De novo RNA-Seq Assembly and Transcriptome Studies Using Trinity

with Applications towards Non-model Organism Studies

Brian Haas Broad Institute

Workshop on Genomics, Cesky Krumlov, Jan 2017

Transcriptomics Lecture Overview

- Overview of RNA-Seq
- Transcript reconstruction methods
- Trinity de novo assembly
- Transcriptome quality assessment
 (coffee break)
- Expression quantitation
- Differential expression analysis
- Functional annotation (stretch legs break)
- Case study: salamander transcriptome

RNA-Seq Empowers Transcriptome Studies

Generating RNA-Seq: How to Choose?

Many different instruments hit the scene in the last decade

Slide courtesy of Joshua Levin, Broad Institute.

Cost per Raw Megabase of DNA Sequence

From https://www.genome.gov/sequencingcostsdata/

RNA-Seq: *How to Choose?*

Slide courtesy of Joshua Levin, Broad Institute.

Generating RNA-Seq: How to Choose?

Popular choices for RNA-Seq today

Generating RNA-Seq: How to Choose?

RNA-Seq: How do we make cDNA?

Prime with Random Hexamers (R6)

Slide courtesy of Joshua Levin, Broad Institute.

Overview of RNA-Seq

From: http://www2.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics.html

Common Data Formats for RNA-Seq

FASTA format:

>61DFRAAXX100204:1:100:10494:3070/1 AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT

FASTQ format:

Quality values

```
AsciiEncodedQual(x) = -10 * log10(Pwrong(x)) + 33
```

AsciiEncodedQual ('C') = 64

So, $Pwrong('C') = 10^{(64-33/(-10))} = 10^{-3.4} = 0.0004$

Paired-end Sequences

@61DFRAAXX100204:1:100:10494:3070/2
CTCAAATGGTTAATTCTCAGGCTGCAAATATTCGTTCAGGATGGAAGAACA
+

Read Quality Assessment

From: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Overview of RNA-Seq

From: http://www2.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics.html

RNA-Seq reads

Advancing RNA-Seq analysis

Brian J Haas & Michael C Zody

Nature Biotech, 2010

New methods for analyzing RNA-Seq data enable de novo reconstruction of the transcriptome.

RNA-Seq reads

Assemble transcripts de novo End-to-end **Transcriptome**-based **RNA-Seq Analysis** Software Package Trinity NATURE PROTOCOLS | PROTOCOL *De novo* transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis Align transcripts to genome Brian J Haas, Alexie Papanicolaou, Moran Yassour, Manfred Grabherr, Philip D Blood, Joshua Bowden, Matthew Brian Couger, David Eccles, Bo Li, Matthias Lieber, Matthew D MacManes, Michael Ott, Joshua Orvis, Nathalie Pochet, Francesco Strozzi, Nathan Weeks, Rick Westerman, Thomas William, Colin N Dewey, Robert Henschel, Richard D LeDuc, Nir Friedman & Aviv Regev Affiliations | Contributions | Corresponding authors Nature Protocols 8, 1494–1512 (2013) | doi:10.1038/nprot.2013.084 Published online 11 July 2013

The General Approach to *De novo* RNA-Seq Assembly Using De Bruijn Graphs

Sequence Assembly via De Bruijn Graphs

a Generate all substrings of length k from the reads

ACAGC TCCTG GTCTC	AGCGC CTCTT GGTCG]
CACAG TTCCT GGTCT	CAGCG CCTCT TGGTC	
CCACA CTTCC TGGTC TGTTG	TCAGC TCCTC TTGGT	
CCCAC GCTTC CTGGT TTGTT	CTCAG TTCCT GTTGG	k more (k=E)
GCCCA CGCTT GCTGG CTTGT	CCTCA CTTCC TGTTG	- k-mers (k=5)
CGCCC GCGCT TGCTG TCTTG	CCCTC GCTTC TTGTT CGTAG	
CCGCC AGCGC CTGCT CTCTT	GCCCT CGCTT CTTGT TCGTA	
ACCGC CAGCG CCTGC TCTCT	CGCCC GCGCT TCTTG GTCGT	
ACCGCCCACAGCGCTTCCTGCTGGTCTCTTGTTG	CGCCCTCAGCGCTTCCTCTTGTTGGTCGTAG	- Reads

b Generate the De Bruijn graph

From Martin & Wang, Nat. Rev. Genet. 2011

b Generate the De Bruijn graph

From Martin & Wang, Nat. Rev. Genet. 2011

Contrasting Genome and Transcriptome Assembly

Genome Assembly

- Uniform coverage
- Single contig per locus
- Double-stranded

Transcriptome Assembly

- Exponentially distributed coverage levels
- Multiple contigs per locus (alt splicing)
- Strand-specific

Trinity Aggregates Isolated Transcript Graphs

Genome Assembly

Single Massive Graph

Entire chromosomes represented.

