCF [v]
--ploidy <assembly>[?] predefined ploidy, 'list' to print available settings, append '?' for details
--ploidy-file <file> space/tab-delimited list of CHROM,FROM,TO,SEX,PLOIDY
--regions <region> restrict to comma-separated list of regions
-regions-file <file> restrict to regions listed in a file
amples <list> list of samples to include [all samples]
--samples-file <file> PED file or a file with an optional column with sex (see man page for details) [all samples]
--targets <region> similar to -r but streams rather than index-jumps
, --targets-file <file> similar to -R but streams rather than index-jumps
--threads <int> number of extra output compression threads [0]

Input/output options:
-A, --keep-alts keep all possible alternate alleles at variant sites
, --format-fields <list> output format fields: GQ,GP (lowercase allowed) [
--gvcf <int>,[...] group non-variant sites into gVCF blocks by minimum per-sample DP

, --insert-missed output also sites missed by mpileup but present in -T
, --keep-masked-ref keep sites with masked reference allele (REF=N)

, --skip-variants <type> skip indels/snps

, --variants-only output variant sites only

Consensus/variant calling options:
--consensus-caller the original calling method (conflicts with -m)
, --constrain <str> one of: alleles, trio (see manual)
, --multiallelic-caller alternative model for multiallelic and rare-variant calling (conflicts with -c)
, --novel-rate <float>,[...] 1likelihood of novel mutation for constrained trio calling, see man page for details [le-8,1le-9,le-9]
, --pval-threshold <float> variant if P(ref|D)<FLOAT with -c [0.5]
--prior <float> mutation rate (use bigger for greater sensitivity) [1l.le-3]

bcftools call -c -v --ploidy 1 -O v -o var.called.vcf var.raw.vcf
Note that we are asking bcftools to call using assuming a ploidy of 1 and to output only the variant
sites in VCF format. Using grep we can count how many sites were identified as being variant sites
(i.e. sites with a potential mutation). We ask grep not to count lines beginning with a comment (#).
grep -v -¢c "A#" var.called.vcf

You should find 320 or so sites.

Now we just need to filter this a bit further to ensure we only retain regions where we have >90% allele
frequency:
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section

vcftools --minDP 10 --min-alleles 2 --max-alleles 2 --non-ref-af 0.9 --vcf var.called.vcf --recode --out
var.called.filt.vcf

Once complete, view the file using the 'more' command. You should see something similar to: (lines
beginning with # are just comment lines explaining the output)

#CHROM POS D REF ALT QUAL FILTER INFO

000096.3 378700 . A c 222 . DP=47;VDB=3.492280e-01; AF1=1;AC1=2;DP4=0, 0, 20, 26; MO=60; FQ=—165

U00096.3 566173 . c G 140 . DP=74;VDB=1.335471e-01; RPB=—1.366788e+00; AF1=0.5; AC1=1; DP4=22, 35,7, 9;MQ=60; FQ=143; PV4=0.78,0.051,1,1
000096.3 566205 . T c 152 . DP=70;VDB=3. 660676e-02; RPB=-2.810193e-01; AF1=0.5; AC1=1;DP4=22, 31, 6, 9;MQ=60; FQ=155;PV4=1,1,1,1
U00096.3 566245 . G a 133 . DP=67; VDB=1.726489e-02; RPB=7.739471e-01; AF1=0.5; AC1=1; DP4=22, 29, 5, 9;MQ=60; FQ=136; PV4=0.76,1,1,0.35
000096.3 566277 . c T 55 . DP=63;VDB=3.921215e-03; RPB=2.597793e-01; AF1=0.5; AC1=1;DP4=25, 28, 3, 6;MQ=60; FQ=58;PV4=0.49,1,1,1
U00096.3 566323 . c T 71 . DP=58; VDB=6.304791e-03; RPB=2.418227e+00; AF1=0.5; AC1=1;DP4=25, 23, 3, 6;MQ=60; FQ=74; PV4=0.47,1,1,1
000096.3 566326 . T c 57 . DP=57;VDB=5.476300e-03; RPB=2. 654789e+00; AF1=0.5; AC1=1;DP4=24, 23, 3, 6;MQ=60; FQ=60;PV4=0.47,1,1,1
U00096.3 566332 . T G 26 . DP=57;VDB=3.998488e-03; RPB=2. 444295e+00; AF1=0.5; AC1=1; DP4=25, 22, 3, 7; MQ=60; FQ=29; PV4=0.3,0.32,1,1
000096.3 566356 . T c 71 . DP=60; VDB=3.343644e-02; RPB=3. 626135e+00; AF1=0.5; AC1=1; DP4=25,21, 3, 7; MQ=60; FQ=74;PV4=0.3,0.49,1,0.13

You can see the chromosome, position, reference and alternate allele as well as a quality score for the
SNP. This is a VCF file (Variant Call File). This is a standard developed for the 1000 genomes project.
The full specification is given at http://samtools.github.io/hts-specs/VCFv4.2.pdf

The lines starting DP and INDEL contain various details concerning the variants. For haploid
organisms, most of these details are not necessary.

This forms our definitive list of variants for this sample.

Take a look at some of the variants we just excluded, was it justified. Remember there is no filter that
can keep all the correct variants and remove all the dubious!

You can load the VCF file to IGV:

File_Genomes View Tracks Regions Tools GenomeSpace Help

v‘uoooge: Go @0 = 2 | R =

.coll U00096 - [uooosss |

4,636 kb

Kb 2000 kb 2000k 3,000 kb 2000 kb
L 1 I I I

| L | (L Il (L I [ | | o | 1 I F

g [

E_ColCGAT. drmdupbam

T

E_ColLCGATGT_LOOL fitered s
edrmdup bam

E_Col COATGT_LODL fitered s
edemdupbam

Task 23: Compare the variants found using this method to those you
found in the manual section
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Can you see any variants which may have been missed? Often variants within a few bp of indels are
filtered out as they could be spurious SNPs thrown up by a poor alignment. This is especially the case
if you use non-gapped aligners such as Bowtie.

Quickly locating genes which are missing compared to the
reference

We can use a command from the BEDTools package (http://bedtools.readthedocs.org/en/latest/) to
identify annotated genes which are not covered by reads across their full length.

Type the following on one line:
coverageBed -a ~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.9ff -b

E_Coli_CGATGT_LO001_filtered.sorted.rmdup.bam > gene_coverage.txt

This should only take a minute or so. The output contains one row per annotated gene - the 16™
column contains the proportion of the gene that is covered but reads from our sequencing. 1.00
means the gene is 100% covered and 0.00 means no coverage.

If we sort by this column we can see which genes are missing
sort -t $'\t' -g -k 13 gene_coverage.txt | more

There is another region of about 10kb which is absent from out sequences - can you find it in IGV?

Evaluating the impact of variants

So far we have found a number of genes missing from this strain of E.coli which obviously could have
a phenotypic effect. Let's now take a closer look at the variants. We'd like to obtain a list of genes in
which these variants occur and whether they result in amino acid changes.

To do this we'll use a custom perl script developed by David Studholme and Konrad Paszkiewicz.

We'll just need the reference annotation, sequence and the VCF file containing the SNPs.

Task 24: Determine the effect of variants

Type (all on one line):
snp_comparator.pl 10
~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.fna
~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.gff
var.called.filt.recode.vcf > snp_report.txt
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You will see lots of warnings about 'Use of uninitialized value $gene_name - you can ignore these.

This program takes the information from the reference sequence and annotation, and the VCF SNP
files and determines whether the variant occurs within a gene, and if so the effect of each mutation.

Once complete, view the snp_report.txt file using the more command:

## Table of SNP and Indel occurences between these samples. Note that any comma-separated values (e.g. A,C indicate potential heterozygosit

Chrom Pos Ref out.snps.vcfd Gene description Status

U00096.3 1101543 T A curli production assembly%2Ftransport outer membrane lipoprotein ,non-silent aaa -> Taa;
U00096.3 1169836 A G L%2CD-transpeptidase linking Lpp to murein ,non-silent ctg -> cCg;

U00096.3 1189980 A G response regulator in two-component regulatory system with PhoQ ,silent act -> acC;
U00096.3 1299464 T G

U00096.3 1301992 A T oligopeptide transporter subunit ,non-silent aat -> Tat;

U00096.3 1301999 G A oligopeptide transporter subunit ,non-silent agc -> aAc;

U00096.3 1302190 A G oligopeptide transporter subunit ,non-silent aac -> Gac;

U00096.3 1305442 T G oligopeptir_ie transporter subunit ,non-silent gtc -> gGc;

In later workshops we will see how we can use this program to compare results between different
strains.

You can also use tools such as SNPEff to evaluate the effect of variants
(http://snpeff.sourceforge.net/index.html)

Task 25: Check each variant in IGV

N.B. If a variant doesn't seem to match what the snp_report file says, check the reverse reading
frames.

That concludes the first part of the course. You have successfully, QC'd, filtered, remapped and
analysed a whole bacterial genome! Well done!

In the next instalment we will be looking at how to extract and assemble unmapped reads. This will
enable us to look at material which may be present in the strain of interest but not in the reference
sequence.
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Part 3:

Assembly of Unmapped Reads
Introduction

In this section of the workshop we will continue the analysis of a strain of E.coli. In the previous
section we cleaned our data, checked QC metrics, mapped our data and obtained a list of variants
and an overview of any missing regions.

Now, we will examine those reads which did not map to the reference genome. We want to know what
these sequences represent. Are they novel genes, plasmids or just contamination?

To do this we will extract unmapped reads, evaluate their quality, prepare them for de novo assembly,
assemble them using SPAdes, generate assembly statistics and then produce some annotation via
Pfam, BLAST and RAST.

Extraction and QC of unmapped reads

Task 1: Extract the unmapped reads

First of all make sure you are in the
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter directory (hint: use the cd
command). Then create a directory called unmapped_assembly in which we will do our de novo
assembly and analysis.

mkdir unmapped_assembly/
cd unmapped_assembly/

Now we will use the bam2fastq program (http://gsl.hudsonalpha.org/information/software/bamz2fastq)
to extract from the BAM file just those reads which did NOT map to the reference genome. The
bam2fastq program has a number of options, most of which are self-explanatory. Type (all on one
line):

bam2fastq --no-aligned -o una-
ligned#.fastq ../remapping_to_reference/E_Coli_ CGATGT_L001_filtered.sorted.rmdup.bam

The --no-aligned option means only extract reads which did not align. The -o unaligned\# means dump
read 1 into a file called unaligned_1.fastq and read 2 into a file unaligned_2.fastq. Below we can see
that the program has successfully created the two files.

[ec2-user@ip-10-171-67-183 unmapped assembly]$ bam2fastq --no-aligned -o unaligned#.fastq ../rem
apping_to_reference/E_Coli_ CGATGT_L001_filtered.sorted.fillmd.rmdup.bam

This looks like paired data from lane 8.

Output will be in unaligned 1l.fastq and unaligned 2.fastqg

1250574 sequences in the BAM file

351638 sequences exported

WARNING: 1414 reads could not be matched to a mate and were not exported
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Note that some reads were singletons (i.e. one read mapped to the reference, but the other did not).
These will not be included in this analysis.

Task 2

Check that the number of entries in both fastq files is the same. Also check that the last few entries in
the read 1 and read 2 files have the same header (i.e. that they have been correctly paired).

Task 3: Evaluate QC of unmapped reads

Use the fastqc program to look at the statistics and QC for the unaligned_1.fastq and una-
ligned_2.fastq files.

Do these look reasonably good? Remember, some reads will fail to map to the reference because
they are poor quality, so the average scores will be lower than the initial fastqc report we did in the
remapping workshop. The aim here is to see if it looks as though there are reads of reasonable quality
which did not map.

Assuming these reads look ok, we will proceed with preparing them for de novo assembly.

De novo assembly

de novo is a Latin expression meaning "from the beginning," "afresh," "anew," "beginning again."

when we perform a de novo assembly we try to reconstruct a genome or part of the genome from our reads
without making any prior assumptions (in contrast to remapping where we compare out reads to what we
think is a close reference sequence).

The advantage is that is that de novo assembly can reveal completely novel results, identify horizontal
gene transfer events for example. The disadvantage is that it is difficult to get a good assembly from short
reads and it can be prone to misleading results due to contamination and mis-assembly.
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Task 4: Learn more about de novo assemblers

To understand more about de-novo assemblers, read the technical note at:
https://www.illumina.com/Documents/products/technotes/technote denovo assembly ecoli.pdf

N.B. You will also learn more in the next section so don’t worry if it doesn’t all make sense
immediately. You should however understand the idea of the k-mer and broadly how the assembly is
built up from them.
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Task 5: Generate the assembly.

We will be using an assembler called SPAdes (http://bioinf.spbau.ru/spades). It generally performs
pretty well with a variety of genomes. It can also incorporate longer reads produced from PacBio
sequencers that we will use later in the course.

One big advantage is that it is not just a pure assembler - it is a suite of programs that prepare the
reads you have, assembles them and then refines the assembly.

SPAdes runs the modules that are required for a particular dataset and it produces the assembly with
a minimum of preparation and parameter selection - making it very straightforward to produce a
decent assembly. As with everything in bio-informatics you should try to assess the results critically
and understand the implications for further analysis.

Let's start the assembler because it takes about 20 minutes to run (this might be a nice time to get
coffee © ):

spades.py -k 21,33,55,77,99,127 --careful -o spades_assembly -1 unaligned_1.fastq -2 una-
ligned_2.fastq

We are telling it to run the SPAdes assembly pipeline with a range of k-mer sizes (-k); specifying --
careful tells it to run a mismatch correction algorithm to reduce the number of errors; put the output in
the spades_assembly directory and the reads to assemble.

Just because SPAdes does a lot for you does not mean you should not try to understand the process.

Have a read of this:
http://thegenomefactory.blogspot.co.uk/2013/08/how-spades-differs-from-velvet.html

It is a discussion of how SPAdes differs from Velvet another widely used assembler, it explains the
overall process nicely:

Read error correction based on k-mer frequencies using BayesHammer

De Bruijn graph assembly at multiple k-mer sizes, not just a single fixed one.
Merging of different k-mer assemblies (good for varying coverage)
Scaffolding of contigs from paired end/mate pair reads

Repeat resolution from paired end/mate pair data using rectangle graphs

IR T

Contig error correction based on aligning the original reads with BWA back to contigs

Try to understand the steps in the context of the whole picture:
Can you explain why error correction of reads becomes more important as k-mer length increases?
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When the assembly is complete:

= Mismatch correction finished.

