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Hahn et al. (2005)

A model for gene family evolution

Birth = duplication 
  
Death = loss 
 

Homogeneous birth and death process
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Ancestral genome

Derived species A Derived species B



No model, no inference.

--J. Felsenstein

There are no true models, only helpful ones.

--G.E.P. Box



A model for gene family evolution

The necessary parameters:

Birth-Death transition probability (Bailey 1964):

-Current family size 

-Time since divergence 

-Ancestral family size 

-Birth and death rates per gene 



A model for gene family evolution

The necessary parameters:

Assuming birth and death rates are equal (Hahn et al. 2005):

-Current family size 

-Time since divergence 

todes (Caenorhabditis elegans and C. briggsae: 19,000 genes; TM-
RCA = 100 Myr; Stein et al. 2003); and dipterans (mosquito, fruit
fly: 13,500 genes; TMRCA = 260 Myr; Holt et al. 2002). These
similarities indicate that there is no general trend toward larger
or smaller genomes or gene families between these species. In the
future, we hope to extend the model by making it possible to
allow ! to vary along branches of a phylogenetic tree so that we
can estimate ! independently for each branch, and to allow birth
and death rates to differ when significant genome expansions are
detected. We can also analyze the data under a range of values for
the branch lengths, t, as the analyses presented here assume that
the estimates are accurate. These refinements may then provide a
clearer picture of the evolution of gene family size.

Conclusions
This study has attempted to provide the machinery needed to
study gene family evolution among multiple whole genomes.
The methodology can be used for parameter estimation, infer-
ences on the direction and magnitude of evolutionary change,
and hypothesis testing. As more genome sequences become
available, we hope that this framework makes it possible to iden-
tify the genetic changes that are responsible for the phenotypic
diversity found in nature. Correlated changes between families or
with environmental conditions can then tell us about the mecha-
nisms and modes of natural selection (Harvey and Pagel 1991).

Methods

Birth and death model of gene family evolution
Suppose that we have a family of individual genes whose total
size (number of genes) at time t is given by the discrete random
variable X(t). Then, the probability that the random variable X(t)
takes the value c, given that X(0) = s will be denoted by
P(X(t) = c|X(0) = s) (see Bailey 1964). Let us assume that every
gene in the family is equally capable of either being duplicated
(birth) or lost via deletion or pseudogenization (death); here, we
include both the processes of origination and fixation within the
terms “birth” and “death”. The probability of any gene being
duplicated (and fixed) in time "t is !"t or being lost (and fixed)
is #"t. It follows that in a family of size X(t) at time t, the possible
transitions are:

● Probability of one gain !X(t) "t + o("t).
● Probability of one loss #X(t) "t + o("t).
● Probability of more than one of these events o("t).
● Probability of no change 1 = (! + #) X(t)"t + o("t).

The probability of two such events occurring, o("t), is neg-
ligible for "t very small. As the size of a gene family grows, the
probability of there being a gain or loss also grows. If the gene
family contains zero members in a particular lineage, then there
is no chance of birth or death, and this is considered an absorb-
ing state; we are therefore only concerned with situations in
which the initial number of genes in a family, X(0) = s, is non-
zero.

If we consider the case where s $ 1 with equal gain and loss
rates per gene (! = µ), then the transition probabilities are:

P!X!t" = c |X!0" = s" = #
j=0

min!s,c"

!j
s"!s−1

s+c−j−1"%s+c−2j!1 − 2%"j, (1)

where % is given by % = !t
1+!t

. Then the stochastic mean and vari-
ance for X(t) given X(0) = s are (see Bailey 1964):

Mean!X!t"|X!0" = s" = s,

Var!X!t"|X!0" = s" = 2s!t. (2)

Here, we find that the expected size of the gene family is
simply equal to the initial number, s. This is because, with equal
birth and death rates, the gene family is neither consistently
expanding nor contracting, so that the probability of either in-
creasing or decreasing is equivalent.

Calculating likelihoods using probabilistic graphical models
Based on the birth–death (BD) model and the structure of a phy-
logenetic tree, we can construct a probabilistic graphical model
(PGM) that parameterizes the probability distribution over the
gene family sizes in the tree. The BD model represents the con-
ditional distributions corresponding to the branches. Of course,
only the gene family sizes in the tips of the tree are known, so we
are interested in the marginal probability of the leaf (tip) nodes,
rather than in the probability of a complete assignment of all
nodes in the tree. This can be computed by averaging over all
possible assignments of unspecified internal nodes (except for
the root node, on which we are conditioning), a process called
marginalization in the graphical models literature. Because of the
large number of possible internal state assignments, efficient al-
gorithms have been developed in the PGM literature to carry out
this calculation; these are known as message passing or sum-
product algorithms (see, e.g., Felsenstein 1981; Lauritzen 1996;
M.I. Jordan, in prep.). See the Supplemental materials for more
details.