Trinity Transcriptome Assembly

Many Thousands of Small Graphs

Ideally, one graph per expressed gene.

Trinity – How it works:

Thousands of disjoint graphs

- Decompose all reads into overlapping Kmers => hashtable(kmer, count)
- Read: AATGTGAAAACTGGATTACATGCTGGTATGTC...

AATGTGA	
ATGTGAA	Overlapping kmers of length (k)
TGTGAAA	

Kmer Catalog (hashtable)

Kmer	Count among all reads
AATGTGA	4
ATGTGAA	2
TGTGAAA	1
GATTACA	9

- Decompose all reads into overlapping Kmers => hashtable(kmer, count)
- Identify seed kmer as most abundant Kmer, ignoring low-complexity kmers.

GATTACA 9

Kmer Catalog (hashtable)

Kmer	Count among all reads
AATGTGA	4
ATGTGAA	2
TGTGAAA	1
GATTACA	9

- Decompose all reads into overlapping Kmers => hashtable(kmer, count)
- Identify seed kmer as most abundant Kmer, ignoring low-complexity kmers.
- Extend kmer at 3' end, guided by coverage.

GATTACA 9 T C

GATTACA 9 T C

GATTACA 9 T₀ C

GATTACA 9 C₄ C₄

 $\mathbf{GATTACA}_{9} \qquad \mathbf{C}_{4} \qquad \mathbf{A}_{1} \\ \mathbf{T}_{0} \\ \mathbf{C}_{4} \qquad \mathbf{C}_{4}$

Report contig:AAGATTACAGA....

Remove assembled kmers from catalog, then repeat the entire process.

Expressed isoforms

Chrysalis Re-groups Related Inchworm Contigs

Chrysalis uses (k-1) overlaps and read support to link related Inchworm contigs

Butterfly Example 1: Reconstruction of Alternatively Spliced Transcripts

Reconstruction of Alternatively Spliced Transcripts

Reconstructed Transcripts

Reconstruction of Alternatively Spliced Transcripts

Reconstructed Transcripts

Reconstruction of Alternatively Spliced Transcripts

Butterfly Example 2: Teasing Apart Transcripts of Paralogous Genes

Teasing Apart Transcripts of Paralogous Genes

Strand-specific RNA-Seq is Preferred

Computationally: fewer confounding graph structures in de novo assembly: ex. Forward != reverse complement

(GGAA != TTCC)

Biologically: separate sense vs. antisense transcription

NATURE METHODS | VOL.7 NO.9 | SEPTEMBER 2010 |

Comprehensive comparative analysis of strand-specific RNA sequencing methods

Joshua Z Levin^{1,6}, Moran Yassour^{1-3,6}, Xian Adiconis¹, Chad Nusbaum¹, Dawn Anne Thompson¹, Nir Friedman^{3,4}, Andreas Gnirke¹ & Aviv Regev^{1,2,5}

Strand-specific, massively parallel cDNA sequencing (RNA-seq) is a powerful tool for transcript discovery, genome annotation

Nevertheless, direct information on the originating strand can substantially enhance the value of an RNA-seq experiment. For

'dUTP second strand marking' identified as the leading protocol

computational pipeline to compare library quality metrics from any RNA-seq method. Using the well-annotated *Saccharomyces cerevisiae* transcriptome as a benchmark, we compared seven library-construction protocols, including both published and transcribed strand or other noncoung to tris, demarcate the exact boundaries of adjacent genes transcribed on opposite strands and resolve the correct expression levels of coding or noncoding overlapping transcripts. These tasks are particularly challenging in small microbial genomes, prokaryotic and eukaryotic, in which

dUTP 2nd Strand Method: Our Favorite

Modified from Parkhomchuk et al. (2009) Nucleic Acids Res. 37:e123

Slide courtesy of Joshua Levin, Broad Institute.