* Corrected reads are in /home/genomics/workshop_data/genomics_tutorial/data/sequencing/ecol
i_exeter/unmapped assembly/spades assembly/corrected/

* Assembled contigs are in /home/genomics/workshop data/genomics_tutorial/data/sequencing/ec
oli_exeter/unmapped assembly/spades assembly/contigs.fasta

* Assembled scaffolds are in /home/genomics/workshop_data/genomics tutorial/data/sequencing/
ecoli_exeter/unmapped _assembly/spades assembly/scaffolds.fasta

* Assembly graph is in /home/genomics/workshop_data/genomics_tutorial/data/sequencing/ecoli_
exeter/unmapped_assembly/spades_assembly/assembly graph.fastg

* Paths in the assembly graph corresponding to the contigs are in /home/genomics/workshop da
ta/genomics_tutorial/data/sequencing/ecoli_exeter/unmapped_assembly/spades_assembly/contigs.p
aths

* Paths in the assembly graph corresponding to the scaffolds are in /home/genomics/workshop
data/genomics tutorial/data/sequencing/ecoli_exeter/unmapped assembly/spades assembly/scaffol
ds.paths

== SPAdes pipeline finished.

SPAdes log can be found here: /home/genomics/workshop_data/genomics_tutorial/data/sequencing/
ecoli_exeter/unmapped assembly/spades assembly/spades.log

Thank you for using SPAdes!

Change to the spades_assembly directory (use cd) and look at the output.

1s -latr

genomics genomics 4.0K Jan ! S C

genomics genomics 294 Jan 10 10: input_dataset.yaml
genomics genomics 1.8K Jan : params.txt
genomics genomics 4.0K Jan 1 cted
genomics genomics 185 Jan 10 11: dataset.info
genomics genomics 4.0K Jan ! K2

genomics genomics 4.0K Jan

genomics genomics 4.0K Jan

genomics genomics 4.0K Jan

genomics genomics 4.0K Jan

genomics genomics 4.0K Jan 1 K12

genomics genomics 353K Jan 10 11:12 before rr.fasta
genomics genomics 36K Jan 10 11:12 scaffolds.paths
genomics genomics 36K Jan 10 11:12 contigs.paths
genomics genomics 708K Jan 10 11: assembly graph.fastg
genomics genomics 354K Jan 10 11:15 contigs.fasta
genomics genomics 4.0K Jan 10 1:

genomics genomics 4.0K Jan

genomics genomics 4.0K Jan ! 1S

genomics genomics 354K Jan 10 11:17 scaffolds.fasta
genomics genomics 4.0K Jan 10 11:17 .

genomics genomics 161K Jan 1 1:17 spades.log

[y

3
1
1
3
1
4
4
4
4
4
5
1
1
1
1
1
4
4
2
1
2
1

Let's take a look at some of the more important content.

params.txt
This contains a summary of the parameters used for assembly - it is useful so you can repeat the ex-

act analysis performed, or can remember you setting when you want to publish the genome.

contigs.fasta
This contains the final results of the assembly in fasta format.
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scaffolds.fasta

This contains the final results after scaffolding (which means using paired end information to join con-
tigs together with gaps). In this case the files are identical, probably because the sum of the lengths of
our paired reads is not much smaller than our insert size (there are very few large gaps between
reads).

assembly graph.fastg

Contains SPAdes assembly graph in FASTG format - this is a slightly different format that contains
more information than fasta - for example it can contain alternative alleles in diploid assemblies. We
don't need it here, but see http://fastg.sourceforge.net/FASTG Spec v1.00.pdf if you might be work-
ing with diploid organisms. You can use the Bandage (http://rrwick.github.io/Bandage/) to view this file.

Task 6: Assessment of the assembly

We will use QUAST (http://bioinf.spbau.ru/quast) to generate some statistics on the assembly (in the
spades_assembly directory).

quast.py --output-dir quast contigs.fasta
This will create a directory called quast and create some statistics on the assembly you produced.

cat quast/report.txt

ssembly contigs
¢ contigs 0 bp) 397
¢ contigs 1000 bp) 14
¢ contigs 5000 bp) 7
¢ contigs 10000 bp) 2
¢ contigs (== 25000 bp) 1
¢ contigs (== 50000 bp) 1
338380
131772
116713
> 86030
67492
> 67492
, 281
Largest contig 67492
Total length 287109
Co (%) 43.29
795
o550
28
145
s per 100 kbp 0.00

Try to interpret the information in the light of what we were trying to do. Because we are assembling
unaligned reads we are not expecting a whole chromosome to pop out. We are expecting bits of our
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strain that does not exist in the reference we aligned against; possibly some contamination; various
small contigs made up of reads that didn't quite align to our reference.

The N50 and L50 measures are very important in a normal assembly and we will visit them later, they
are not really relevant to this assembly.

You will notice that we have 1 contig 30-60kb long - what do you think this might be? And 12 other
contigs longer than 1kb. We need to find out what this is.

Analysing the de novo assembled reads

Now that we have assembled the reads and have a feel for how much (or in this case, how little) data
we have, we can set about analysing it. By analysing, we mean identifying which genes are present,
which organism they are from and whether they form part of the main chromosome or are an
independent unit (e.g. plasmid).

We are going to take a 3-prong approach. The first will simply search the nucleotide sequences of the
contigs against the NCBI non-redundant database. This will enable us to identify the species to which
a given contig matches best (or most closely). The second will call open reading frames within the
contigs and search those against the Swissprot database of manually curated (i.e. high quality)
annotated protein sequences. Finally, we will search the open reading frames against the Pfam
database of protein families (http://pfam.sanger.ac.uk).

Why not just search the NCBI blast database? Well, remember nearly all of our biological knowledge
is based on homology — if two proteins are similar they probably share an evolutionary history and
may thus share functional characteristics. Metrics to define whether two sequences are homologous
are notoriously difficult to define accurately. If two sequences share 90% sequence identity over their
length, you can be pretty sure they are homologous. If they share 2% they probably aren't. But what if
they share 30%? This is the notorious twilight zone of 20-30% sequence identity where it is very
difficult to judge whether two proteins are homologous based on sequence alone.

To help overcome this searching more subtle signatures may help — this is where Pfam comes in.
Pfam is a database which contains protein families identified by particular signatures or patterns in
their protein sequence. These signatures are modeled by Hidden Markov Models (HMMs) and used to
search query sequences. These can provide a high level annotation where BLAST might otherwise
fail. It also has the advantage of being much faster than BLAST.
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Task 7: Search contigs against NCBI non-redundant database
Firstly we can filter out low coverage and very short contigs using a perl script:
filter_low_coverage_contigs.pl < contigs.fasta > contigs.goodcov.fasta

The following command executes a nucleotide BLAST search (blastn) of the sequences in the
contigs.fa file against the non-redundant database.

As this takes a long time to run the results have been precomputed and are available in
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/blast_precompute/unmapped_r
eads/

blastn -db ~/workshop_materials/genomics_tutorial/db/blast/nt -query contigs.goodcov.fasta -
evalue 1e-06 -num_threads 2 -show_gis -num_alignments 10 -num_descriptions 10 -out con-
tigs.fasta.blastn

There are a lot of options in this command, let's go through them,

e -db is the prepared blast database to search

e -evalue apply an e-value (expectation value) cutoff
(http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html) cutoff of 1e-06 to limit ourselves to
statistically significant hits (i.e. in this case 1 in 1 million likelihood of a hit to a database of this
size by a sequence of this length).

¢ -num_alignments and -num_descriptions flags tell blastn to only display the top 10 results
for each hit,

e -num_threads that it should use 2 CPU cores

¢ -show_gis that it should include general identifier (GI) numbers in the output.

o -out file in which to place the output.

There is lots of information on running blast from the command line at
http://www.ncbi.nlm.nih.gov/books/NBK1763/

N.B. GI (Genelnfo Identifiers) are being phased out by NCBI so future versions of Blast and NCBI
databases will not support the —show_gis option and may break some down-stream tools such as
KronaTools and other databases.

Open the results file
gedit contigs.fasta.blastn
BLASTN 2.2.30+
Reference: Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb
Miller (2000), "A greedy algorithm for aligning DNA sequences", J

Comput Biol 2000; 7(1-2):203-14.

Database: Nucleotide collection (nt)
29,442,065 sequences; 84,823,117,434 total letters

Query= NODE 9 length 3631 cov 29.6618 ID 17
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Length=3631

Score E

Sequences producing significant alignments: (Bits) Value
gi|549811571|gb|CP006698.1| Escherichia coli C321.deltahA, comple... 6706 0.0
gi|383395315|gb|JQ086376.1| Enterobacteria phage HK630, complete... 6685 0.0
gi|339305107|gb|JF340119.2| Synthetic construct clone HO-HIS phy... 6680 0.0
gi|186702979|gb|EU421722.1| Cloning vector lambdaS2775, complete... 6680 0.0
gi|215104|gb|J02459.1|LAMCG Enterobacteria phage lambda, complet... 6680 0.0
0.0

gi|1066312|gb|U39286.1|CVU39286 Cloning vector TLF97-3, phage la... 6674

Search for our largest contig - SPAdes names the contigs by increasing size, so

click on “Search” and then “Find” and enter NODE_1_

Search for: INOD E_1]

[] Match case

iterd [_] Match entire word only

-.onif 7] Search backwards

Wrap around

Close ‘ ‘ Find

Query= NODE 1 length 67492 cov 565.407 ID 1

Length=67492

Score E
Sequences producing significant alignments: (Bits) Value
gi| 664682453 |gb|CP008801.1| Escherichia coli KLY, complete genome 79013 0.0
gi|8918823|dbj|AP001918.1| Escherichia coli K-12 plasmid F DNA, ... 78976 0.0
gi| 619497957 |gb|KJ170699.1| Escherichia coli strain K-12 plasmid... 65330 0.0
gi| 665821556 |gb|KJ484626.1| Escherichia coli plasmid pH2332-166,... 65302 0.0
gi| 665821958 |gb|KJ484628.1| Escherichia coli plasmid pH2291-144,... 65213 0.0
gi128629230|gb|AF550679.1| Escherichia coli plasmid pl1658/97, co... 64591 0.0
gi|4874241|gb|U01159.2| Escherichia coli F sex factor transfer r... 61474 0.0
gi| 665822931 |gb|KJ484636.1| Escherichia coli plasmid pC59-153, c... 41227 0.0
gi|301130432|gb|CP002090.1] Salmonella enterica subsp. enterica ... 41026 0.0
gi|301130304|gb|CP002089.1] Salmonella enterica subsp. enterica ... 41026 0.0

There are a number of good hits; notice from the contig header line that the average coverage is >500
and the coverage of our genome was around 50 - does this give you a clue to what it is?
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Task 8: Obtain open reading frames

The first task is to call open reading frames within the contigs. These are designated by canonical start
and stop codons and are usually identified by searching for regions free of stop codons. We will use
the EMBOSS package program getorf to call these.

We will use codon table 11 which defines the bacterial codon usage table
(http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi) and state that the sequences we are
dealing with are not circular (they are nowhere near long enough!). We will also restrict the ORFs to
just those sequences longer than 300 nucleotides (i.e. 100 amino acids). We will store the results in
file contigs.orf.fa.

getorf -table 11 -circular N -minsize 300 -sequence contigs.goodcov.fasta -outseq con-
tigs.orf.fasta

If we look at the output file we can see that it is a FASTA formatted file containing the name of the
contig on which the ORF occurs, followed by an underscore and a number (e.g. _1) to indicate the
number of the ORF on that contig. The numbers in square brackets indicate the start and end position
of the ORF on the contig (i.e. in nucleotide space). So the first ORF occurs on NODE 9 and is
between position 934 and 1494. The third ORF occurs between positions 2400 and 2047 on the
reverse strand. This is a relatively short peptide sequence and is unlikely to be a genuine peptide.

Also note that many ORFs do not start with a Methionine. This is because by default the getorf
program calls ORFs between stop codons rather than start and stop codons. Primarily this is to avoid
spurious ORFs due to Met residues within a protein sequence and to ensure untranslated regions are
captured.

>NODE_9 length 3631 cov_29.6618_ ID_ 17 1 [934 - 1494]
TERFEVSEINSQALREAAEQAMHDDWGFDADLFHELVTPSIVLELLDERERNQQYIKRRD
QENEDIALTVGKLRVELETAKSKLNEQREYYEGVISDGSKRIAKLESNEVREDGNQFLVV
RHPGKTPVIKHCTGDLEEFLRQLIEQDPLVTIDIITHRYYGVGGQWVQDAGEYLHMMSDA
GIRIKGE

>NODE_9_length 3631 cov_29.6618 ID 17 2 [2450 - 3529]
RGSEMGRRRSHERRDLPPNLYIRNNGYYCYRDPRTGKEFGLGRDRRIAITEAIQANIELF
SGHKHKPLTARINSDNSVTLHSWLDRYEKILASRGIKQKTLINYMSKIKAIRRGLPDAPL
EDITTKEIAAMLNGYIDEGKAASAKLIRSTLSDAFREATAEGHITTNHVAATRAAKSEVR
RSRLTADEYLKIYQAAESSPCWLRLAMELAVVTGQRVGDLCEMKWSDIVDGYLYVEQSKT
GVKIAIPTALHIDALGISMKETLDKCKEILGGETITASTRREPLSSGTVSRYFMRARKAS
GLSFEGDPPTFHELRSLSARLYEKQISDKFAQHLLGHKSDTMASQYRDDRGREWDKIETK
>NODE_9 length 3631 cov 29.6618 ID 17 3 [2400 - 2047] (REVERSE SENSE)
FVEQILSSILNRRWEYPAFPNPSTNCFKASWTSLACVPLLKCQVHRKVSAITRKKKPPSG
GLVFFQFFNSNIGYVCMCYLRPYHPVVVAVVDVLRFDNSVEWLSIPFSCDSEVHLSSP
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Task 9: Search open reading frames against NCBI non-redundant
database

The first thing we can do with these open reading frames is to search them against the NCBI non-
redundant database of protein sequences to see what they may match.

Here we will perform a BLAST search using the non-redundant (nr) database, using the blastp
program and store the results in contigs.orf.blastp. We'll apply an e-value (expectation value)
(http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html) cutoff of 1e-06 to limit ourselves to
statistically significant hits (i.e. in this case 1 in 1 million likelihood of a hit to a database of this size by
a sequence of this length). The —num_alignments and num_descriptions flags tell blastp to only
display the top 10 results for each hit, the num_threads tells blastp to use 2 CPU cores and —show_gis
tells blastp it should include general identifier (Gl) numbers in the output.