Testing hypotheses about gene family evolution
As noted before, the root-node gene family size is not known, so
a genuine P-value for the observed values of the leaf species can-
not be computed, even in principle. However, for each gene fam-
ily we can compute conditional P-values as we call them, condi-
tioned on a specific value for the root family size. Such a condi-
tional P-value is computed based on the corresponding
conditional likelihood as a test statistic, as the probability that a
random gene family with the same root family size (on which it
is conditioned) has a smaller conditional likelihood. The condi-
tional P-value that is computed based on the true (but unknown)
root value is equal to the true P-value that we are interested in.
Since there is no way to find out which root family size is actually
the true one, for each gene family we computed all conditional
P-values, conditioned on all choices for the root family size from
one up to 100, and picked the largest. (The conditional P-values
always show a single sharp peak around a specific root family
size, which was well below 100 for all gene families studied in
this study.) This maximal conditional P-value is referred to as the
supremum P-value in the literature (e.g., Demortier 2003), and
clearly represents an upper bound on the true P-value, which is
equal to one of the conditional P-values. A fortiori, if the supre-
mum P-value is small, the observed gene family sizes are unlikely
to be explainable by the BD model. A common concern about the
use of the supremum P-value is its sensitivity, or how tight an
upper bound on the P-value it represents (see Berger and Boos
1994; Demortier 2003). In the Supplemental materials, we de-
scribe a way to assess this; it turns out that it is very tight in our
problem, warranting its use as a genuine P-value.

We developed two methods to calculate the conditional P-
values—an analytic method that calculated them exactly, and a
sampling method that was much faster. Briefly, the sampling
method generated data under the BD model over the phyloge-
netic tree, conditioned on a root-node size. For each resulting
sample, the conditional likelihood was calculated, and doing this
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-Ancestral family size 

-Birth and death rates per gene 



todes (Caenorhabditis elegans and C. briggsae: 19,000 genes; TM-
RCA = 100 Myr; Stein et al. 2003); and dipterans (mosquito, fruit
fly: 13,500 genes; TMRCA = 260 Myr; Holt et al. 2002). These
similarities indicate that there is no general trend toward larger
or smaller genomes or gene families between these species. In the
future, we hope to extend the model by making it possible to
allow ! to vary along branches of a phylogenetic tree so that we
can estimate ! independently for each branch, and to allow birth
and death rates to differ when significant genome expansions are
detected. We can also analyze the data under a range of values for
the branch lengths, t, as the analyses presented here assume that
the estimates are accurate. These refinements may then provide a
clearer picture of the evolution of gene family size.

Conclusions
This study has attempted to provide the machinery needed to
study gene family evolution among multiple whole genomes.
The methodology can be used for parameter estimation, infer-
ences on the direction and magnitude of evolutionary change,
and hypothesis testing. As more genome sequences become
available, we hope that this framework makes it possible to iden-
tify the genetic changes that are responsible for the phenotypic
diversity found in nature. Correlated changes between families or
with environmental conditions can then tell us about the mecha-
nisms and modes of natural selection (Harvey and Pagel 1991).

Methods

Birth and death model of gene family evolution
Suppose that we have a family of individual genes whose total
size (number of genes) at time t is given by the discrete random
variable X(t). Then, the probability that the random variable X(t)
takes the value c, given that X(0) = s will be denoted by
P(X(t) = c|X(0) = s) (see Bailey 1964). Let us assume that every
gene in the family is equally capable of either being duplicated
(birth) or lost via deletion or pseudogenization (death); here, we
include both the processes of origination and fixation within the
terms “birth” and “death”. The probability of any gene being
duplicated (and fixed) in time "t is !"t or being lost (and fixed)
is #"t. It follows that in a family of size X(t) at time t, the possible
transitions are:

● Probability of one gain !X(t) "t + o("t).
● Probability of one loss #X(t) "t + o("t).
● Probability of more than one of these events o("t).
● Probability of no change 1 = (! + #) X(t)"t + o("t).

The probability of two such events occurring, o("t), is neg-
ligible for "t very small. As the size of a gene family grows, the
probability of there being a gain or loss also grows. If the gene
family contains zero members in a particular lineage, then there
is no chance of birth or death, and this is considered an absorb-
ing state; we are therefore only concerned with situations in
which the initial number of genes in a family, X(0) = s, is non-
zero.

If we consider the case where s $ 1 with equal gain and loss
rates per gene (! = µ), then the transition probabilities are:

P!X!t" = c |X!0" = s" = #
j=0

min!s,c"

!j
s"!s−1

s+c−j−1"%s+c−2j!1 − 2%"j, (1)

where % is given by % = !t
1+!t

. Then the stochastic mean and vari-
ance for X(t) given X(0) = s are (see Bailey 1964):

Mean!X!t"|X!0" = s" = s,

Var!X!t"|X!0" = s" = 2s!t. (2)

Here, we find that the expected size of the gene family is
simply equal to the initial number, s. This is because, with equal
birth and death rates, the gene family is neither consistently
expanding nor contracting, so that the probability of either in-
creasing or decreasing is equivalent.