Overlapping UTRs from Opposite Strands

Schizosacharomyces pombe (fission yeast)

Antisense-dominated Transcription

Trinity output: A multi-fasta file

comp0 c0 seq1 len=5528 path=[1:0-3646 10775:3647-3775 3648:3776-5527]

AATTGAATCCCTTTTTGTATCGAAAAATTGAAAGTGAAAGACATATACAGATTGAATGCGGTGATGGAATGCAAATTACGAACATTAGAAAATTACGAAAATTGACGAACATGACGACACCTAGGTTGG TOCACTOCCATCATOTOGAGATACTACAGAGGACTATCCGTCCACAGGACGTAACTGAACCCGATTCCTCCTTTCTTGCAAAGTCTTGACTTGACTAGGATCTCAGTAGAAAAAGCAGCAGCATTCTTTTTTCAGTCT GTGAACAACATGAACACCCTGATGCAGCAGTCTTAAGTGTCAACAGGACACCAACATCAGGECCATTATAAAACATACCTTTTTCAACCTAAAAACCTAGGTTAAAACCCATTTAAACCCTAGGTTAAACCTAGGTTAAACCTAGGTTAAACCTAGGTTAAACCCTAGGTTAAACCCTAGGTTAAACCCTAGGTTAAACCCTAGGTTAAACCCTAGGTTAAACCCTAGGTTAAACCCTAGGTTAAACCCTAGGTTAAACCCTAGGTTAAACCCTAGGTTAAACCCTAGGTTAAACCCTAGGTTGGTTGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTAGGTTGGTTAGGTTAGGTTAGGTTAGGTTAGGTTGGTTAG TCACAGTAACTGGACACCCAAAGGACAGAAATAGTCTCAACGAAGAAGACGAGGACTACCAGGGCTGGGGTCTTCACATTGCCATCTGTAAGAGGTCCCCCTTTACATGTCCCGAAGAACACCTCT TOTO AGG TO TOTO AT A CARAGED CONSTRAINT CAN DE CONSTRAINT CONTRAINT CAN TE CAN THE CARAGED CONSTRAINT CARAGED CON GCTTCTCCCATACATCAATGAGCACATGAACAGCGAGCAGCAGCAGTAATAGTCTGAGAACTGCAATCCGGTCTCTAAACAACAGGCGCCCCAAACCCGTGCTGGTACCTTGAGCAGCACATCCAGTCCGTGTCTTTGACCACATCCAG

>comp0_c0_seq2 len=5399 path=[1:0-3646 3648:3647-5398]

ARTTGRATCCCTTTTTGTATCGRARASCTGRARGCATATACAGATGGATGGATGGATGGGATGGAAATATAATGCARATTAGAAAATTATGAAAATTGATGGAGGACGACGACGACGCCCCGGGTGTGG ASTTATCTCAARATGTAAGAATTAGACATTGAAAATGCACATTAGAAAATCAGCAAGTAACAAGAAGTAAACAAGCACATGAACAACAACAACAACAAGACCAGGCGCCCCACATGCAAGAACAAGACA TTOTGAATCCEAGACAGTTACGATAAAGAATGCAATGGTGTGCTGCGGGCAGTGGGAAGACCAGTCCTCACCAGTCTTTCACCTTACAGTTACCAGTACAGGAATAAAGTGGCGGCGCGGGGAACAAGAACAGA GTARACCCRGRTGRGGGTCCTGCTGCTGCTGCTGTTATATACAATTGCTGTATATTTGATACCCCCRARAATTGATTCACGATCCATGCATGCATGCATGCATGCAGGAAGTTCCGGATTAGAACAATGCCAGC ASCOCTCCAGAATCATGTAATAAAGTTCAACCTCAGCCTCCACCATCTTCTCCCACCATCTTCTCCGCCAGGGGCAGAAACATGGTTTTGGAGAGCCTCCACCGGGCATATAGAT TAAATGGGCCGGAGGGGCGGTCGTTAGGGTCCTGCACATGGCCCGGGGTCGCCATGATGACAAGCGCAGAACCTCAGT

Evaluating the quality of your <u>transcriptome</u> assembly

De novo Transcriptome Assembly is Prone to Certain Types of Errors

Smith-Unna et al. Genome Research, 2016

Smith-Unna et al. Genome Research, 2016

Simple Quantitative and Qualitative Assembly Metrics

Read representation by assembly

Align reads to the assembled transcripts using Bowtie. A typical 'good' assembly has ~80 % reads mapping to the assembly and ~80% are properly paired.

Given read pair: –

→ ←

Possible mapping contexts in the Trinity assembly are reported:

Proper pairs Improper pairs Left only Right only

Assembled transcript contig is only as good as its read support.