First reduce the number of orfs so that we have a manageable number - this small perl program
selects 10% of the orfs.
reduce_fasta_10x.pl < contigs.orf.fasta > contigs.orf.small.fasta

Then you would type (all on one line). HOWEVER this takes several hours therefore the results have
been precomputed in
~/workshop_materials/genomics_tutorial/data/sequencing/ecoli_exeter/blast_precompute/unmapped_r
eads/

blastp -db ~/genomics_tutorial/db/blast/nr -query contigs.orf.small.fasta -evalue 1e-06 -
num_threads 2 -show_gis -num_alignments 10 -num_descriptions 10 -out contigs.orf.blastp
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Task 10: Review the BLAST format

Open the results file with gedit and search for plasmid in the text. You should find a number of hits to
plasmid related proteins - one example is below - can you find any others? (Remember we only

checked 10% of the orfs we found). This evidence is not conclusive, but combined with the high
coverage over, it is starting to look like this contig is a plasmid.

Query= NODE 1 length 67492 cov 565.407 ID 1 32 [31455 - 31889]

Length=145
Score E

Sequences producing significant alignments: (Bits) Value
gi|446834068|ref|WP _000911324.1| MULTISPECIES: pirin 275 3e-92
gi|446834058|ref|WP_000911314.1| pirin 273 le-91
gil446834061|ref|WP _000911317.1| pirin 271 le-90
gil446834059|ref|WP _000911315.1| pirin 269 6e-90
gi|545289568 | ref|WP 021572485.1| hypothetical protein 269 6e-90
gil446834062|ref|WP _000911318.1| MULTISPECIES: pirin 269 6e-90
gi|585223672|ref|WP 024168023.1| plasmid maintenance protein 268 9e-90
gi|723058272|ref|WP 033552985.1| plasmid maintenance protein 268 9e-90
gi|446834056|ref|WP 000911312.1| plasmid maintenance protein 268 1le-89
gil446834060|ref|WP _000911316.1| pirin 268 le-89

>gi]446834068|ref|WP_000911324.1| MULTISPECIES: pirin [Escherichia]
gi]32470009|ref NP _862949.1| plasmid maintenance protein [Escherichia coli]
gi]689926354|ref|YP 009060131.1| PIN domain protein [Escherichia coli]

gi]1691230621|ref|YP 009070585.1| VapC toxin protein [Escherichia coli]
gi|28629266|gb|AA049546.1| hypothetical protein [Escherichia coli]
gi|323184064|gb|EFZ69443.1| PIN domain protein [Escherichia coli OK1357]
gi|325495739|gb|EGC93600.1| plasmid maintenance protein [Escherichia fergusonii ECD227]
gi|385154377|gb|EIF16391.1| plasmid maintenance protein [Escherichia coli 032:H37 str. P4]
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Additional checks:
Task 11: Check that the contigs do not appear in the reference sequence

In theory, the unmapped reads used to generate the contigs should not assemble into something
which will map against the genome. However, it is always possible (especially with more complex
genomes), that this might happen. To double-check move back to the folder containing the
contigs.goodcov.fasta:

blastn -subject ~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.fna -
query contigs.goodcov.fasta | more

Here we use the BLAST+ package in a different mode to compare two sequences against each other.
Unlike the previous examples where we have searched against a database of sequences, here we are
doing a simple search of the contigs against the reference genome we are using. Scroll down a little...

Query= NODE 17 length 917 cov 10.3076 ID 33
Length=917

Subject= gi|545778205|gb|U00096.3| Escherichia coli str. K-12 substr. MG1655,
complete genome

Length=4641652

Score = 193 bits (104), Expect = 3e-49
Identities = 186/227 (82%), Gaps = 0/227 (0%)
Strand=Plus/Plus

Query 68 ACGGCATCCACGAAGGCGACAGAGGCTGCGGGAAGTGCGGTATCAGCATCGCAGAGCAAA 127

FEEEEEEErrr e e e e e et e rrrrrd L el
Sbjct 1430285 ACGGCATCCACGAAGGCGACAGAGGCTGCTGGCAGTGCGACGGCGGCAGCTCAGAGCAAA 1430344

You can see that some of the contigs that have been assembled hit the reference sequence. In the
record above the evalue is 3e-49 which is massively significant; however, the evalue is calculated as
the chance of a hit this close against a random sequence of the same size. Since our subject
sequence is now very small and we know it is related to our strain it is not surprising that there are
some hits. We are concerned about whole contigs that map closely to the reference genome.

Task 12: Run open reading frames through pfam_scan

Pfam is a database of protein families. They are grouped together using a number of criteria based on
their function. For more information read http://en.wikipedia.org/wiki/Pfam. Pfam is grouped into
several databases depending on the level of curation. Pfam-A is high-quality manual curation and
consists of around 12,500 families. Pfam-B is full of automated predictions which may be informative
but should not be relied upon without additional evidence. Pfam will also search for signatures of
active-sites if you specify the correct flag.

Here we want to search the Pfam database of Hidden Markov Models to see which protein families
are contained within this contig. You'll notice that this runs considerably faster than BLAST. Here we
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search using the contigs.orf.fa file against the Pfam databases ~/genomics_tutorial/db/pfam/ and
output the results to contigs.orf.pfam. We'll use 2 CPU cores for the search and state that we want to
search PfamB entries as well as active site residues.

This step might take about 30 minutes. So you can get a coffee in the meantime.

pfam_scan.pl -fasta contigs.orf.fasta -dir ~/workshop_materials/genomics_tutorial/db/pfam/ -
outfile contigs.orf.pfam -cpu 2 -pfamB —as

View the output using gedit:

Search for NODE_9 (for example).

k <seq id> <alig start> <alig end> <envelope start> <envelope end> <hmm acc> <hmm name> <type> <hmm start> <hmm end> <hmm le
<bit score> <E-value> <significance> <clan> <predicted active_ site_residues>

NODE_9_length 3631 cov_29.6618_ID_17_1 7 106 7 106 PF13935.1 Ead_Ea22 Family 1 139 139 103.8
30 1 No_clan

NODE_9_length 3631 _cov_29.6618_ID_17_1 77 113 77 126 PB009353 Pfam-B_9353 Pfam-B 1 37 82 53.4
14 NA NA

NODE_9_length_3631_cov_29.6618_ID_17_2 5 74 5 75 PF09003.5 Phage_integ N Domain 1 75 76 89.5
26 1 cLoosl

NODE_9_length 3631 _cov_29.6618_ID_17_2 85 162 84 162 PF02899.12 Phage_int SAM 1 Domain 2 84 84 24.1
05 1 CLO469

NODE_9_length_3631_cov_29.6618_ID_17_2 183 349 182 353 PF00589.17 Phage_integrase Family 2 169 173 115.1
33 1 CL0382 predicted active_site[239,312,216,346,337,315]

NODE_9_length 3631 _cov_29.6618_ID_17_3 53 115 48 117 PB009641 Pfam-B_9641 Pfam-B 50 112 168 23.3

The 8™ column shows the type of entry that was hit in the pfam database.
Go to http://pfam.sanger.ac.uk and enter the Pfam domain in the search box.

Let's take a look at Pfam domain Phage_integ_N
Family: Phage_integ N (PF09003)

UL AN Summary: Bacteriophage lambda integrase, N-terminal domain

Domain

organisation Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via
the tabs below.

Clan

Alignments No Wikipedia article = Pfam  InterPro

HMM logo This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source

T of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

curation & model| Bacteriophage lambda integrase, N-terminal domain
Species Provide feedback

The amino terminal domain of bacteriophage lambda integrase folds into a three-stranded,

antiparallel beta-sheet that packs against a C-terminal alpha-helix, adopting a fold that is

Structures structurally related to the three-stranded beta-sheet family of DNA-binding domains (which

includes the GCC-box DNA-binding domain and the N-terminal domain of Tn916 integrase).

b t i This domain is responsible for high-affinity binding to each of the five DNA arm-type sites and
ump to... ¥ is also a context-sensitive modulator of DNA cleavage [1].

1D -
ErErE| Go | Literature references

1. Wojciak JM, Sarkar D, Landy A, Clubb RT; , Proc Natl Acad Sci U S A. 2002;99:3434-
3439.: Arm-site binding by lambda -integrase: solution structure and functional
characterization of its amino-terminal domain. PUBMED: 119044067 EPMC: 119044067 | Example structure

PDB entry 1Z1B: Crystal structure of a

lambda integrase dimer bound to a COC'

External database links core site

View a different structure:

1Z1B v

PANDIT: PF09003c?
Pseudofam: PF09003c7
SYSTERS: Phage integ Ni#

There are a lot of hits to phage domains and domains that manipulate DNA. You might expect this as
these sequences have presumably been incorporated into our strain since it diverged from the
reference.
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Also look at domains (the most specific type of hit) from our large contig NODE_1_..... is there any
evidence for it being a plasmid?
The Pfam-B matches do not tell you much that is useful.

Examine one or two more domains from your results file - is there anything interesting?

Analysing the results in RAST

By now you should be able to see that analysing results for de novo assembled reads of any sort can
be difficult and time-consuming. Bear in mind that we have only been faced with a single contig of 3kb.
Quite often you may find yourself dealing with hundreds, if not thousands of contigs. Some will be a
few 100kb long. Others may only be 200-300bp. How should we go about analysing these in a more
efficient manner? There are a number of options here. For eukaryotes | would suggest looking at
MAKER (http://www.yandell-lab.org/software/maker.html). For prokaryotes the situation is somewhat
easier and we can use a web-based service known as RAST. This is not the only service (Xbase is
another), but it is one of the most common.

RAST is a website where you upload the results of your de novo assembly and RAST will attempt to
provide annotation in commonly used GFF and Genbank formats. This can be used to load up the
annotation in Artemis or Apollo. Alternatively RAST has its own in-built viewer.

Task 13 (Optional)
Log in to RAST

Within your instance, go to http://rast.nmpdr.org/ Log-in with the details
RAST provided to you before you started this series of workshops. If you
do not have one, you may need to wait several days for your login to be issued
by RAST. Please skip ahead and come back to this section.

R AST Rapid Annotation using
Subsystem Technology

The NMPDR, SEED-based, prokaryotic genome annotation service.
For more information about The SEED please visit theSEED.org.

Info: You have been logged out.

Info: To monitor RAST's load and view other news and statistics for RAST and the SEED, please visit “The Daily SEED.”

RAST (Rapid Annotation using Subsystem Technology) is a fully-automated service for annotating bacterial and archaeal genomes. It provide
As the number of more or less complete bacterial and archaeal genome sequences is constantly rising, the need for high quality automated
we provide RAST as a free service to the community. It leverages the data and procedures established within the SEED framework to providt
quality genome sequences AND the analysis of draft genomes. The service normally makes the annotated genome available within 12-24 ho

Please note that while the SEED environment and SEED data structures (most prominently FiGfams) are used to compute the automatic annt
the SEED. Once annotation is completed, genomes can be downloaded in a variety of formats or viewed online. The genome annotation prov

To be able to contact you once the computation is finished and in case user intervention is required, we request that users register with email
If you use our service, please cite:

The RAST Server: Rapid Annotations using Subsystems Technology.

Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Ost
Vonstein V, Wilke A, Zagnitko O.

BMC Genomics, 2008, [ article |

This project has been funded in whole or in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Insi
Login I

Password Login
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Task 14 (Optional)
Upload the assembled contigs and annotate using RAST

R AS Rapid Annotation using
Subsystem Technology

DR, SEED-based, prokaryotic genon
re information about The SEED ple:

Upload a Genome

A prokaryotic genome in one or more contigs should be uploaded in either a single FASTA format file or in a Genbank format file. Our pipeline will use the taxonomy identifier as a handle for the genome. Therefore i
and genus, species and strain in the following upload workflow.

Please note, that only if you submit all relevant contigs (i.e. all chromosomes, if more then one, and all plasmids) that comprise the g ici ion of your organism of interest in one job, Features like Metabolit
picture.

Confidentiality information: Data entered into the server will not be used for any purposes or in fact integrated into the main SEED environment, it will remain on this server for 120 days or until deleted by the subm
If you use the results of this annotation in your work, please cite:

The RAST Server: Rapid Annotations using Subsystems Technology.
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, P

A, Zagnitko O.
BMC Genomics, 2008, [ article |

File formats: You can either use FASTA or Genbank format.

® [fin doubt about FASTA, this service allows conversion into FASTA format.
* Due to limits on identifier sizes imposed by some of the third-party bioinformatics tools that RAST uses, we limit the size of contig identifiers to 70 characters or fewer.
® Ifyou use Genbank, you have the option of preserving the gene calls in the options block below. By default, genes will be recalled.

Please note: This service is intended for complete or nearly complete prokaryotic genomes. For now we are not able to reliably process sequence data of very small size, like small plasmid, phages or fragments.

File Upload:
’7 Sequences File Browse...

Use this data and go to step 2

Click on Your jobs->Upload New Job

Upload the contigs.fasta file obtained by the de novo assembly of unmapped reads. Click on “Use this
data and go to step 2.
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Upload a Genome

Review genome data
We have analyzed your upload and have computed the following information.

Contig statistics

Statistic As uploaded After splitting into scaffolds
Sequence size 338383 338383

Number of contigs 394 394

GC content (%) 428 428

Shortest contig size 128 128

Median sequence size 530 530

Mean sequence size 858.8 858.8

Longest contig size 67492 67492

Please enter or verify the following information about this organism:

RAST bases its genome identifiers on NCBI taxonomy-IDs.

If you provide a valid taxonomy-ID, RAST will attempt to fill in the genome metadata for you.

If you leave the taxonomy-ID field blank, RAST will assign a meaningless taxonomy-ID, and you will need to fill in the below genome metadata manually.

If you plan on submitting this genome to PATRIC you will need to provide the most descriptive NCBI taxonomic grouping possible. If you leave the taxonomy-ID field blank, RAST will assign a meaningless taxonomic identifier
and the genome will not be suitable for submission to PATRIC. We discuss the motivationand process for submitting your genome to PATRIC in this document.

You may search for the taxonomy-ID of your organism using the search facilities at the NCBI taxonomy browser.

—Genome ir

Taxonomy (555

If you enter a valid NCBI taxonomy-ID and click "Fill in form based on NCBI taxonomy-ID,"
RAST will attempt to automatically fill in the form below. You may then edit any incorrect field
values before going to the next step.

If you do not know the taxonomy-ID of your genome, please leave the taxonomy-ID field blank,
and fill in the fields manually.

][ Look up taxonomy ID at NCBI.

Taxonomy aprotecbacteria; Enterobacteriales; ® Ifyou leave this field blank, RAST will fill in a dummy taxonomy string of the form "Domain;
string: genus species strain.”, based on the form entries below.
Domain:

@ Bacteria O Archaea O Virus

Genus: Escherichia
Species: coli
Strain:

geo:m @ 11 (Archaea, most Bacteria, most Virii, and some Mitochondria)

E.g., "Escherichia”. If you do not know the genus, leave blank, and it will defaultto "Unknown".