Calculating likelihoods using probabilistic graphical models
Based on the birth–death (BD) model and the structure of a phy-
logenetic tree, we can construct a probabilistic graphical model
(PGM) that parameterizes the probability distribution over the
gene family sizes in the tree. The BD model represents the con-
ditional distributions corresponding to the branches. Of course,
only the gene family sizes in the tips of the tree are known, so we
are interested in the marginal probability of the leaf (tip) nodes,
rather than in the probability of a complete assignment of all
nodes in the tree. This can be computed by averaging over all
possible assignments of unspecified internal nodes (except for
the root node, on which we are conditioning), a process called
marginalization in the graphical models literature. Because of the
large number of possible internal state assignments, efficient al-
gorithms have been developed in the PGM literature to carry out
this calculation; these are known as message passing or sum-
product algorithms (see, e.g., Felsenstein 1981; Lauritzen 1996;
M.I. Jordan, in prep.). See the Supplemental materials for more
details.

Testing hypotheses about gene family evolution
As noted before, the root-node gene family size is not known, so
a genuine P-value for the observed values of the leaf species can-
not be computed, even in principle. However, for each gene fam-
ily we can compute conditional P-values as we call them, condi-
tioned on a specific value for the root family size. Such a condi-
tional P-value is computed based on the corresponding
conditional likelihood as a test statistic, as the probability that a
random gene family with the same root family size (on which it
is conditioned) has a smaller conditional likelihood. The condi-
tional P-value that is computed based on the true (but unknown)
root value is equal to the true P-value that we are interested in.
Since there is no way to find out which root family size is actually
the true one, for each gene family we computed all conditional
P-values, conditioned on all choices for the root family size from
one up to 100, and picked the largest. (The conditional P-values
always show a single sharp peak around a specific root family
size, which was well below 100 for all gene families studied in
this study.) This maximal conditional P-value is referred to as the
supremum P-value in the literature (e.g., Demortier 2003), and
clearly represents an upper bound on the true P-value, which is
equal to one of the conditional P-values. A fortiori, if the supre-
mum P-value is small, the observed gene family sizes are unlikely
to be explainable by the BD model. A common concern about the
use of the supremum P-value is its sensitivity, or how tight an
upper bound on the P-value it represents (see Berger and Boos
1994; Demortier 2003). In the Supplemental materials, we de-
scribe a way to assess this; it turns out that it is very tight in our
problem, warranting its use as a genuine P-value.

We developed two methods to calculate the conditional P-
values—an analytic method that calculated them exactly, and a
sampling method that was much faster. Briefly, the sampling
method generated data under the BD model over the phyloge-
netic tree, conditioned on a root-node size. For each resulting
sample, the conditional likelihood was calculated, and doing this

Hahn et al.

1158 Genome Research
www.genome.org
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Assuming birth and death rates are equal:



A model for gene family evolution

The necessary parameters:

Birth-Death transition probability  (Bailey 1964):

-Current family size 

-Time since divergence 

-Ancestral family size 

-Birth and death rates per gene 



A model for gene family evolution

Time since divergence 
(ultrametric tree)
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Chimpanzee

Macaque

Mouse

Rat

Dog

624 178993
Million years ago



A model for gene family evolution

Current family sizes

Human

Chimpanzee
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8
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A model for gene family evolution

Ancestral family sizes and birth and death rates (λ, μ) can be inferred 
using likelihood!
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A model for gene family evolution

Human

Chimpanzee

Macaque

Mouse

Rat

Dog 10

7

14

12

8
10

10

10

10

10

10

λ=0.002

Ancestral family sizes and birth and death rates (λ, μ) can be inferred 
using likelihood!

(assuming birth=death)



A model for gene family evolution

With this information we can infer changes in gene family size…
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A model for gene family evolution

…and identify rapidly evolving families/lineages

Human

Chimpanzee

Macaque

Mouse

Rat

Dog 10

7

14
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8
10

10

10

10

10

10

λ=0.002

+2

-2
0

+4

We use Monte Carlo simulations to find families with low P-values and 
branches with large numbers of changes



A model for gene family evolution

Assumptions:

-Single-gene changes at a time* 

-All families have a representative at the root*

-birth=death** 

-All lineages have same rate** 

-No error in our observations**

-All families have equal per-gene transition probabilities***



CAFE

De Bie et al. (2006)

 (Computational Analysis of gene Family Evolution)



Using CAFE

Now let’s work through a dataset and 
elaborations on the basic model…



Genome size in mammals

18,201

21,952

25,613

22,209

21,625

# genes

All data from Ensembl

Human

Chimpanzee

Macaque

Mouse

Rat

Dog

22,149



Constructing gene families

18,20121,95225,61322,209 21,625
Human Chimp Mouse Rat Dog

~130,000 genes

MCL clustering

22,149
Macaque

Human Chimp Mouse Rat DogMacaque

BLAST



Gene families in mammals
# families

9,446

9,819

12,307

11,220

10,919

11,119

Human

Chimpanzee

Macaque

Mouse

Rat

Dog



Annotation artifacts

Some gene families are present in only one copy, in 
only one species.