% samtools tview alignments.bam target.fasta

911	921	931	941	951	961	971	981	991	1001	1011	1021	1031	1041	1051	1061	1071	
GTAGGTT	TAATTTCATC	TTCTAATTTAGAA	TCTTGCCAA	TCAAGCCCTC	TCGAAGTTGGC	AATATCTAT	ACTCAACC	TCTGCTTCTGAGAT	TCTAAGTAC	CTTAGATGO	CCAAGTACATT	ACTATAAT	GGTGTTATCG	GGTCTTCCAAC	TCCTCCATT	CAAGACTTAATTGACTCT	GT
GT GTT	TAATTTCATC	TTCTAATTTAGAA	TCTTGCCAA	TCAAGCCCTC	TCGAAGTTGGC	AATATCTAT	AAC	ctgcttctgagatt	tctaagtac	cttagatgo	ccaagtacatt	actataatt	ggtgttatcg	ggtcttcc c	tcctccatt	caagacttaattgactct	gt
GT	ATTTCATC	TTCTAATTTAGAA	TCTTGCCAA	TCAAGCCCTC	TCGAAGTTGGC	AATATCTAT	ACTCAAC	tgcttctgagatt	tctaagtac	cttagatgo	ccaagtacatt	actataatt	ggtgttatcg	ggtcttcca	cctccatt	caagacttaattgactct	gt
GT	atttcato	ttctaatttagaa	tcttgccaa	tcaagccctc	tcgaagttggc	aatatctata	actcaac	GCTTCTGAGAT	TCTAAGTAC	CTTAGATGO	CCAAGTACATT	ACTATAAT	GGTGTTATCG	GGTCTTCCAA	cctccatt	caagacttaattgactct	gt
GT	atttcato	ttctaatttagaa	tcttgccaa	tcaagccctc	tcgaagttggc	aatatctata	actcaac	GCTTCTGAGAT	TCTAAGTAC	CTTAGATGO	CCAAGTACATT	ACTATAAT	GGTGTTATCG	GGTCTTCCAA	cctccatt	caagacttaattgactct	gt
GTAGGTT	TAAT	aa	tcttgccaa	tcaagccctc	tcgaagttggc	aatatctata	actcaacc	tctgcttctgagatt	tcta	CTTAGATGO	CCAAGTACATT	ACTATAAT	GGTGTTATCG	GGTCTTCCAAC	TCCTCCATT	CAAGACTTAA ct	lgt
GTAGGTT	TAATTT		tcttgccaa	tcaagccctc	tcgaagttggc	aatatctata	actcaacc	tctgcttctgagatt	tctaag	CTTAGATGO	CCAAGTACATT	ACTATAAT	GGTGTTATCG	GGTCTTCCAAC	TCCTCCATT	CAAGACTTAA	
GTAGGTT	TAATTTCATC	Π	cttgccaa	tcaagccctc	tcgaagttggc	aatatctata	actcaacc	tctgcttctgagatt	tctaagt	TTAGATGO	CCAAGTACATT	ACTATAAT	GGTGTTATCG	GGTCTTCCAAC	TCCTCCATT	CAAGACTTAAT	
GTAGGTT	TAATTTCATC	TTC	TGCCAA	TCAAGCCCTC	TCGAAGTTGGC	AATATCTAT	ACTCAACC	TCTGCTTCTGAGAT	TCTAAGTAC	ATGO	CCAAGTACATT	ACTATAAT	GGTGTTATCG	GGTCTTCCAAC	TCCTCCATT	CAAGACTTAATTGAC	
GTAGGTT	TAATTTCATC	TTCTAAT	TGCCAA	TCAAGCCCTC	TCGAAGTTGGC	AATATCTAT	ACTCAACC	TCTGCTTCTGAGAT	TCTAAGTAC	GC GC	CCAAGTACATT	ACTATAAT	GGTGTTATCG	GGTCTTCCAAC	TCCTCCATT	CAAGACTTAATTGACTC	
gtaggtt	taatttcatc	ttctaatttag	TGCCAA	TCAAGCCCTC	TCGAAGTTGGC	AATATCTAT	ACTCAACC	TCTGCTTCTGAGAT	TCTAAGTAC		CATT	ACTATAAT	GGTGTTATCG	GGTCTTCCAAC	TCCTCCATT	CAAGACTTAATTGACTCT	GT
GTAGGTT	TAATTTCATC	TTCTAATTTAG	GCCAA	TCAAGCCTTC	TCGAAGTTGGC	AATATCTAT	ACTCAACC	TCTGCTTCTGAGAT	TCTAAGTAC	C	catt	actataatt	ggtgttatcg	ggtcttccaac	tcctccatt	caagacttaattgactct	igt
GTAGGTT	TAATTTCATC	TTCTAATTTAG	CAA	TCAAGCCCTC	TCGAAGTTGGC	AATATCTAT	ACTCAACC	TCTGCTTCTGAGAT	TCTAAGTAC	C			tgttatcg	ggtcttccaac	tcctccatt	caagacttaattgactct	igt
GTAGGTT	TAATTTCATC	TTCTAATTTAG	CAA	TCAAGCCCTC	TCGAAGTTGGC	AATATCTAT	ACTCAACC	TCTGCTTCTGAGAT	TCTAAGTAC	CTT			g	ggtcttccaac	tcctccatt	caagacttaattgactct	igt
GTAGGTT	TAATTTCATC	TTCTAATTTAG		gccctc	tcgaagttggc	aatatctata	actcaacc	tctgcttctgagatt	tctaagtac	cttagatgo	CC		(GGTCTTCCAAC	TCCTCCATT	CAAGACTTAATTGACTCT	GT
GTAGGTT	TAATTTCATC	TTCTAATTTAGAA	T	CCCTC	TCGAAGTTGGC	AATATCTAT	ACTCAACC	TCTGCTTCTGAGAT	TCTAAGTAC	CTTAGATGO	CCA		9	ggtcttccaac	tcctccatt	caagacttaattgactct	gt
GTAGGTT	TAATTTCATC	TTCTAATTTAGAA	тст	ctc	tcgaagttggc	aatatctata	actcaacc	tctgcttctgagatt	tctaagtac	cttagatgo	ccaag		9	ggtcttccaac	tcctccatt	caagacttaattgactct	gt