E.g., "coli". If you do not know the species, leave blank, and it will defaultto "sp.”.

E.g. "str. K12 substr. MG1655". This field is optional. (May also be used as a comment.)

o4 p U and Fungal Mi ia)

We know this is an E.coli genome so we can enter 562 as the Taxonomy ID and click on ‘Fill in form
based on NCBI taxonomy-ID'. If you're dealing with a different organism, be sure to change this
number. RAST will automatically split any scaffolds (i.e. contigs with bits missing in the middle —
denoted by Ns). Then click “Use this data and go to step 3”.

Upload a Genome
Complete Upload

Please consider the following options for the RAST annotation pipeline:

— RAST Annotation Settings:

Choose RAST Classic RAST v Choose "Classic RAST" for the current production RAST, or "RASTtk" for the new modular RAS

annotation scheme

Select gene caller RAST v Please select which type of gene calling you would like RAST to perform. Note that using GLIM
backfilling of gaps.

Select FIGfam version | Release70 v Choose the version of FIGfams to be used to process this genome.

for this run

Automatically fix v Yes The automatic annotation process may run into problems, such as gene candidates overlappin

errors? these problems (even if that requires deleting some gene candidates), please check this box.

Fix frameshifts? Yes If you wish for the pipeline to fix frameshifts, check this option. Otherwise frameshifts will not

Build metabolic model? [¢] yeg If you wish RAST to build a metabolic model for this genome, check this option.

Backfill gaps? v Yes If you wish for the pipeline to blast large gaps for missing genes, check this option.

Turn on debug? Yes If you wish debug statements to be printed for this job, check this box.

Set verbose level 0 Set this to the verbosity level of choice for error messages.

Disable replication Yes Even if this job is identical to a previous job, run it from scratch.

| Finish the upload |

Replicate the settings above and click on 'Finish the upload'.
Your job may take several hours to run. In the meantime, proceed to the next workshop and
come back to this later.
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Once complete, RAST should email you a message. You can then view the results or download them
in standardized formats (e.g. GFF3, Genbank, EMBL etc).

On the start page click on view details for your annotation

Progress bar color key:

not started

B queued for computation
in progress

B requires user input

Bl failed with an error

B successfully completed

Jobs you have access to :

DD 4 P ) d P [Z€ patio . ptatio [at
Ca [10S Dp Date Progres com Y
205173|0'Neill, Paul{562.4461 |Escherichia coli 15 129530 [2014-12-04 lllllllllll complete
10 33:46 [ view details ]

You will get a summary of the sequence you uploaded and you have the ability to download the
annotations to your computer

Job Details #205173

» Browse annotated genome in SEED Viewer

» View metabolic model

» Available downloads for this job: | GFF3 v | Download | Update download files

Download the GFF3 annotation and open it in a text editor

#t#gff-version 3

NODE 10 length 3324 cov_22.7003 ID 19 FIG CDS 249 1163 . - 0
ID=fig|562.4461.peg.1;Name=FIG010773: NAD-dependent epimerase/dehydratase
NODE 10 length 3324 cov_22.7003 ID 19 FIG CDS 1160 2782 . - 2

ID=fig|562.4461.peg.2;Name=FIG022758: Long-chain-fatty-acid--CoA ligase (EC
6.2.1.3);0ntology term=KEGG ENZYME:6.2.1.3

NODE_1 length 67492 cov_565.407 ID 1  FIG  CDS 151 927 . - 1
ID=fig|562.4461.peg.3;Name=FIG00638373: hypothetical protein

NODE_1 length 67492 cov_565.407 ID 1  FIG  CDS 973 1407 . - 1
ID=fig|562.4461.peg.4;Name=YcgB

NODE_1 length 67492 cov_565.407 ID 1  FIG  CDS 1421 1642 . - 2
ID=fig|562.4461.peg.5;Name=putative cytoplasmic protein

NODE 1 length 67492 cov 565.407 ID 1 FIG CDs 1643 2326 . - 2

ID=fig|562.4461.peg.6;Name=Adenine-specific methyltransferase (EC
2.1.1.72);0ntology term=KEGG ENZYME:2.1.1.72

NODE_1 length 67492 cov_565.407 ID 1  FIG  CDS 2434 2559 . + 1
ID=fig|562.4461.peg.7;Name=hypothetical protein

NODE_1 length 67492 cov_565.407 ID 1  FIG  CDS 2573 2761 . + 2
ID=fig|562.4461.peg.8;Name=FIG00639560: hypothetical protein

NODE_1 length 67492 cov_565.407 ID 1  FIG  CDS 2712 3149 . - 0

ID=fig|562.4461.peg.9;Name=FIG01048508: hypothetical protein

note: your output may be different.
Scan down the list of annotations do any themes stand out?
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From the job details page:
Job Details #205173

» Browse annotated genome in SEED Viewer

» View metabolic model

» Available downloads for this job: | GFF3 v | Download I Update download files

Click on 'Browse annotated genome in SEED viewer'

Subsystem Statistics

Subsystem Coverage Subsystem Category Distribution Subsystem Feature Counts

m Cofactors, Vitamins, Prosthetic Groups, Pigments (2)
@M Cell Wall and Capsule (0)

@M Virulence, Disease and Defense (1)

@ M Potassium metabolism (0)

@ W Photosynthesis (0)

@ Miscellaneous (0)

@M Phages, Prophages, Transposable elements, Plasmids (43)
m Membrane Transport (67)

@M Iron acquisition and metabolism (0)

RNA Metabolism (0)

W Nucleosides and Nucleotides (0)

@ Protein Metabolism (2)

@M Cell Division and Cell Cycle (0)

Motility and Chemotaxis (0)

@ M Regulation and Cell signaling (4)

Secondary Metabolism (0)

1 DNA Metabolism (0)

W Fatty Acids, Lipids, and Isoprenoids (0)
= W Nitrogen Metabolism (0)

@M Dormancy and Sporulation (0)

@ M Respiration (0)

@M Stress Response (0)

Metabolism of Aromatic Compounds (0)
Amino Acids and Derivatives (0)

Sulfur Metabolism (0)

@ Phosphorus Metabolism (0)

1 Carbohydrates (0)

Ui« o w4

This gives you a hierarchical view of the subsystems.
Browse the rest of the RAST server and get a feel for the possibilities the platform may offer you.

When you're ready, move on to (or back to) the de novo assembly part of the workshop.
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Part 4

Short read genomics: De-novo assembly
Introduction:

In this section of the workshop we will continue the analysis of a strain of E.coli. In the previous sec-
tion we extracted those reads which did not map to the reference genome and assembled them. How-
ever, it is often necessary to be able to perform a de novo assembly of a genome. In this case, rather
than doing any remapping, we will start with the filtered reads we obtained in part 3 of the workshop.

To do this we will a program called SPAdes to try to get the best possible assembly for a given ge-
nome. We will then generate assembly statistics and then produce some annotation via Pfam and
BLAST.

Task 1: Start the Assembly

The assembly takes so the results have been pre-computed for you and are available in the directory
~/workshop_meterials/genomics_tutorial/data/sequencing/ecoli_exeter/denovo_assembly.

If you were to run the command it would be as follows:
spades.py -o denovo_assembly_rerun -1 E_Coli_CGATGT_L001_R1_001 filtered.fastq -2
E_Coli_CGATGT_L001_R2_001 filtered.fastq

This will create a directory called denovo_assembly rerun to hold the results.
Assembly theory

We are using SPAdes (http://bioinf.spbau.ru/en/spades) to perform our assembly. It is a de Bruijn
graph based assembler, similar to other short read assemblers like velvet
(https://www.ebi.ac.uk/~zerbino/velvet/). The advantage of SPAdes is that it does lot of error correc-
tion and checking before and after the assembly which improve the final result. A downside of SPAdes
is that it was designed for assembling reads from a single cell and although it does a good job with
DNA prepared from a community it can leave in some low coverage sequences which are likely to be
artifacts.

You can read more about the comparison here http://thegenomefactory.blogspot.co.uk/2013/08/how-
spades-differs-from-velvet.html

SPAdes is also very easy to use - apart from telling it where your input files are the only parameter
that you might want to choose is the length of k-mer.

K-mer length. Rather than store all reads individually which would be unfeasible for lllumina type da-
tasets, de Bruijn assemblers convert each read to a series of k-mers and stores each k-mer once,
along with information about how often it occurs and which other k-mers it links to. A short k-mer
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length (e.g. 21) reduces the chance that data will be missed from an assembly (e.g. due to reads be-
ing shorter than the k-mer length or sequencing errors in the k-mer), but can result in shorter contigs
as repeat regions cannot be resolved. .

When using the Velvet assembiler it is necessary to try a large combination of parameters to ensure
that you obtain the 'best' possible assembly for a given dataset. There is even a program called Vel-
vetOptimiser which does it for you. However, what 'best' actually means in the context of genome as-
sembly is ill-defined. For a genomic assembly you want to try to obtain the lowest number of contigs,
with the longest length, with the fewest errors. However, although numbers of contigs and longest
lengths are easy to evaluate, it is extremely difficult to know what is or isn't an error when sequencing
a genome for the first time.

SPAdes allows you to choose more than one k-mer length - it then performs an assembly for each k-
mer and merges the result - trying to get the best of both worlds. It actually has some pre-calculated k-
mer settings based on the length of reads you have, so you don't even have to choose that.

Let's look at the assembly process in more detail:

Description of k-mers:

What are they? Let's say you have a single read:

AACTAACGACGCGCATCAAAA

The set of k-mers obtained from this read with length 6 (i.e. 6-mers) would be obtained by taking the
first six bases, then moving the window along one base, taking the next 6 bases and so-on until the
end of the read. E.g:

AACTAAC| GACGCGCATCAAAA A [ACTAACG |ACGCGCATCAAAA
AACTAAC AACTAAC ——+=  ACTAACG
AACTAACGACGCGCATCAAAA

L wcrane | arancs | oM | T et s —{ acwcec ] comes ] st fe—t mocma ] cocmar ——{ wocarc |

[ cocarn |

[ GOATCAR

[ CATCAAL

[ ewraasa )
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You may well ask, “So what? How does that help”? For a single read, it really doesn't help. However
let's say that you have another read which is identical except for a single base:

AACTAACGAG G [GCATCAAAA
ACTAACGAG T [GCATCAAAA

MCTAM ACTAMCE Sl CTAMCEA TAM LA ( wceacs o acoee ) comces —o{ acscie et msa et cocuar e coscarc
. J \ J \ J \ J ! J ! J \

1x 2x 2x 2x
/( cecnran |
) [ vescarc
L MceacT ,\ — / CTCRCAT f [ SOATCAR 2x
N ey L )
== ( wim ] 2
[(oomn ] 2x

Rather than represent both reads separately, we need only store the k-mers which differ and the num-
ber of times they occur. Note the 'bubble’ like structure which occurs when a single base-change oc-

curs. This kind of representation of reads is called a 'k-mer graph' (sometimes inaccurately referred to
as a de-bruijn graph).

Now let's see what happens when we add in a third read. This is identical to the first read except for a
change at another location. This results in an extra dead-end being added to the path.

:(““;
2 2 2 x Zx/ 1x

r \ r \ r \ P \ , . P \ , 2 r \ r ' ,
T }—.( ACTMGE el CTAMCEA i TAACEAC | MMEACE | ACGAGRC e CRARCR i GACKEC i ACRORA i CRORAT | GORCATC

/( cocaren |
TCREATE

"‘m | grrv— muf (“AV(-M‘
TN A=) -

R e

1x Ix 3x 3x

[ 1 2x
The job of any k-mer based assembler is to find a path through the k-mer graph which correctly repre-
sents the genome sequence.
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Images courtesy of Mario Caccamo
Description of coverage cutoff:

In the figure above, you can see that the coverage of various k-mers varies between 1x and 3x. The
question is which parts of the graph can be trimmed or removed so that we avoid any errors. As the
graph stands, we could output three different contigs as there are three possible paths through the
graph. However, we might wish to apply a coverage cutoff and remove the top right part of the graph
because it has only 1x coverage and is more likely to be an error than a genuine variant.

In a real graph you would have millions of k-mers and thousands of possible paths to deal with. The
best way to estimate the coverage cutoff in such cases is to look at the frequency plot of contig (node)
coverage, weighted by length. In the example below you can see that contigs with a coverage below
7x or 8x occur very infrequently. As such it is probably a good idea to exclude those contigs which
have coverage less than this — they are likely to be errors.

Description of expected coverage:

q
0e+00 1e+05 2e+05 3e+05 4e+05 Se+*05  6e+05

T L B B B R e
0 2 4 6 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50

In the example below you can see a stretch of DNA with many reads mapping to it. There are two re-
petitive regions A1 and A2 which have identical sequence. If we try to assemble the reads without any
knowledge of the true DNA sequence, we will end up with an assembly that is split into two or more
contigs rather than one.

One contig will contain all the reads which did not fall into A1 and A2. The other will contain reads from
both A1 and A2. As such the coverage of the repetitive contig will be twice as high as that of the non-
repetitive contig.

If we had 5 repeats we would expect 5x more coverage relative to the non-repetitive contig. As such,
provided we know what level of coverage we expect for a given set of data, we can use this infor-
mation to try and resolve the number of repeats we expect.
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A commonly used metric to describe the effectiveness of the assembly is called N50 - see
http://en.wikipedia.org/wiki/N50_statistic for details.
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Task 2: Checking the assembly

Change into the denovo_assembly directory:
cd denovo_assembly

Firstly we can filter out low coverage and very short contigs using a perl script:
filter_low_coverage_contigs.pl < contigs.fasta > contigs.goodcov.fasta

We will use QUAST again (http://bioinf.spbau.ru/quast) to generate some statistics on the assembly.

quast.py --output-dir quast contigs.goodcov.fasta
This will create a directory called quast and create some statistics on the assembly you produced.

cat quast/report.txt

Assembly
¢ contlgs
¢ contlgs
¢ contlgs (== 5000 bp)
¢ contigs (>= 10000 bp)
¢ contigs (== 25000 bp)
¢ contlgs (== S0000 bp)

contigs.goodcov
gl
&7
49
45
42
29

otal length
otal length
otal length
otal length
otal length
otal length
¢ contlgs

Largest cont
otal length

b

W

Py

X LT
]

v
Il

——
W
Il

1q

0 bp)
1000 bp)
5000 bp)
10000 bp)
25000 bp)
50000 bp)

4689514
4679794
4542981
4623085
4560613
4090836
=11
293215
4689514
20,72
136627
95318
12

21

0.00

: N's.per 100 kbp

You can see that there are 81 contigs in the assembly - so it is still far from complete.
The N50 is 136K and the N75 is 95K so most of the assembly is in quite large contigs.
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This is fairly normal for a short read assembly - don't expect complete chromosomes.