Human Chimp Mouse Rat Dog
2406202,673476 549

We remove these from further analyses.



Present at the root?

9,990 gene families were inferred to have been present in 
the mammalian most recent common ancestor (MRCA).



• 5,285 of 9,990 gene families have changed in size 

• We estimate that the MRCA contained 19,523 
genes in these families

Genome evolution in mammals

Demuth et al. (2006)



The rate of gene gain and loss

We estimate λ=0.0017 /gene/my 
across the whole tree

This number is very similar to estimates by other groups for just the 
rate of gene duplication. 

mouse and rat:  0.0013-0.0026 (Lynch and Conery 2003; Gibbs et al. 2004) 

human: 0.009 (Lynch and Conery 2003)



Gene gain and loss in the great apes

Human

Chimpanzee

Macaque

Mouse

Rat

Dog

678/90

22/740

450/620

1358/666

592/623

1400/553

1361/1122

1758/421

15/4

565/2171



•   675 genes have been gained 

•   740 genes have been lost

In humans:

In chimpanzees:

Gene gain and loss in the great apes

1,415 human genes not found in chimps!

+
1415



Reality check

Do these numbers make sense?



Back-of-the-envelope calculations

Lynch and Conery (2000, 2003):  

rate of gene duplication in humans is 0.009/gene/my

22,000  x  0.009 dupes/gene/my  x  5 million years
= 990 new gene duplicates

If genomes are not constantly expanding, expect 
approximately equal number of gene losses (990).

= 1,980 human genes not shared with chimps [1,415]



Differences between human and chimp

There are a large number of differences between humans and 
chimps (6% at the gene level).

Losses and gains of genes are occurring in the primates at high 
rates.

The genomic revolving door



Accelerated evolution of gene families

Of the 9,990 families inferred to be present  in the mammalian 
MRCA, we found 180 with P<0.0001. 



Accelerated evolution of gene families

Centaurin gamma Human

Chimpanzee

Macaque

Mouse

Rat

Dog 3

2

3

15

6

6



Accelerated evolution of gene families

The most common biological functions assigned to the 
significant families include:  

   immune defense 

   brain and neuronal development 

   intercellular transport

Interestingly, these are the same functions that evolve rapidly at 
the nucleotide level in primates.



Accelerated evolution of gene families

Using CAFE, one can identify which branches of the tree show 
the most unlikely changes in family size.



Accelerated evolution of gene families

Centaurin gamma Human

Chimpanzee

Macaque

Mouse

Rat

Dog 3

2

3

15

6

6



Human (334157)

Human (257897)

Human (280961)

Human (346714)

Human (342525)

Human (347372)

Human (347040)

Human (342817)

Human (343438)

Human (348140)

Human (363207)

Human (363167)

Human (309985)

Human (309918)

Chimpanzee (034042)

Chimpanzee (008756)

Chimpanzee (022354)

Human (338378)

Chimpanzee (042988)

Chimpanzee (050665)

Chimpanzee (053832)

Human (335589)

Macaque (012487)

Macaque (031207)

Macaque (012243)

Macaque (021092)

Macaque (009918)

Macaque (021093)

Macaque (035893)

Rat (017827)

Rat (029533)

Rat (026360)

Macaque (031206)

Mouse (024123)

Mouse (043466)

Mouse (027521)

Large expansion of Centaurin gamma in humans



The rate of gene gain and loss

Human

Chimpanzee

Macaque

Mouse

Rat

Dog



The rate of gene gain and loss

A 2-parameter model fits the data significantly better

Human

Chimpanzee

Macaque

Mouse

Rat

Dog



The rate of gene gain and loss

Human

Chimpanzee

Macaque

Mouse

Rat

Dog

0.0039
0.0024
0.0014

The rate of gain and loss in primates is 2-3 times higher than the 
rest of the mammals



Accelerated rate of gene gain and loss in 
primates

Why?



Human

Chimpanzee

Macaque

Mouse

Rat

Dog

Alu elements

Reduced popln size

Accelerated rate of gene gain and loss in 
primates



Gene conversion

If there is gene conversion, reconciliation can result in 
extra duplications and losses
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polymorphisms play a role in the higher rates of change seen
in more recent lineages.

By estimating the maximum likelihood value for the size of
gene families at internal nodes of the phylogenetic tree, we
can infer the minimum number of gene gains and losses along
each branch by comparing parent and daughter nodes ([8]).
Doing this comparison for each branch of the Drosophila tree
and summing across families allows us to estimate the total
number of genes gained and lost along every lineage (Figure
1). Gains and losses of genes have occurred on all but one
branch of the Drosophila tree (branch 3), and each terminal
lineage leading to an extant species includes hundreds of
gains and losses.