GTAGGTT	TAATTTCATC	TTCTAATTTAGAA	тст	C	TCGAAGTTGGC	AATATCTAT	ACTCAACC	TCTGCTTCTGAGAT	TCTAAGTAC	CTTAGATGO	CCAAGTA			GTCTTCCAAC	TCCTCCATT	CAAGACTTAATTGACTCT	GT
GTAGGTT	TAATTTCATC	TTCTAATTTAGAA	тст		CGAAGTTGGC	AATATCTAT	ACTCAACC	TCTGCTTCTGAGAT	TCTAAGTAC	CTTAGATGO	CCAAGTACA			gtcttccaac	tcctccatt	caagacttaattgactct	gt
GTAGGTT	TAATTTCATC	TTCTAATTTAGAA	тст		AAGTTGGC	AATATCTAT/	ACTCAACC	TCTGCTTCTGAGAT	TCTAAGTAC	CTTAGATG	CCAAGTACATT			cttccaac	tcctccatt	caagacttaattgactct	gt
gtaggtt	taatttcatc	ttctaatttagaa	tcttgcc		C	AATATCTAT	ACTCAACO	TCTGCTTCTGAGAT	TCTAAGTAC	CTTAGATGO	CCAAGTACATT	ACTATAA		cttccaac	tcctccatt	caagacttaattgactct	gt
GTAGGTT	TAATTTCATC	TTCTAATTTAGAA	TCTTGCCA			CTAT/	ACTCAACC	TCTGCTTCTGAGAT	TCTAAGTAC	CTTAGATGO	CCAAGTACATT	ACTATAAT	GGTG	CTTCCAAC	TCCTCCATT	CAAGACTTAATTGACTC	GT
GTAGGTT	TAATTTCATC	TTCTAATTTAGAA	TCTTGCCAA					cttctgagatt	tctaagtac	cttagatgo	ccaagtacatt	actataatt	ggtgttatcg	ggtcttccaac	CTCCATT	CAAGACTTAATTGACTC	G
gtaggtt	taatttcatc	ttctaatttagaa	tcttgccaa	tcaagcc				cttctgagatt	tctaagtac	cttagatgo	ccaagtacatt	actataati	ggtgttatcg	ggtcttccaac	tccatt	caagacttaattgactct	gt
GTAGGTT	TAATTICATC	TICTAATITAGAA	TCTTGCCAA	TCAAGCC				cttctgagatt	tctaagtac	cttagatgo	ccaagtacatt	actataati	ggtgttatcg	ggtcttccaac	tccatt	caagacttaattgactct	gt
gtaggtt	taatttcato	ttctaatttagaa	tcttgccaa	tcaagccc				ttctgagatt	tctaagtac	cttagatgo	ccaagtacatt	actataatt	ggtgttatcg	ggtcttccaac	t tccatt	caagacttaattgactct	gt
GTAGGTT	TAATTICATC	TICTAATTTAGAA	TCTTGCCAA	TCAAGCCC				tgagati	сстаадтас	cttagatgo	ccaagtacatt	астатаат	ggtgttatcg	ggtcttccaac	tcc ccatt	caagacttaattgactct	gŢ
GTAGGTT	TAATTICATC	TICTAATTTAGAA	TCTTGCCAA	TCAAGCCCTC	T00110			tgagati	tctaagtcc	cttagatgo	ccaagtacatt	астатаат	ggtgttatcg	ggtcttccaac	tcct catt	caagacttaattgactct	gŢ
GTAGGTT	TAATTTCATC		TCTTGCCAA	TCAAGCCCTC	TCGAAG			tgagati	tctaagtac	cttagatgo	ccaagtacatt	actataati	ggtgttatcg	ggtcttccaac		caagacttaattgactct	91
GTAGGTT	ATTTCATC		TCTTGCCAA	TCAAGCCCTC	TCGAAG	ATATOTAT	ACTOAAC	gagati	tetaagtae	cttagatgo	ccaagtacatt	actataati	ggigilateg	ggtcttccaac	teete	AAGACTTAATTGACTC	G
	ATTCATC		TCTTGCCAA	TCAAGCCCTC	TCGAAGTTGGC	AATATCTAT		T ACAT	CTAAGTAC	CTTAGATO	ccaagtacatt	actataat	ggigilateg	ggtcttccaac		cttaattgactct	9
	TICATC	TICTAATTTAGAA	TCTTGCCAA	TCAAGCCCTC	TCGAAGTTGGC	AATATCTAT	ACTCAACC	AGAT	tetaagtac	CTTAGATG	CAAGTACATT	ACTATAAT	GGIGITATCG	GGICTICCAAC	teeteen	attgacter	gu
								yati	tetaagtac	cttagaty	coortocott	actataatt	gytyttatty	gglcllccaac			
								yac	tetaattae	cttagaty	coortocott	actataatt	gytyttatty	ggicilicidac			
								yacı		cttagaty	coortocott	actataatt	ggtgttattg	ggicilicidac	teeteeatt	C220	
									aaytat	.cctayaty	ladylatati	αιιαιααι	ggrgrrarcg	gylettecaac	teeteeatt	caagacttaattgactc	at
														TTCCAAC			21
														TCCAAC	TCCTCCATT	CAAGACTTAATTGACTC	Ğ
														Caac	tectecatt	caagacttaattgactc	at a
														caac	tectecatt	caagacttaattgactc	9
														aac	tcctccatt	caagacttaattgactc	ot e
														aac	tectecatt	caagacttaattgactc	9.
														000			a