A good check at this point is to map the original reads back to the contigs.fasta file and check that all
positions are covered by reads. Amazingly it is actually possible for de-novo assemblers to generate
contigs to which the original reads will not map.

Task 3: Map reads back to assembly

Here we will use BWA again to index the contigs.fasta file and remap the reads. This is almost identi-
cal to the procedure we followed during the alignment section, the only difference is that instead of
aligning to the reference genome, we are aligning to our newly created reference.

Make sure you are in the following directory:
~/workshop_meterials/genomics_tutorial/data/sequencing/ecoli_exeter/denovo_assembly/

Let's create a subdirectory to keep our work separate
mkdir remapping_to_assembly
cd remapping_to_assembly
cp ../contigs.fasta .

Let's start by indexing the contigs.fasta file. Type:
bwa index contigs.fasta

[ec2-user@ip-10-181-110-211 remapping to_assembly]$ bwa index contigs.fasta
[bwa_index] Pack FASTA... 0.07 sec

[bwa_index] Construct BWT for the packed sequence...
[bwa_index] 2.04 seconds elapse.

[bwa_index] Update BWT... 0.06 sec

[bwa_index] Pack forward-only FASTA... 0.04 sec
[bwa_index] Construct SA from BWT and Occ... 0.68 sec
[main] Version: 0.7.10-r789

[main] CMD: bwa index contigs.fasta

[main] Real time: 6.961 sec; CPU: 2.901 sec
[ec2-user@ip-10-181-110-211 remapping_to_assembly]$ I

Once complete we can start to align the reads back to the contigs. Type (all on one line):
bwa mem -t 2 con-

tigs.fasta ../../[E_Coli_CGATGT_L001_R1_001 filtered.fastq ../../E_Coli_CGATGT_L001_R2_0
01 filtered.fastq > E_Coli_CGATGT_L001_filtered.sam

Once complete we can convert the SAM file to a BAM file:

samtools view -bS E_Coli_CGATGT_L001_filtered.sam > E_Coli_ CGATGT_L001_filtered.bam
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And then we can sort the BAM file:

samtools sort -o E_Coli CGATGT_L001 _filtered.sorted.bam
E_Coli CGATGT_L001 _filtered.bam

Once completed, we can index the BAM file:
samtools index E_Coli_CGATGT_L001_filtered.sorted.bam

We can then (at last!) obtain some basic summary statistics using the samtools flagstat command:
samtools flagstat E_Coli CGATGT_L001_filtered.sorted.bam

genomlcs@genomics 2016:
$samtools flagstat E Coli CGATGT LG

01l _filtered.sorted.bam

1269338 + 0 1n total (QC-passed reads + QC-falled reads)
0+ 0 duplicates

1266061 + O mapped (99.74%:-nan%)

1269338 + 0 paired 1n sequenclng

634685 + 0 readl

634653 + 0 readz

1252740 + O properly paired (98.6%%:-nan%)

1264970 + 0 with itself and mate mapped

1091 + 0 singletons (0.0%s:-nan%)

9276 + 0 with mate mapped to a different chr

7977 + 0 with mate mapped to a different chr (mapQ==5)

We can see here that very few of the reads do not map back to the contigs. Importantly 98% of reads
are properly paired which gives us some indication that there are not too many mis-assembilies.

Run qualimap to get some more detailed information (and some images)
qualimap bamqc -outdir bamqc -bam E_Coli CGATGT_L001 _filtered.sorted.bam

firefox bamqc/qualimapReport.html
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In the Chromosome stats section:

Chromosome stats
Mapped Mean Standard
Name Length ..
bases coverage deviation
NODE_1_length_293215_cov_26.7248_ID_1 293215 15962208 54.44 11.39
NODE_2_length_235405_cov_25.9929_ID_3 235405 12493267 53.07 10.9
NODE_3_length_229124 cov_26.8329_ID_5 229124 11966638 52.23 10.41
NODE_4_length_227801_cov_26.3369_ID_7 227801 11934749 52.39 12.45

The larger of our contigs have a mean coverage of around 50 - which is what we would expect from
our original alignment.

NODE_25_length_67492_cov_567.168_ID_49 67492 78055078 1,156.51 225.09

There is one contig which has the size of 67492 - this is exactly the same as the contig we found in
the unmapped reads - that is pretty good indication that it is a separate sequence (remember we sus-
pected a plasmid) and not integrated into the chromosome.

Let's double check that by blasting these contigs against the unmapped assembly contigs from part 4:
blastn -subject ../contigs.goodcov.fasta -
query ../../unmapped_assembly/spades_assembly/contigs.fasta > check_plasmid.blastn

Open the file in a text editor:
gedit check_plasmid.blastn

and about 30% of the way down the file you should find: (hint use search/find)

Query= NODE 1 length 67492 cov 601.94 ID 2528
Length=67492

Subject= NODE 25 length 67492 cov 567.168 ID 49
Length=67492

Score = 1.246e+05 bits (67474), Expect = 0.0

Identities = 67486/67492 (99%), Gaps = 0/67492 (0%)
Strand=Plus/Plus

This shows us that this contig exactly almost matches that in the unmapped assembly, strongly sup-
porting that this is a plasmid sequence and not integrated into the chromosomes.
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Task 4: View assembly in IGV

Load up IGV
igv.sh

Click Genomes -> Load Genome from File....

We are going to import the contigs we have assembled as the reference. Unlike the reference genome
though, we have no annotation available. Make sure you select the contigs.goodcov.fasta file for the
complete de novo assembly (not the unmapped reads assembily).

Once loaded, click on File->Load From File... select the E_Coli_ CGATGT_L001_filtered.sorted.bam
file. Again, make sure you load the file in the remapping_to_assembly directory.

Select Files

S . | =[] 1n~n-]n—
Look In: Uj remapping_to_assembly |VJ @ EJ E‘ oo o=
ov fasta fai | E_Coli_CGATGT_L001_filtered.sorted.bam |
ov .fasta.pac D E_Coli_CGATGT_Loo01_filtered.sorted.bam.bai
ov fastasa
GT_Lo01_fitered.bam
GT_Loo1_filteredsam
GT_Loo1_filtered.sorted
< | I [»
File Name: [E_Coli_CGATGT_LOO 1_filtered.sorted.bam ‘
Files of Type: !AII Files ]v‘

| Open | ’ Cancel ‘

Once loaded, explore some of the contigs in IGV.
See if you can find anything unusual in any of the contigs.

Here is one to get you started.
Select NODE_3...

File Genomes View Tracks Regions Tools GenomeSpace Help

contigs.fasta ~ | INODE_3_length_229124_cov_26.8329_ID_5 lv ‘2291247:0\/72&83297\!175 113,553/Go £ « @ m o= 2 | [=ERRREEY ARRRRRNN
[ I n
13k
& 20 aw s o e 2
] Il 1 1 1 ] 1 ] I} 1 =
e
E_Coli_CGATGT_L0D1_filtered | | © 7 2
cabam Coveage |
- »— -
| -
[
[ - -
e

E_Coli_CGATGT_L001_fitered.
edbam

Df«]

AT
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Why does the contig start and end in repetitive sequence (indicated by the white reads)? You may
need to zoom in to see the details. Think about what an assembler will do if it cannot uniquely assign
reads.

If an assembler cannot resolve these repetitive regions with paired-end reads or coverage information,
it will generally be unable to assemble any further sequence for that contig. Therefore it is quite com-
mon to see contigs which start and end in sequence which is repeated elsewhere.

Here is another:

Select NODE_49.....

Right click on the reads and select view as pairs:

‘contigs.fasta

v‘NODE7497Iength755137(0v71183.787ID797 ‘v ‘497\ength755137(0\/71183.787@797‘Go £ « @ O = 2 =N R

I

5,505 bp

L«

m3

E_Coli_CGATGT_LOOA_filtered.

BILTNE
|
0 o

3tracks loaded | ]voDE_49_tength_5513_cov... | [iersemor sosem_

What do you think is going on here? Try blasting the contig sequence using BlastX at
http://blast.ncbi.nlm.nih.gov/Blast.cgi to identify which genes the contig contains. To obtain the se-
quence you can right click and select ‘Copy consensus sequence’:
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contigs.fasta ‘ v‘ ‘NODE}IQJength755137cov71183A 78.1D_97
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@O = Q2 |

=N NN

3 1,000 bp.
1
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1
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1

4,000 bp

5,000 bp.

—_——-

E_Coli_CGATGT L001 filtered.sorted.bam

E_Coli_CGATGT_LDO1 filtered
ed.bam Coverage

Rename Track...
Copy read details to clipboard

I |[ (KNI

Group ali s by
Sort alignments by
Color alignments by

# Shade base by quality

U Show mismatched bases

I Show all bases

¥ View as pairs

E_Coli_CGATGT_LDO1 _filtered |

Go to mate

View mate region in split screen

[J Set insert size options ...

Re-pack ali

¥ Show coverage track

[ Load coverage data...

O Collapsed
® Expanded
O squished

Select by name...
Clear selections

Copy read sequence

Blat read sec
Copy consensus sequence

Sashimi Plot

Remove Track

3tracks loaded | NoDE_49_length_5513_cov... ||

Save image...

& Terminal i 16V

Export Alignments...

[Jfr201 of 30660

You can also do the same for individual reads, but you need to un-select ‘View as pairs’ before right
clicking on a read. You may lose track of the paired-end reads and find it easier to copy the read name

before un-selecting ‘View as pairs’ and then and then pasting it into the ‘Select by name...” search

box.

You should find that the contig contains at least two phage genes. There appear to be at least two

phages present, one which seems to be the full contig, the other with the red read-pairs seems to be

missing the sequence in the middle of the contig.
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Annotation of de-novo assembled contigs

We will now annotate the contigs using BLAST, Pfam and RAST as with the unmapped contigs.

Task 5: Obtain open reading frames

As before, we’ll call open reading frames within the de-novo assembly. Again, we will use codon table
11 which defines the bacterial codon usage table
(http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi) and state that the sequences we are
dealing with are not circular. We will also restrict the ORFs to just those sequences longer than 300
nucleotides (i.e. 100 amino acids). We will store the results in file contigs.orf.fasta.

Make sure you are in the denovo_assembly/ directory:

getorf -table 11 -circular N -minsize 300 -sequence contigs.goodcov.fasta -outseq con-
tigs.orf.fasta

The following two tasks are optional. Be warned - the BLAST searches and
RAST will take several days! | recommend you skip these and proceed to Task
9.

Task 6 (Optional): Search open reading frames against NCBI non-
redundant database

We can also search these open reading frames against the NCBI non-redundant database.

blastp -db ~/workshop_meterials/genomics_tutorial/db/blast/nr -query contigs.orf.fasta -evalue
1e-06 -num_threads 4 -show_gis -num_alignments 10 -num_descriptions 10 -out con-
tigs.orf.fasta.blastp

Task 7 (Optional): Search contigs against NCBI non-redundant database
The following command executes a nucleotide BLAST search (blastn) of the sequences in the
contigs.fasta file against the non-redundant database. Again we restrict ourselves to 10 results per hit
and an e-value cutoff of 1e-06.

blastn -db ~/workshop_meterials/genomics_tutorial/db/blast/nt -query contigs.fasta -evalue 1e-

06 -num_threads 4 -show_gis -num_alignments 10 -num_descriptions 10 -out con-
tigs.fasta.blastn

Task 8 (Optional)
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Run the contigs through the RAST server and import the resulting GFF annotation into IGV (refer back
to Part 4 for instructions).

Task 9: Run open reading frames through Pfam

As with the unmapped reads we will search the open reading frames against the Pflam HMM database
of protein families. Later on we will be able to use these results to identify Pfam domains which are
unique to a particular strain.

pfam_scan.pl -fasta contigs.orf.fasta -dir ~/workshop_meterials/genomics_tutorial/db/pfam/ -
outfile contigs.orf.pfam -cpu 2 -pfamB -as

This will take around 5 hours so it is recommended that you leave this running while continuing with
the rest of the tutorial. If it is still running when you finish your session for today, leave your instance
running overnight, but please be sure to turn it off in the morning!
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Hybrid de-novo assembly

You will have seen that even with good coverage and a relatively long (300bp) paired end lllumina da-
taset - the assembly we get is still fairly fragmented. Our E.coli example assembles into 78 contigs
and the largest contig is around 10% of the genome size.

Why is this?

One possible reason would be that regions of the original genome were not sequenced, or sequenced
at too low coverage to assemble correctly. Regions of the genome will occur with different frequencies
in the library that was sequenced - You can see this in the variation of coverage when you did the
alignment. This can be due to inherent biases in the preparation and the random nature of the pro-
cess.

However as coverage increases the chances of not sequencing a particular region of the genome re-
duces and the most significant factor becomes the resolution of repeats within the assembly process.
If two regions contain the same or very similar sequences the assembler cannot reliably detect that
they are actually two or more distinct sequences and incorrectly 'collapses' the repeat into a single se-
quence. The assembler is now effectively missing a sequence and therefore breaks in the assembly
occur.

One resolution to this is to use a sequencing technology like PacBio or Sanger which can produce

longer reads - the reads are then long enough to include the repeated sequence, plus some unique
sequence, and the problem can be resolved. Unfortunately getting enough coverage using Sanger

sequencing is expensive and PacBio - although relatively inexpensive has a high error rate.

An approach becoming more and more popular is to combine technologies. For example: high quality
lllumina sequencing to get the accuracy of reads combined with low quality PacBio sequencing to en-
able the repeats to be spanned and correctly resolved.

Our exercise will be to use lllumina and PacBio datasets to assemble a species of pseudomonas.
These are subsets of data used in "Evaluation and validation of de novo and hybrid assembly tech-
niques to derive high-quality genome sequences" Utturkar et al., 2014.
(http://www.ncbi.nlm.nih.gov/pubmed/24930142). This paper also contains a good explanation of the
process and different approaches that are available.

Task 10: QC the data

It is always important to check and understand the quality of the data you are working with:
Change to the directory and run fastqc
cd ~/workshop_meterials/genomics_tutorial/data/sequencing/pseudomonas_gmé41

fastqc
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Open the files SRR1042836a.fastq SRR491287a_1.fastq -2 SRR491287a_2.fastq and look at the re-
ports generated.