On the terminal lineage leading to D. melanogaster, we infer
the gain of 94 genes and the loss of 505 genes in the ;5
million years since the split with the simulans/sechellia clade.
Running our analyses using alternative tree topologies [43]
produced very similar results (unpublished data). The most
common GO terms associated with gene families that have
expanded in D. melanogaster are: proteolysis, defense response,
cytoskeleton, extracellular transport, response to toxin, and
trypsin activity. The most common GO terms associated with
contracting gene families are regulation of transcription,
protein binding, transcription factor activity, zinc ion bind-
ing, nucleus DNA binding, and mesoderm development.
There are no significantly over-represented terms among
these families.

The observed ‘‘revolving door’’ of gene gain and loss [8] has
important implications for divergence among Drosophila
species. For instance, even though the average synonymous
site distance between D. simulans and D. melanogaster is 0.117
[35], D. melanogaster also has 856 genes that are not found in D.
simulans (94 gains in D. melanogasterþ 762 losses in D. simulans),
and D. simulans has 800 genes not found in D. melanogaster (295
gains in D. simulans þ 505 losses in D. melanogaster). This
amounts to 5.9% divergence (856 þ 800/2 3 14,000 genes) at
the level of whole genes. These results imply that both
changes in homologous nucleotides and the gain and loss of

genetic material may be important in the differentiation of
these two species (e.g., [44]).

Estimating Gene Gain and Loss via Gene Tree/Species Tree
Reconciliation
An alternative method for inferring the history of gene

gain and loss among genomes is to reconcile the species tree
with the gene tree of each family [24–27]. As this method does
not assume a particular probability model for gains and
losses, it is a valuable independent approach to estimating
gene gains and losses. Tree reconciliation has frequently been
used to infer gains and losses in individual families (e.g., [45]),
but has been used less often to infer whole genome patterns
of gene turnover (e.g., [38,46]). We built 11,390 gene trees
from the 11,434 families using protein distances and the
neighbor-joining algorithm [47]. We did not build trees for
families with greater than 250 copies in total. We reconciled
the 11,390 gene trees with the Drosophila species tree (as well
as the two alternative species tree topologies) to map gene
gains and losses to individual branches of the phylogeny
(Figure S1). As a way of checking for consistency between the
likelihood and gene/species tree approaches, we compared
the number of inferred gene gains on informative branches
from each (see Materials and Methods and [38]). The number
of losses inferred by tree reconciliation methods can be
highly biased because incorrect gene tree topologies will
always add additional loss events towards the tips of the
species tree [38], and therefore we do not use these estimates
here. The correlation between the two methods was high (r¼
0.90, p , 0.00001; Figure 2), indicating that our estimates of
the number of gene duplications along each lineage are likely
to be quite accurate. We inferred the gain of 89 genes in D.
melanogaster since its split with simulans/sechellia using the
tree reconciliation approach, compared to the estimate of 94
genes using the likelihood method.
The comparison between the tree reconciliation and

likelihood methods also allows us to make some tentative
conclusions regarding the frequency of gene conversion
among Drosophila gene duplicates. Because gene conversion
between duplicated genes will cause them to be highly similar,
gene trees built from such genes will tend to show many more
recent duplications. Even when there has been no change in
the number of genes in a particular family, gene conversion
will cause tree reconciliation methods to infer multiple,
parallel duplications across lineages. This implies that
rampant gene conversion will cause reconciliation methods
to estimate many more duplications than our likelihood
method, which is based only on the size of gene families.
However, this is not seen (Figure 2): in fact, the ratio of genes
estimated via reconciliation to that estimated via likelihood is
1.01, and more genes are estimated via reconciliation on only
three of the 12 tip branches. Though these data certainly
cannot rule out a role for gene conversion in individual
families, they strongly suggest that it is at most a minor role
genome-wide.
As a further check on the number of duplicates specific to

D. melanogaster inferred from the 11,390 trees, we calculated
synonymous site distances between all candidate pairs of
duplicates in this species. If dS ¼ 0.117 is the average
synonymous distance between D. melanogaster and D. simulans
[35], then melanogaster-specific duplicates should be more
similar than this. There are two explanations for why pairs of

Figure 2. Correlation between the Number of Gene Gains on Informative
Branches of the Phylogeny Inferred from the Likelihood Method and
from the Tree Reconciliation Method

doi:10.1371/journal.pgen.0030197.g002
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Differences in rates of gain and loss
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Differences in rates of gain and loss
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When genomes go bad

-2X Sanger: very bad, vastly undercounts genes

-12X 454: pretty bad, slightly overcounts

-82X Illumina: bad, but equally over- and undercounts

The best of these (Illumina) still has ~40% of families with errors 

(and don’t think your transcriptome assembly is any better!) 