File Help
[ SRR1042836.fastq T SRR491287a_1 filteredfastq | SRR491287a_2 filteredfastq ‘
Basic Statisti
@ asie slies Quality scores across all bases (Sanger/ lllumina 1.9 encoding)
@ Per base sequence quality |34

3
@ Persequence quality scores 30

@ Per base sequence content 28

@ Per sequence GC content 24

22
@ Per base N content 20
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@ Sequence Duplication Levels | 14 I
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‘ \ Kmer Content I:I:
AEC
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o B @

Note that the quality of the PacBio reads (SRR1042836a.fastq) is much lower than the lllumina reads
with a greater than 1 chance in 10 of there being a mistake for most reads.
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However, importantly, the length of théﬂbécBio reads is much longer.

Trim the lllumina reads as before:
fastg-mcf ../../reference/adaptors/adaptors.fasta SRR491287a_1.fastq SRR491287a_2.fastq -o
SRR491287a_1 filtered.fastq -o SRR491287a_2 filtered.fastq -q 20 -p 10 -u -x 0.01

You can check the number of filtered reads using grep —c and the quality if trimmed reads with fastqc
if you want.

For this exercise we want the long reads from PacBio even though they are low quality. We are relying
on the assembler to use them appropriately.
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Task 11: lllumina Only Assembly

Firstly let's construct an assembly using only the available lllumina data.
Make sure you are in the directory
~/workshop_meterials/genomics_tutorial/data/sequencing/pseudomonas_gm41
Run:
spades.py --threads 2 --careful -o illumina_only_assembly -1 SRR491287a_1 filtered.fastq -2
SRR491287a_2 filtered.fastq

(This may take some time so the data has been precomputed and is available in illumina_assembly/ if
you are impatient!)

Change to the directory:
cd illumina_only_assembly

Filter out low coverage and very short contigs using a perl script:
filter_low_coverage_contigs.pl < contigs.fasta > contigs.goodcov.fasta

Let's look at the metrics for the assembly.
quast.py --output-dir quast contigs.goodcov.fasta

cat quast/report.txt

Assembly contigs.goodcov

¢ contlgs 0 bp) 117

¢ contigs 1000 bp) 106

¢ contigs 5000 bp) 83

¢ contigs 10000 bp) 78

¢ contigs 25000 bp) 63

¢ contigs (== 50000 bp) 46

Total length 6630828

Total length 1000 bp) 6623034

Total length 5000 bp) 6572670

Total length 10000 bp) 6534104

Total length 25000 bp) 6280222

Total length S0000 bp) 5673771

# contigs 117

Largest contig 358339

Total length 6630828
50,01
117617
72000
17

7 35

# N's per 100 kbp 0.00

(Your results may be slightly different. This is because spades uses a random seed that changes eve-

ry time)
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Task 12: Create Hybrid Assembly

Now will execute the same command, but this time include the longer PacBio reads to see the effect it
has on our assembly.

Change back into the directory
~/workshop_meterials/genomics_tutorial/data/sequencing/pseudomonas_gmé41

Run (This may take some time so the data has been precomputed and is available in hy-
brid_assembly/ if you are impatient!):

spades.py --threads 2 --careful -o hybrid_assembly --pacbio SRR1042836a.fastq -1
SRR491287a_1 filtered.fastq -2 SRR491287a_2 filtered.fastq

Change to the directory:
cd hybrid_assembly

Filter out low coverage and very short contigs using a perl script:
filter_low_coverage_contigs.pl < contigs.fasta > contigs.goodcov.fasta

Let's look at the metrics for the assembly - this time we will compare it with the illumina only assembly:
quast.py --output-dir quast con-

tigs.goodcov.fasta ../illumina_only_assembly/contigs.goodcov.fasta

cat quast/report.txt

hybrid_assembly contigs.goodcov 1illumina_only contigs.goodcov
b 117

Total 1enqth (== 2 6404993
Total length (>= 50000 bp) 6158714
# contigs =l¢]
Largest contig 484701

£ N's per 100 kbp

You can also explore the interactive html report:
firefox quast/report.html

It seems that using the longer reads has improved the completeness of our assembly - reducing the
number of contigs.
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Task 13: Align reads back to reference
Let's realign our original reads back to the assembly and see what we have - refer to previous notes if
you are unsure of the steps.

Start in the hybrid assembly directory
~/workshop_meterials/genomics_tutorial/data/sequencing/pseudomonas_gm41/hybrid_assembly

mkdir remapping_to_assembly
cd remapping_to_assembly
cp ../contigs.fasta .
bwa index contigs.fasta
First remap the lllumina reads. Type all on one line:
bwa mem -t 2 con-
tigs.fasta ../../.SRR491287a_1 filtered.fastq ../../SRR491287a_2 filtered.fastq >

gm41.illumina.sam

Process the output so that it is viewable in igv:
samtools view -bS gm41.illumina.sam > gm41.illumina.bam

samtools sort —o gm41.illumina.sorted.bam
gm41.illumina.bam

samtools index gm41.illumina.sorted.bam
samtools flagstat gm41.illumina.sorted.bam

We can also map the PacBio reads, but we need to tell bwa we are using PacBio reads
bwa mem -t 2 -x pacbio contigs.fasta ../../.SRR1042836a.fastq > gm41.pacbio.sam

samtools view -bS gm41.pacbio.sam > gm41.pacbio.bam
samtools sort -o gm41.pacbio.sorted gm41.pacbio.bam
samtools index gm41.pacbio.sorted.bam

samtools flagstat gm41.pacbio.sorted.bam
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+ 0 1n total (QC-passed reads + QC-failed reads)
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+ 0 mapped (82.87%: -nan%)

paired in sequencing
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You will notice that not such a high proportion of PacBio reads map back to the assembly.

Now start igv:
igv.sh

Load your assembled genome -
Click on genome - load from file

Make sure you get the assembly from the hybrid_assembly (igv remembers the previous directory
which may contain similar files.)

Now load your 2 alignment files:
click on load from File and then select gm41.pacbio.sorted.bam and gm41.illumina.sorted.bam

On the toolbar select - "Show Details on Click"

) @ [ = L
'] Show Details on Hover |_
- ¥ Show Details onClick —

‘ Il Never Show Details S

Find a region that has decent coverage of both reads and zoom in.
(Region shown here: NODE_79 length_15988 cov_20.944 ID_49:7,963-8,084)
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You can see that the PacBio reads are much longer, but the error rate particularly insertions and dele-
tions is much higher than for the lllumina reads.

Explore a few other contigs to see if you can find something that looks like an error or mis-assembly.
Remember the assembly process is difficult and far from perfect.

Summary

You have seen that de-novo assembly of short reads is a challenging problem. Even for small ge-
nomes, the resulting assembly is fragmented into contigs and far from complete.

Incorporating longer reads to produce a hybrid assembly can be used to reduce the fragmentation of
the genome. We have only used a single (perhaps the simplest) technique to incorporate long reads.
You can read more about hybrid assembly techniques here:
http://www.ncbi.nlm.nih.gov/pubmed/24930142
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Part 5 (Optional)

Short read genomics:

Comparison of results between different strains
Projects!

In the previous sections you have been taken through the steps required to:

QC and filter lllumina data

Remap lllumina short-read data to a reference sequence

View the results in IGV

Identify SNPs and Indels in an automated fashion using samtools and bcftools
Determine whether SNPs result in synonymous or non-synonymous changes in the
corresponding amino acid

Extract unmapped reads

Assemble unmapped reads and obtain assembly statistics

Annotate unmapped reads using Pfam, RAST and/or BLAST

Assemble a bacterial genome de-novo using SPAdes

Obtain assembly statistics

Annotate as per the unmapped reads (where computationally feasible).

O bkwn -~

T2 0 0N

- O

Now we want you to do the same on a set of Vibrio parahaemolyticus strains which have been
isolated and sequenced. There are six strains available depending on how much time is available and
enthusiasm you have - choose a number of strains (at least 2) as we want to run some comparisons.

The strains can be found in:
~/workshop_meterials/genomics_tutorial/data/sequencing/Vibrio_parahaemolyticus

[ec2-user@ip-10-181-126-118 Vibrio_parahaemolyticus]$ 1ls -1
total 24

drwxrwxr-x. 3 ec2-user ec2-user 4096 Dec 9 11:35
drwxrwxr-x. 3 ec2-user ec2-user 4096 Dec 9 11:44
drwxrwxr-x. 3 ec2-user ec2-user 4096 Dec 9 11:37
drwxrwxr-x. 3 ec2-user ec2-user 4096 Dec 9 11:33
drwxrwxr-x. 3 ec2-user ec2-user 4096 Dec 9 11:41
drwxrwxr-x. 3 ec2-user ec2-user 4096 Dec 9 11:39

Under each Sample directory is a subdirectory called raw_illumina_reads which contains the fastq

files.

For remapping, the reference can be found in the folder:

~/workshop_meterials/genomics_tutorial/data/reference/Vibrio_parahaemolyticus_ RIMD_ 2210633 _uid

57969

(Remember, you will need to create an index first).
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For each strain, make a list of:

1. SNPs, Indels and their effects (from the remapping)
2. Missing genes (from the remapping)
3. Novel plasmids and/or genes (Pfam domains are the easiest way to do this via denovo

assembly of unmapped reads - when performing the assembly - don't specify the k-mers SPAdes will
choose appropriate ones.)

Once completed, see if you can predict what the phenotype of these bacteria might be. Then proceed
to the final part of the tutorial where we will compare the results from all of these strains.

N.B.

It is recommended that you follow the same directory naming convention we have followed here (i.e.
one for remapping to the reference, another for assembly of unmapped reads and a final one for the
denovo assembly).

These tasks may take you several days. However, remember that all of the basic procedures are
detailed in the previous sections — only the input FASTQ files will have changed. Feel free to refer to
these previous tasks to remind yourself of the commands and parameters. By all means feel free to
play around with different parameters if you wish, although remember that the results may differ from
those you see here.

Just to give you some guidance:
You should find that strain Sample_T0347070 yields many more SNPs than other strains.

You may find that some scripts and programs run more slowly because of these extra differences and
larger datasets.

Also, if you find the de novo assembly process causes your NX session to end, the chances are that
SPAdes has caused your instance to run out of memory. If this happens, increase the minimum k-mer
size in the spades.py command line.
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Comparing variants between several samples and a reference genome:

Here we will use a script to compare the variants called in each sample. Ensure you are in the
~/workshop_meterials/genomics_tutorial/data/sequencing/Vibrio_parahaemolyticus directory

First of all, let's make a directory to store the results of the comparison:
mkdir snp_comparison/

We need a copy of all of the vcf4 files we created here. This is a quick way to do it - paste this in as
one command
for sample in Sample*
do
cp -v $sample/remapping_to_reference/out.snps.vcf4 snp_comparison/$sample.out.snps.vcf4
done

cd snp_comparison/

Note that the copy commands may require modification depending on where you have saved the
variant call results.

Our directory contents should look something like:

[ec2-user@ip-10-181-126-118 snp_comparison]$ 1ls -1
total 64388

-rw-rw-r—-—. 1 ec2-user ec2-user 7923228 Dec 9 17:16 Sample_G35.out.snps.vcfd
-rw-rw-r——. 1 ec2-user ec2-user 7377661 Dec 9 17:16 Sample_ PSU3384.out.snps.vcf4
-rw-rw-r——. 1 ec2-user ec2-user 7766075 Dec 9 17:16 Sample T02347066.out.snps.vcfd
-rw-rw-r—-—. 1 ec2-user ec2-user 7828043 Dec 9 17:16 Sample_T024_47060.out.snps.vcfd
-rw-rw-r——. 1 ec2-user ec2-user 27354227 Dec 9 17:16 Sample_T0347070.out.snps.vcfd
-rw-rw-r-—. 1 ec2-user ec2-user 7666231 Dec 9 17:16 Sample T0847053.out.snps.vcf4d

We'll now set up some variables so we don't have to type long path names

ref=~/workshop_meterials/genomics_tutorial/data/reference/Vibrio_parahaemolyticus_RIMD_2
210633_uid57969/Vibrio_parahaemolyticus_RIMD_2210633_uid57969.fasta

gff=~/workshop_meterials/genomics_tutorial/data/reference/Vibrio_parahaemolyticus_ RIMD_2
210633_uid57969/Vibrio_parahaemolyticus_RIMD_2210633_uid57969.gff

samples="ls *.vcf4

We can now use $ref instead of the long path to our reference and $gff for the feature file
e.g.

head $ref

echo $samples
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When we are happy our variables are correct then run:
snp_comparator.pl 10 $ref $gff $samples > snp_comparison.txt

Looking at the snp_comparison.txt file (either in a text editor, or in a spreadsheet):
If you have chosen different samples - you will get different results of course.

## Table of SNP and Indel occurences between these samples. Note that any comma-separated values (e.g. A,C indicate potential heterozygosity [~
and/or sample heterogeneity

Chrom Pos Ref Sample_G35.out.snps.vcf4 Sample_PSU3384.out.snps.vcf4 Gene description Status

NC_004603 1000 G A G VP0002 tRNA modification GTPase TrmE ,silent atc -> atT;

NC_004603 1000051 T A T VP0959 zinc/cadmium/mercury/lead-transporting ATPase ,non-silent ctg -> cAg;

NC_004603 1000065 G A G VP0959 zinc/cadmium/mercury/lead-transporting ATPase ,non-silent gtc -> Atc;

NC_004603 1000067 C T Cc VP0959 zinc/cadmium/mercury/lead-transporting ATPase ,silent gtc -> gtT;

NC_004603 1000080 C [} A VP0959 zinc/cadmium/mercury/lead-transporting ATPase ,non-silent ctc -> Atc;

NC_004603 100009 c c T VP0092 hypothetical protein ,silent tcg -> tcA;

NC_004603 1000091 c T T VP0959 zinc/cadmium/mercury/lead-transporting ATPase ,silent gac -> gaT; ,silent gac ->
gaT;

NC_004603 1000100 c T c VP0959 zinc/cadmium/mercury/lead-transporting ATPase ,silent tgc -> tgT;

NC_004603 1000103 A G A VP0959 zinc/cadmium/mercury/lead-transporting ATPase ,silent cca -> ccG;

NC_004603 100020 A G G VP0092 hypothetical protein ,silent ttg -> Ctg; ,silent ttg -> Ctg;

NC_004603 1000219 T (o] (o] VP0959 zinc/cadmium/mercury/lead-transporting ATPase ,non-silent ttg -> tCg;,non-silent t

Hefe we can see the chromosome ID, the position in bp, the reference base and the base at each
position as well as the gene (if any) the variant occurs in as well as the effect (silent, non-silent or
indel).

Obtaining a phylogeny based on synonymous SNPs only:

How are the strains related on the basis of these variants? We can ask a number of questions, but if
we are looking at the long-term evolutionary history of the strains we should only look at synonymous
(i.e. silent) mutations as these should not confer a significant selective advantage to any strain. Using
the data snp_comparison.txt file, we can form ‘pseudo-sequences’ using the script
snp2tree_fullsequence.pl. These are concatenated bases consisting of only those positions which are
silent across all strains. It is essentially the same as turning each column of each strain in the
snp_comparison.txt file into a FASTA entry.

snp2tree_fullsequence.pl snp_comparison.txt > synonymous_tree.fasta

Examine the contents of the tree.fasta file. We can then treat this file as an alignment (since each
base in each sequence is at the same position on the chromosome) and pass it to a phylogeny
program called FastTree. FastTree will take an input alignment and output a Newick formatted tree
(http://en.wikipedia.org/wiki/Newick format).

FastTree -nt -gtr < synonymous_tree.fasta > synonymous_tree.newick
Now we can visually view this tree by using an online tool.

firefox http://www.trex.ugam.ca/index.php?action=newick
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Either paste the contents of the .newick file into the window or select 'Sequences file' and load the file
through the browser. Then select ‘View Tree’.

Help Other tools People Admin Citation

AETIETR)  Newick Viewer

Tree viewer N N . ) . . )
Newick Viewer allows you to visualize a tree coded by its Newick string.

Tree builder Hierarchical, Axial and Radial types of tree drawing are available.

Tree inference
>N Paste your Newick string into the window :
& PhyML

@ RAXML

@ Other methods

Tree inference from
incomplete matrices

Reticulogram inference
HGT-Detection

@ HGT-Detection

® Consensus

@ Interactive

@ Partial

Hybrids-Detection

Sequence alignment I Sequencesfile®| O pasted | Browse... | No file selected. I
# MUSCLE

@ MAFFT | View Tree | | Reset | | Clear |

@ ClustalW

Newick string without branch lengths specified:

Advanced task (optional):

Copy the snp2tree_fullsequence.pl script to this directory
(~/workshop_meterials/genomics_tutorial/data/sequencing/Vibrio_parahaemolyticus/snp_comparison)
and modify it so that it selects positions containing only non-silent mutations (not indels as these

modify the alignment). Generate a new alignment and compare the resulting tree against the silent
mutations.

You will need to have some experience of programming in the Perl language to do this.
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Comparing Pfam domains found in each strain:

Here we will use a script to compare the various Pfam domains found in each sample. Ensure you are
in the ~/workshop_meterials/genomics_tutorial/data/sequencing/Vibrio_parahaemolyticus/ directory

First of all, let's make a directory to store the results of the comparison:
mkdir pfam_comparison/
for sample in Sample*
do
cp -v $sample/unmapped_assembly/spades_assembly/contigs.orf.pfam
pfam_comparison/$sample.pfam

done

Note that the copy command may require modification depending on where you have saved the Pfam
search results.

cd pfam_comparison/

Your directory should look something like this.
[ec2-user@ip-10-13-133-174 pfam comparison]$ 1ls -1

total 216

-rw-rw-r-—. 1 ec2-user ec2-user 61261 Dec 10 10:25 Sample_G35.pfam
-rw-rw-r——. 1 ec2-user ec2-user 52472 Dec 10 10:25 Sample_ PSU3384.pfam
-rw-rw-r——. 1 ec2-user ec2-user 51979 Dec 10 10:25 Sample_T02347066.pfam
-rw-rw-r—-—. 1 ec2-user ec2-user 51691 Dec 10 10:25 Sample_T024_47060.pfam

~-x B

- ~ ~ anmn am am~ ama -

To compare the pfam outputs for each strain, run:
compare_pfam.pl *.pfam > pfam_comparison.txt

Examining the pfam_comparison.txt file you should see something similar to:

PF13401 AAA 22 Sample G35.pfam,

PF13402 Mo0O-1like Sample G35.pfam,

PF13414 TPR 11 Sample T024 47060.pfam,Sample T02347066.pfam,Sample PSU3384.pfam,
PF13419 HAD 2 Sample T024 47060.pfam,Sample T02347066.pfam,
PF13420 Acetyltransf 4 Sample PSU3384.pfam, Sample G35.pfam,
PF13425 O-antigen ligSample T024 47060.pfam, Sample T02347066.pfam,
PF13437 HlyD 3 Sample G35.pfam,

PF13440 Polysacc _synt 3 Sample PSU3384.pfam,

PF13443 HTH 26 Sample G35.pfam,

PF13466 STAS 2 Sample T024 47060.pfam,Sample T02347066.pfam,
PF13476 AAA 23 Sample T024 47060.pfam, Sample T02347066.pfam,
PF13477 Glyco trans 4 2 Sample PSU3384.pfam,

PF13489 Methyltransf 23 Sample PSU3384.pfam,

Search the Pfam database to see what some of these differences are (http://pfam.sanger.ac.uk).
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Part 6

Genomics workshop:
De-novo assembly of long-reads

Introduction:

The latest third-generation sequencing platforms from Oxford Nanopore and Pacific Biosciences ena-
ble sequencing of single DNA molecules. Second generation sequencing platforms (e.g. lllumina) rely
on sequencing a group of ~1000 mono-clonal molecules formed via PCR-like reactions. This has ad-
vantages in terms of reducing the quantity of DNA input required to enable sequencing and usually
enables lower per-base costs, but has many shortcomings.

In the case of lllumina, although the sequencer is capable of generating large quantities of data (ter-
abases in the case of a HiSeq run), the amplification step introduces GC-biases and also places a
maximum limit on the size of the fragments which can be sequenced since the amplification becomes
inefficient at larger fragments sizes and sequencing becomes de-phased within individual mono-clonal
clusters due to polymerase errors. In the case of genome assembly, this introduces fragmentation of
the assembly in areas of low coverage or repetitive regions which cannot be spanned.

Third generation sequencing of single molecules has the following features:

1. Ability to sequence native genomic DNA without limitations on size (100s kilobases are
possible)

Higher single pass per-base error rates than second-generation sequencers

Higher per-base cost than second-generation sequencing

Full length cDNA or amplicon sequencing

Some platforms such as the MinlON from Oxford Nanopore hold the potential to enable
portable sequencing and sequencing of other types of nucleic acid (e.g. RNA).

2
3.
4.
5.

PacBio sequencing:

You can watch a video outlining PacBio sequencing at http://sequencing.exeter.ac.uk/pacific-
biosciences-overview/. Pacific Biosciences have two sequencing platforms — RSIl and Sequel. The
RSIl is an older platform capable of generating around 750Mbases of data in 4-6 hours. The Sequel
platform is the latest platform and in theory can generate up to 7Gbases of data in a similar time
frame. However the chemistry is still being refined and at present 4-5 Gbases is the maximum which
should be expected. The Sequel platform is PacBio’s focus for development at the moment, with op-
tics included on the chip rather than the instrument, PacBio aims to increase the number of Zero Mode
Waveguides (ZMWs) to increase throughput without significant instrument modifications.
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RSII SMRTcells (left), Sequel SMRT cell (right)

At present (Nov 2016), the Sequel platform chemistry is inferior to the RSII with shorter read lengths

Total Reads Total Reads
4000 - 50000 -
avg. Read Length avg. Read Length
| 15474 bp | 10362 bp

40000 -

3 ]
8 3 30000 -
14 o
82000 - ©
é é 20000 -
=1 =]
z b4
1000 -
10000 -
- 0-
0 20000 40000 60000 0 20000 40000 60000
Read Length [bp] Read Length [bp]
P1 35% P1 36%
Yield 820 Mb Yield 3716 Mb
Max 59,5 Mb Max 56,9 Mb

RSII (left), Sequel (right) read length distributions

A typical genomic library preparation workflow is similar to that of lllumina sequencing with the differ-
ence that much higher molecular weight DNA is used and dumb-bell shaped adaptors are attached:
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Sample Preparation Building of the
SMRTbell™ template
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An important note regarding PacBio data quality:

PacBio libraries are circular. Because of this, a single polymerase can sequence the same piece of
DNA several times. However, a balance exists between the DNA template length, polymerase life time
(also known as polymerase read length) and read quality with PacBio data. The figure below illustrates
this.

A polymerase which is able to read for 10kb, could read a single 10kb template or, for example, it
could read a 2kb template 5 times. The 2kb fragment, having been read 5 times, would be of much
higher quality than the 10kb fragment.
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Polymerase Read: ===

~ ) /

Subreads:

Circular Consensus Sequence (CCS) Read:

Terminology which is important to understand with PacBio data is highlighted in above. A polymerase
read refers to the complete set of basecalls associated with the polymerase sequencing the forward
strand, adaptor, and reverse strand. Internally, we remove the adaptor sequences and provide the
subreads (just the forward and reverse sequences of the template). These can be further analysed to
produce circular consensus reads (CCS) if the enzyme has made more than 1 pass of the molecule.

Most assembly programs require the subreads if utilizing PacBio data.
MinlON sequencing technology:

This is a radically new sequencing technology based upon monitoring electrical current fluctuations
associated with the translocation of single DNA molecules through nanopores embedded in a mem-
brane. You can read more about the technology in detail here.

This is a remarkable technology which has the potential to supplant short-read sequencing, if the error
rates can be brought down sufficiently. It has the advantage of being portable and of generating long
fragment lengths.

A typical long read assembly pipeline:

Generate and evaluate QC metrics

Perform an initial assembly with Minimap/Miniasm to check whether we have sufficient data
Check for any potential contamination in the Miniasm assemblies using Blast and Krona
Correct long reads via consensus alignment and assemble

Polish the assembly with Illumina or other short-read data

If necessary, attempt to circularize the genome correctly

Compare assemblies against the reference using Quast

Generate gene predictions and/or functional annotation

®NOOOAWDN =



Part 6

We have provided you with data generated from the same strain of E.coli K12 MG1655 across three
different platforms — Oxford Nanopore MinlON, PacBio RSII and PacBio Sequel. The MinlON data
was generated and published by Nick Loman and Josh Quick whilst the PacBio data was generated at
Exeter from the same material.

We have provided you with data from both 1D and 2D libraries. Remember these are two different
types of library preparation. A 1D library enables just the template strand of the DNA molecule to be
read, whilst a 2D library enables both the template and complement strand to be sequenced. This
means that a 2D library will be sequenced

First of all let’s create a directory to keep these analyses separate. Change into to the ge-
nomics_tutorial directory and then create a new directory:

cd long_read_tutorial

You can find these datasets in the directory:

~/genomics_tutorial/long_read_tutorial/raw_data

henomics@ :

$ s
_coli_K12_1D_R9.2.pass.fasta E_coli_K12_2D_R9.0.pass.fasta RSII_Ecoli_K12_subreads.fastq Sequel_Ecoli_K12_subreads.fastq

Note that we have four datasets in total — Sequel, RSII, MinlON 1D and MinlON 2D the Minlon dataset
consists of two fasta files. One is a 1D dataset and another is a 2D dataset. Note that typically MinION
datasets are generated in a binary formatted file on a per-read basis which contain the current-levels
and other data. However, for simplicity we have converted these into fasta files.

We'll follow a similar analysis protocol for all 4 datasets (some are pre-generated).

Task 1: Generate basic statistics for each of these datasets

You can use the fasta_summary.pl script to do this for both fasta-formatted MinlON datasets. It might
take a while to compute, therefore we have pre-computed the results for you:

~/workshop_materials/genomics_tutorial/long_read_tutorial/pre_computed_results/canu_asse
mblies/fasta_summaries
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enomics@ge 1Cs 1ld-2: 1CS_S - s ata 1cs 13 ea 1a asta_summary.p

Usage:

fasta_summary.pl -1 infile.fasta -o output_dir -t ( read | contig | isotig ) [ -r @ ] [ -n num_reads 1 [ -c cutoff_length 1 [ -1 11 [ -doe ] [ -f (w]| {

where:
-infile 1infile.fasta : 1input fatsa file of raeds, contigs or 1isotigs,
-output_dir output_directory : directory to put output stats and graphs into.
-type (read or contig or isotig) : for displaying the graph title, where type 1s 'read' or 'contig' or 'isotig'.
-repeats 0 or 1 :  1l=count number of reads that contain over 70% simple mono-nucleotide and di-nucleotide repeat bases; ©=don't count.
-number num_reads : For outputting specified number of randomly selected reads or contigs.
-cutoff cutoff_length : Give a number of reads to do extra analysis (calculating again the number of reads and number of bases in reads above this
-longest 0 or 1 : 1=Output the longest read; 0= don't output the longest read
-doCommify © or 1 : Output numbers formatted with commas to make easier to read: O=no commas, default=1
-format w or t : w=wiki_format (ie. table with || and | for column dividers), t=tabs between column symbols for the wiki pages, default 1is sp
-bucketl : To also output histogram file of exact read lengths (ie. bucket size of 1)
eg: For 454 reads: fasta_summary.pl -1 RawReads.fna -o read_stats -t read
For 454 1sotigs: fasta_summary.pl -1 454Isotigs.fna -o 1sotig_stats -t isotig
enomics@ nt/ge e s_t 1a ad_t als fasta_summary.pl -1 E_coli_K12_

_coli_K12_1D_R9. 2 pass. fasta E_ coll K12 ZD R9.0. pass fasta N

enomics@genc 1 > 1cs_tutorial/lo 03 utorials fasta_summary.pl -1 E_coli_K12_1D_R9.2.pass.fasta -o 1D_su
Directory lD_summary created

For the PacBio data you can use the fastqc program as per the lllumina datasets you have looked at
previously. You can open precomputed results in firefox. You can find them in:

~/workshop_materials/genomics_tutorial/long_read_tutorial/pre_computed_results/canu_asse
mblies/fastqc_results

The fasta _summary. pI scrlpt WI|| generate several output flles
genom1cs@ge 1 l : C : s_tutoria ong_read_tutorial/1D_
histogram_bins. .dat sorted contlgs fa summed contlg 1engths dat sum_reads_vs_read_len.dat

histogram bins.dat.png stats.txt summed contig lengths.dat.png sum reads vs read len.dat.png

The stats.txt file contains text-data on the number of bases, longest read and other useful statistics.
The histograms_bins.dat.png file is a picture file with a histogram of read lengths (you can use firefox
to see the file).

Task 2: Compare the datasets

Note that unlike lllumina sequencers, the read lengths produced by these platforms are highly varia-
ble. The MinlON datasets for example vary between 100bp and 140,000bp.

Max read length Total number of Median read Genome coverage
(bp) reads length (bp)
MinlON 1D 131,969 164,472 5,945 315x
MinlON 2D 144,661 132,412 6,780 194x
PacBio Sequel 53,516 452,240 ~7000 436x
PacBio RSII 59,184 260,074 ~7000 372x

GC content of E.coli K12 MG1655 is approx. 51%.