Error increases estimated rate of gain and loss

simulated rate: λ=0.0012

after adding error: λ=0.0027

add 10% error to data



Error increases estimated rate of gain and loss

simulated rate: λ=0.0012

after adding error: λ=0.0085

add 40% error to data
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We can specify different error 
distributions for different species

CAFE 3.0

Modeling genome error



estimates of the rate of change. Because a higher rate of
evolution must be proposed in the presence of errors—
whether additional or missing genes—estimates that do
not account for errors are likely to have been upwardly
biased. Indeed, we have previously found that Drosophila spe-
cies represented by the lowest quality assemblies in compar-
ative analyses using CAFE also appear to evolve at the highest
rates (Hahn, Han, et al. 2007). Therefore, to estimate accurate
rates of gene family evolution, we must be able to account for
the error present in all current genome annotations. In this
article, we present one such method and implement it in a
new version of CAFE. Our method accounts for errors in gene
family sizes by explicitly modeling the uncertainty associated
with observed family sizes at the tips of a tree. We show that,
given a known error distribution for each genome, we can
recover accurate estimates of the true rate of gene family
evolution. In addition, we present multiple methods for esti-
mating error rates from the data when they are not known in
advance and show how these can be used to provide more
accurate values of evolutionary parameters.

New Approaches
We assume a random variable X that is a true count of
homologous members of a gene family within a single lineage.
In theory, X can be from 0 to infinite size, but for ease of
computation, we limit it to be at most M. A whole genome
can then be thought of as a random sample of size N, where
each gene family within a genome corresponds to each ob-
servation, and N is the total number of gene families found in
the genome. Each gene family size in a genome is assumed to
be independent and identically distributed.

We also consider the error-prone measure of gene family
size W, W = w (w = 0,1,2,3 . . . M). W represents our observa-
tion for each gene family size that is affected by errors in the
genome assembly and errors in the gene annotations. The
measurement-error model, which describes the behavior of
W given X = x, is specified by the error probabilities:

!w j x ¼ PðW ¼ w j X ¼ xÞ,

that is, the probability of observing w when the true gene
family size is x. The error probabilities can be represented as a
matrix, !:

! ¼
!1 j 1 $ $ $ !1 jM

..

. . .
. ..

.

!M j 1 $ $ $ !M jM

2

64

3

75,

where the item in the ith row and jth column represents the
probability of observing i when the true gene family size is j.
Note that the rows of the matrix do not have to sum to 1 but
the columns do. We also define the probability !x as:

!x ¼ PðX ¼ xÞ,

that is, the probability of a true gene family size of x found in
the genome. The lower case ! denotes the discrete probability
distribution !x for x = 0 . . . M.

In cases where there is no measurement error, it is known
that we can estimate the rate of change in gene family size
across the phylogeny by specifying a transition matrix based
on the rate parameters l and " and fitting the model to the
observed (=true) counts (X) at the tips of the tree and the
time between the nodes (described by branch lengths, T).
Under a birth-and-death process, the probability of going
from s number of genes to c number of genes in time t is
given by (Bailey 1964):

P X tð Þ ¼ c j X 0ð Þ ¼ sð Þ

¼
Xminðs, cÞ

j¼0

s

j

! "
s + c% j% 1

s% 1

! "
#s%j$c%jð1% #% $Þj

# ¼ "ðe
l%"ð Þt % 1Þ

le l%"ð Þt % "
, $ ¼ lðe l%"ð Þt % 1Þ

le l%"ð Þt % "

where l is the rate of gene gain and" is the rate of gene loss. If
the rates of gain and loss are equal, that is, l=", the above
probability is as given in equation 1 of Hahn et al. (2005). Here,
we focus on cases with l=", but the updated version of
CAFE can also estimate separate rates of gain and loss
(as can BadiRate; Librado et al. 2012).

For multiple species, S = (1 . . . s), we define a tree with
ultrametric branch lengths, T, that has the set of species
S as the leaves and a set of ancestral nodes, U = (1 . . . u).
We define Xn as the vector Xn = (Xn1, Xn2, . . . Xns), in which
each item Xni describes the size of the nth gene family in each
genome of species i (i 2 S). Similarly, Zn = (Zn1, Zn2, . . . Znu) is
the vector in which each item Znj is the gene family size of the
ancestral genome at the inner node j (j 2 U). The actual
calculation of the likelihood over the whole tree utilizes the
“pruning algorithm” (Felsenstein 1973, 1981) to sum over the
inner node values that we cannot observe:

l,"¼ argmaxl,"

 
YN

n¼1

PðXn jl,",TÞ
!

¼ argmaxl,"

 
YN

n¼1

PðXn jZn,l,",TÞPðZn jl,",TÞ
!

¼ argmaxl,"

 
YN

n¼1

XM

zn1¼ 0

XM

zn2¼ 0

$ $ $
XM

znu¼ 0

PðXn jZn

¼ zn1,zn2 .. .znuð Þ,l,",TÞ

&PðZn¼ zn1,zn2 . ..znuð Þ jl,",TÞ

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

!

:

With error in the measurements, a naı̈ve inference based on
use of the W’s instead of the X’s leads to:

ðl,"ÞW ¼ argmaxl,"

 
YN

n¼1

PðWn j l,", TÞ
!

,

where we define the vector Wn = (Wn1, Wn2, . . . Wns). Similar
to Xn, Wni is the error-prone measurement of the gene count
for the nth gene family in species i.