Note the relatively poor quality scores in the fastqc report for the PacBio sequences. These reflect the
10-12% raw single-pass per-base error rate of the polymerase. Similar error rates are observed in the
MinION datasets. Note that unlike lllumina datasets, this error rate does not appreciably increase over
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the length of the read (although at very short or very long read lengths there are far fewer reads
present which increase the variance estimates).

Quality scores across all bases (Sanger / lllumina 1.9 encoding}

123456789 3000-3999 9000-9999 15000-15999 22000-22999 29000-29999 36000-36999 43000-43999 50000-50999
Position in read (bp)
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Task 3: Evaluate the likelihood of obtaining a successful assembly using Minimap/Miniasm

This very useful assembler tries to assemble long-reads without trying to correct the reads. Although
you would not want to use such an assembly without further correction, it provides a useful yardstick
to determine whether a more computationally intensive assembly is likely to yield good results. You
can read more here https://github.com/Ih3/miniasm.

Because of limitations on the memory available to us, we’ll need to subset the data first, selecting a
random 100,000 reads to use (note that this is not the best approach since we should really pick the
longest 100,000 reads).

The syntax can be a bit confusing, so here is an example using the RSI| dataset to get you started.
Each assembly should take about 5-10 mins.

Create a new working directory in ~/workshop_materials/genomics_tutorial/long_read_tutorial called
miniasm_assemblies:

cd ~/workshop_materials/long_read_tutorial
mkdir miniasm_assemblies

$ mkdir miniasm_assemblies
$ cd miniasm_assemblies/
s s

: $ pwd
/home/genomics/workshop_materials/genomics_tutorial/long_read_tutorial/miniasm_assemblies
genomics@ - s i

We’'ll use the seqtk package from the same author as samtools to randomly select 100,000 reads from
the raw dataset:

seqtk sample
~/workshop_materials/genomics_tutorial/long_read_tutorial/raw_data/RSII_Ecoli_K12_subreads.fastq
100000 > RSII_Ecoli_K12_subreads.subsampled.fastq

Now we can ask minimap to calculate all the overlaps between those 100,000 reads and output the
results in a compressed gzip file. Note that you will have to put the input reads
(RSII_Ecoli_K12_subreads.subsampled.fastq) in twice since we are asking minimap to calculate the

overlaps between all reads in the dataset:

minimap -Sw5 -L100 -m0 -t 2 RSIl_Ecoli_K12_subreads.subsampled.fastq
RSII_Ecoli_K12_subreads.subsampled.fastq | gzip -1 > overlaps_RSII.paf.gz

Once complete, we can ask miniasm to create an assembly graph and find an assembly path through
it:

miniasm -f RSII_Ecoli_K12_subreads.fastq overlaps_RSll.paf.gz > overlaps_RSII.gfa

awk '/AS/{print ">"$2"\n"$3}' overlaps_RSII.gfa | fold > miniasm.PacBio_RSII.contigs.fasta
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Repeat this for the Sequel and MinlON datasets and then use the QUAST package (quast.py) to
compare the assemblies against the reference genome. You should use the same E.coli refer-
ence as you used for the lllumina assemblies.

You should be able to open the report.html file in firefox or other web-browser to compare the
assemblies. It should look somewhat similar to:

Genome statistics miniasm.MinlON_1D.contigs miniasm.MinlON_2D.contigs miniasm.PacBio_RSIl.contigs
Genome fraction (%) 0.002 NG o.003
Duplication ratio 0.975 0.999 1.013
Largest alignment 77 154

Total aligned length 7 154
NGAS0 - - -
Misassemblies

# misassemblies 0 0 0
Misassembled contigs length 0 0 0
Mismatches

# mismatches per 100 kbp 0 1147.57 1973.68
# indels per 100 kbp 2531.65 1981.3 2631.58
# N's per 100 kbp 0 0 0
Statistics without reference

# contigs 1 A 2
Largest contig 4478239 3697194 4768901
Total length 4478239 4628860 4768901
Total length (>= 1000 bp) 4478239 4628860 4768901
Total length (>= 10000 bp) 4478239 4628860 4768901
Total length (>= 50000 bp) 4478239 4581011

Extended report

Note that your results will differ since you will have a different subset of reads. Minimap/miniasm does
not correct reads prior to assembly. This means that the alignments to the reference are likely to be
error prone. Note that even without this correction, the assembler is able to reconstruct the genome in
(more or less) a single contig of 4.7Mb with just 100,000 reads! This bodes well for a more computa-
tionally intensive assembly which first corrects reads and highlights the power of long reads for deno-
vo assembly.

If you wish you can subset the data with the seqtk sample and compare how the datasets assemble at
different levels of coverage.

Task 4: Generate a corrected assembly with Canu (results pre-computed)

Canu is derived from the original Celera assembler used to assemble the human genome from Sanger
data. It has been optimized for long-read PacBio and Nanopore data. You can read more at
http://canu.readthedocs.io/en/stable/tutorial.html. A number of long read assemblers are available (in-
cluding Nanopore-specific assemblers- a good review paper on this is:

Chu J, Mohamadi H, Warren RL, Yang C, Bi-Rol I. Innovations and challenges in detecting long read
overlaps: an evaluation of the state-of- the-art. Bioinformatics. 2016
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For now we will just use Canu as it is relatively straightforward to use. Here is an example command
to assemble the RSII E.coli data. We have pre-computed the results for you for the MinlON 2D, RSII
and Sequel data.
~/workshop_materials/genomics_tutorial/long_read_tutorial/pre_computed_results/canu_assemblies

To save time, and provide a fairer comparison between platforms we will not use the MinlON 1D data.

canu -p canu_RSII -d canu_RSII genomeSize=4.7m useGrid=False -pacbio-raw
RSII_Ecoli_K12_subreads.fastq

Note that Canu will:

1. Correct reads by performing all-against-all alignments and taking a consensus
2. Overlap and trim reads
3. Generate an assembly

Task 5: Polish Canu assemblies with lllumina data using Pilon (results pre-computed)

Oxford Nanopore and MinlON data suffer a tendency to introduce insertions or deletions into a se-
quence (even after read correction). This means that to obtain the highest per-base quality it is desira-
ble to polish assemblies by aligning short reads using BWA and then using a tool such as Pilon
(https://github.com/broadinstitute/pilon/wiki) to polish the assemblies.

We have supplied you with pre-computed results. We'll use just the RSII data to illustrate an example
set of commands. First let’s align the lllumina reads from the short-read section of the workshop using
BWA.

We need to create a reference for the PacBio RSII contigs:

bwa index RSII_canu_contigs.fasta

Now we need to align the Illumina reads against the contigs:

bwa mem -x pacbio -t 2

RSII_canu_contigs.fasta ../../../data/sequencing/ecoli_exeter/E_Coli_ CGATGT_L001_R1_001.fastq ../.
.J../data/sequencing/ecoli_exeter/E_Coli_ CGATGT_L001_R2_001.fastq | samtools sort -@ 2 -O
bam -o RSII_canu_contigs_illumina_aligned.bam

samtools index RSIl_canu_contigs_illumina_aligned.bam

Now that we have aligned the lllumina data against the contigs we can run Pilon to correct the contigs
where they differ from the Illumina reads.

pilon --genome RSII_canu_contigs.fasta --frags RSIl_canu_contigs_illumina_aligned.bam --changes -
-outdir RSII_canu_pilon_polished
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You can view the corrected contigs in RSIl_canu_pilon_polished/pilon.fasta and the see a list of the
changes which have been made in RSIl_canu_pilon_polished/pilon.changes. Note that most changes
correct indels and the much higher number of corrections made for the MinlON assembly vs the Pac-
Bio assemblies (46558 for MinlON 2D vs 387 for RSIl and 2247 for Sequel).

We need to interpret these polished results with care. Remember we are using lllumina sequencing
which contains all sorts of biases of its own thanks to amplification biases introduced by PCR and oth-
er artefacts. As such whilst we might be correcting some errors, we could be introducing lllumina bias-
es into these assemblies. We're also using Illumina reads which are not quite identical to the reference
or the PacBio material which is also not ideal (but often the case in the real world!). We’'ll see the ef-
fect of this in the final task.

Task 6: Use Blast and Krona to confirm species present in the assembly (results pre-
computed)

We can use BLAST to identify taxonomic hits to ensure that we have the correct species present and
filter out any contigs resulting from control spike-in DNA or other contaminants. You can also use oth-
er tools to do this such as Kraken or Centrifuge.

As the blast searches take some time, the results have been pre-computed for you in

~/workshop_materials/genomics_tutorial/long_read_tutorial/pre_computed_results/krona_plot/blast/re
sults

but we have included the commands used below:
blastn -db ../../../db/blast/nt -query RSIl_canu_pilon_polished.fasta -outfmt 7 -evalue 1e-06 -out
RSII_canu_pilon_polished.fasta.blastn.outfmt7 -num_threads 2

Once this has completed, we can import the results into Krona which is a neat little visualization tool
for BLAST results.

ktimportBLAST -i RSIl_canu_pilon_polished.fasta.blastn.outfmt7 -o krona_blast_results.html

These results can be visualized in a web-browser such as firefox.

Note that the MinlON data contains Lambda virus DNA which is used as a spike-in to some MinlON
runs. You can identify which contigs hit species of interest by clicking on the area of the pie chart you

are interested in and then clicking on the ‘Count’ in the top right corner. This will give you the contig
names which match to the virus as opposed to the bacteria.
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Task 6: Circularise assemblies using Circlator (results pre-computed)

Note that bacterial genomes are circular. As such we may end up mis-assembling the genome be-
cause it is circular. The circlator package (https://github.com/sanger-
pathogens/circlator/wiki/Minimus2-circularization-pipeline) attempts to correct this.

In the circularized_results/ directory you will find the results of the circularization pipeline.

Task 7: Compare polished assemblies using Quast

Use quast.py to generate a Quast report for the original Canu results (i.e. pre lllumina correction and
circularization) and these corrected and circularized results. E.g (all on one line):

quast.py -R ~/workshop_materials/genomics_tutorial/data/reference/U00096/U00096.fna Min-
ION_2D_canu_pilon_polished.circularise.fasta
~/workshop_materials/genomics_tutorial/long_read_tutorial/pre_computed_results/canu_assemblies/
MinlON_2D.contigs.fasta RSII_canu_pilon_polished_circularise.fasta
~/workshop_materials/genomics_tutorial/long_read_tutorial/pre_computed_results/canu_assemblies/
RSII_canu_contigs.fasta Sequel_canu_pilon_polished.circularise.fasta
~/workshop_materials/genomics_tutorial/long_read_tutorial/pre_computed_results/canu_assemblies/S
equel_canu_contigs.fasta
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Genome statistics MinlON_2D_canu_pilon_polished... ~ MinlON_2D.contigs RSIl_canu_pilon_polished_circ... ~ RSIl_canu_contigs ~ Sequel_canu Ci. Sequel.canu.contigs
Genome fraction (%) 99.548 99.348 99.601
Duplication ratio 1.004 1.009 il 1
Largest alignment 2936866 3932583 2003968 3975034 1999 977 2666330
Total aligned length 4639267 4602545 4653997 | 4691092 4594197 4622022
NG50 4635362 4598803 4636005 4650 265 2657 046 2666705
NG75 4635362 4598803 4636005 4650 265 1231069 1249068
NAS50 2936866 3932583 900693 3975 034 787802 2666330
NA75 809610 787005 442121 1043489
NGAS50 2936866 3932583 900693 3975034 787802 2666330
NGA75 809 610 DESSEEEE 757005 DESEGEA 442121 1043489
LG50 1 1 1 1 1 1
LG75 1 1 1 1
LA50 1 1 2 1 1
LA7S 2 il 3 il 2
LGASO 1 1 I 1
LGA75 2 1 3 1 2
Misassemblies
# misassemblies 5 2 9 4 5 2

# relocations 5 2 7 4 5 2

# translocations 0 0 0 0 0 0

#inversions 0 0 . © 0 0
# misassembled contigs 1 1 1 1 _m
Misassembled contigs length 4635362 4598803 4636005 4650 265 3888115
# local misassemblies 4 6 5 3 7 8
Unaligned
# fully unaligned contigs 0 0 0 0 0 0
Fully unaligned length 0 0 0 0 0
# partially unaligned contigs 0 0 0 0

# with misassembly 0 0 0 0

# both parts are significant 0 0 0 0
Partially unaligned length 0 0 0 0
Mismatches
# mismatches 193
#indels 598
Indels length 846
# mismatches per 100 kbp 418
#indels per 100 kbp 12.94

#shortindels 596

#long indels 2
#N's 0
#N's per 100 kbp 0
Statistics without reference
# contigs 2
# contigs (>= 0 bp) 2
# contigs (>= 1000 bp) 2
# contigs (>= 5000 bp) 2
# contigs (>= 10000 bp) 2
# contigs (>= 25000 bp) 2
# contigs (>= 50000 bp) 2
Largest contig 4635362 4598803 4636005 4650 265 2657 046 2666705
Total length 4 687 265 4650066 4654672 4691 401 4595 324 4622743
Total length (>= 0 bp) 4687265 4650066 4654672 4691 401 45095 324 4622743
Total length (>= 1000 bp) 4687 265 4650066 4654672 4691 401 4595 324 4622743
Total length (>= 5000 bp) 4 687 265 4650066 4654672 4691401 4595324 4622743
Total length (>= 10000 bp) 4 687 265 4650066 4654672 4691 401 45095 324 4622743
Total length (>= 25000 bp) 4650066 4636005 4650 265 4595324 4622743
Total length (>= 50000 bp) 4650066 4636005 4650 265 4595324 4622743
N50 4635362 4598803 4636005 4650 265 2657 046 2666705
N75 4635362 4598803 4636005 4650 265 1231069 1249068

L50 1 1 1 1 1 1
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Look at the effect of the polishing step for each technology. Have a think about the following:

1. The PacBio reads have a higher mismatch error after polishing but a lower indel rate?
(think about the possible effects of PCR amplification on GC-bias)

2. What about the total number of contigs for each platform?

3. How does the mis-match rate to the reference genome compare between the MinlION
and the PacBio platforms?

4. The Sequel platform used very early chemistry — how does it perform compared to the
other platforms?

5. Which platform would you select if you wanted to use the assembly as a reference to

perform variant calling against?
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Concluding remarks:
Well done! If you have reached this far, you deserve a round of applause. You have completed

some of the most common tasks in genomics. You can use the same machine and the same
scripts to perform analysis of any dataset!

If you need to transfer data to/from the instance a tutorial can be found at
http://www.siteground.com/tutorials/ssh/ssh_winscp.htm