To account for error, we add an additional layer of uncer-
tainty on the true value X to the values at the leaf nodes of the
phylogeny. This necessitates an additional summation of
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Original model

likelihoods at each leaf over X, in addition to all internal nodes,
Z. The only difference between the summation at the leaf
nodes and the summation at the inner nodes is that the
probability at the leaf nodes is defined by the error matrix,
rather than following the transition probabilities derived from
the rate matrix and the branch lengths:

l,!¼ argmaxl,!
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The probability P(Wni = wni j Xni = xni) follows from the
error matrix !wni j xni .

Because we do not know the error matrix !, it becomes an
additional set of parameters we need to estimate:
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When the error probabilities are unknown, it is theoreti-
cally possible to estimate the whole set of parameters includ-
ing the error matrix using maximum likelihood, but in
practice the number of parameters to be estimated is too
large unless the number of samples is extremely large. For
example, even if we assume that the error matrix is the same
across all families and all species, the number of parameters to
be estimated is 2 + M2; that is, the entries of a full error
matrix when M is the maximum possible size of a family.
Instead, here we focus on cases where we have some infor-
mation about the distribution of errors affecting measure-
ment. In practice, this means that rather than estimating
the joint distribution of l and !, we estimate l using external
information about the distribution of error. If we assume a
highly simplified error model, we can also estimate the error
matrix using a pseudomaximum likelihood approach
(Buonaccorsi 2010). Later, we present extensive simulation
results that suggest that our method provides accurate esti-
mates of all parameters.

Results and Discussion

The Effect of Error on Inferred Rates of Gene Family
Evolution
To examine the effect of error in the gene family size taken
from suboptimal genome annotations, we simulated gene
families under a model with known error. These data were
simulated using the phylogeny of 12 Drosophila species

(supplementary fig. S1, Supplementary Material online) and
the distribution of sizes among 11,434 gene families previously
analyzed in these species (Hahn, Han, et al. 2007), with a true
rate parameter of l=!= 0.0012. A simulation consists of
generating a data set using CAFE’s genfamily command and
adding error to the data set as specified. In the simplest sim-
ulations, a known amount of error (") was added to each data
set by randomly adding or subtracting genes from " percent
of the gene families, with all gene family sizes having the same
error distribution (i.e., the same error matrix). Error can be
added to all species or to a subset of species, effectively
modeling heterogeneous assembly and annotation quality
among genomes. The error distributions added to our simu-
lated data were either "= 0.1 or "= 0.4 and consisted of an
addition or subtraction of one to three genes in a family per
species independently (fig. 1). An error value of "= 0.1 means
that in 90% of gene families, the observed size is equal to the
true size, whereas in 10% of gene families, the observed size is
either too large or too small (fig. 1A, C, and E). These
error distributions approximate the range and distributions
of error that we observe in several published genomes (see
later).

To first assess the effect of error on inferred rates of gene
family evolution, CAFE 3 was run on each simulated data set
with standard settings—that is, with no error model incor-
porated. Estimating l from these error-prone data sets gave
values of 0.0027 and 0.0085 when adding "= 0.1 and "= 0.4,
respectively (table 1). As expected, the more error contained
in each data set, the higher value of l we inferred; this is
expected because higher rates of gene family evolution
must be proposed to account for greater disparities in gene
family size. Even when only 10% of families have an incorrect
size (in each of the 12 genomes), the rate of gene family
evolution is more than twice its true value (l= 0.0012).
Although adding symmetric error does not change the
mean family size across species, it does change the variance
in size: from a variance equal to 0.519 in the true data
(mean = 1.097), adding "= 0.1 changed the variance to
0.609 and adding "= 0.4 gave 0.894. Adding asymmetric
error did change the mean family size but only very slightly
(data not shown); the variances were the same as in the
symmetric case.

There did not appear to be a clear effect of asymmetry in
the error model on the absolute values of l, as putting more
of the mass of the error distribution in either gains or losses
did not significantly affect the estimated parameter value
(compare results from error models 1A to 1C, and 1B to
1D in table 1). However, we did observe a small but substan-
tial increase in l when errors involving larger changes in
family size (e.g., ±3) were included (compare results from
error models 1A to 1E, and 1B to 1F in table 1).

Accounting for Errors in Gene Family Size Using
CAFE 3
We have observed how error in the observed gene family sizes
can lead to an overestimation of the rates of gene gain and
loss. We were therefore interested in whether the error model
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Error increases estimated rate of gain and loss

simulated rate: λ=0.0012

after adding error: λ=0.0027

add 10% error to data



using correct error model: λ=0.0012

simulated rate: λ=0.0012

after adding error: λ=0.0027

add 10% error to data

Accounting for error corrects rate estimate



simulated rate: λ=0.0012

after adding error: λ=0.0085

add 40% error to data

Error increases estimated rate of gain and loss



simulated rate: λ=0.0012

after adding error: λ=0.0085

add 40% error to data

using correct error model: λ=0.00124

Accounting for error corrects rate estimate



Thus far, we have assumed the correct error model is known.

Can we estimate it when it is not known?

Estimating the correct error model
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These processes include detection of host odors, immune responses,
and insecticide resistance.

The effort to shape a comparative genomic project was led by Nora
Besansky (University of Notre Dame), who, in consultation with other
members of the Anopheles research community on the Anopheles
Genomes Cluster Committee, identified 13 mosquito species that cap-
tured evolutionary and phenotypic divergence among Anophelesmos-
quitoes and for which quality sequencing template could be generated.
The sequencing of two incipient species of An. gambiae (“M” and “S”
forms) using Sanger technology (Lawniczak et al. 2010) originally was
executed as a proof-of-principle demonstration immediately before it
became clear that next-generation sequencing (NGS) technology
would be more appropriate for this larger project. The initial white-
paper was approved in September 2008 by the National Human Ge-
nome Research Institute and the National Institute of Allergy and
Infectious Diseases of the U.S. National Institutes of Health, after
review by the Eukaryotic Pathogens and Disease Vectors Target Selec-
tion Working Group. A contract to execute the project was awarded to
the Broad Institute. Three additional species were later added to the
project when DNA and RNA template sources became available, and
a full list of the 16 targeted species and their putative evolutionary
relationships are depicted in Figure 1.

Many of the community sequencing projects that made first use of
the short but economical NGS reads, such as the 1000 [human]
Genomes Project (Siva 2008), benefited from the availability of pre-
existing high-quality reference assemblies for the target species. Ge-
netic polymorphisms can be readily identified through mapping NGS
reads to a reference assembly, in an approach often termed “rese-
quencing.” De novo assembly from short NGS reads, however, proved
to be a far more difficult prospect. As a result, quality vertebrate NGS-
based assemblies did not begin appearing until 2010/2011 (Li et al.
2010a,b; Gnerre et al. 2011), almost 5 years after the introduction of
NGS technology.

The recipe for producing NGS-based vertebrate assemblies,
however, proved impractical to transfer directly to mosquitoes. Initial
attempts to assemble Anopheles gambiae s.s with the ALLPATHS LG
algorithm (Gnerre et al. 2011) in the same manner as human or
mouse were unsuccessful; contig N50 measurements (a weighted me-

dian statistic) were on the scale of 223 kb, much smaller than nec-
essary to ensure high-quality gene models (Table 1). Clearly, a new
approach would be needed to deal with the unique architecture of
these mosquito genomes.

Anopheles genomes are roughly 10 times smaller than the human
genome, at approximately 275 Mb. Nevertheless, they contain a large
number of widely dispersed repetitive sequences—in the form of
transposon insertions as well as intercalated heterochromatic
repeats—that foil attempts at assembly with reads from sequencing
libraries made of small DNA fragments. We have found natural pop-
ulations as well as colonies of most Anopheles species to be highly
polymorphic, with individuals exhibiting heterozygous base positions
at rates up to 10—15 times greater than found in most vertebrates. To
address these issues, three strategies have been used in the Anopheles
16 Genomes project.

First, old-fashioned mosquito husbandry was used to remove as
much genetic diversity as possible from laboratory colonies before
preparation of sequencing template. Anopheles mosquitoes can be
difficult breeders in captivity, but Paul Howell and Alice Sutcliffe at
the National Institute of Allergy and Infectious Diseases2funded
Malaria Research and Reference Reagent Resource Center (MR4;
http://www.mr4.org/) were able to generate subcolonies from single-
pair matings for nine of the 12 of the species in this project main-
tained as captive colonies by MR4. By founding subcolonies with the
progeny of single inseminated females (Benedict and Rafferty 2002),
Howell and Sutcliffe were able to substantially reduce the polymor-
phism in tissue used for genomic DNA template relative to the orig-
inal colonies. To further reduce polymorphism in the template, the
small-insert sequencing libraries used in assembly were generated
from the DNA of single female mosquitoes rather than pools of
individuals, using whole genome amplification to increase the quantity
of available DNA required for the 3- to 5-kb insert libraries.

Second, the Broad’s ALLPATHS LG assembly algorithm was mod-
ified to deal with the very high heterozygosity rates. Using an approach
called “Haploidify” created by Filipe Ribeiro, Iain MacCallum, and
others in David Jaffe’s Computational Research and Development
team at the Broad, base-calling errors in the data could be better
differentiated from legitimate heterozygous positions, and the

Figure 1 Illustration of the 16 anophelines and their
relationships to An. gambiae, the two sequenced
culicines—Aedes aegypti and Culex quinquefasciatus—
and the sequenced Drosophila species. The divergence
time estimate between Drosophilidae and Culicidae is
from (Gaunt and Miles 2002). Anopheles species that
are major human malaria vectors are labeled in red, minor
vectors are labeled in orange, and species that are not
human malaria vectors are labeled in black.
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Accounting for error corrects rate estimate
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