ccattcaagacttaattgactctg

ccattcaagacttaattgactctg

www.broadinstitute.org/igv/ C

슔 a

Overview

Can Examine Transcript Read Support Using IGV

🖲 🖸 🔵	Тгэг	Ka Ragions Tools CanomeSpace Hain	
Trinity.fasta	114		
L		254 bp	•
		p 100 bp 200 bp	-
GSNO_SRR1582647.bowtie.csoi am Coverage GSNO_SRR1582647.bowtie.csoi am	rt		
GSNO_SRR1582646.bowtie.csoi am Coverage GSNO_SRR1582646.bowtie.csoi am	rt		
GSNO_SRR1582648.bowtie.csoi am Coverage GSNO_SRR1582648.bowtie.csoi am	rt		
wt_SRR1582649.bowtie.csortec Coverage wt_SRR1582649.bowtie.csortec	d.		
wt_SRR1582650.bowtie.csortec Coverage wt_SRR1582650.bowtie.csortec	d.		
wt_SRR1582651.bowtie.csortec Coverage wt_SRR1582651.bowtie.csortec	d.		
Sequence → 3 tracks loaded TR	NITY	(_DN130_c0_g1_i]	

Can align Trinity transcripts to genome scaffolds to examine intron/exon structures

(Trinity transcripts aligned to the genome using GMAP)

The Contig N50 statistic

"At least half of assembled bases are in contigs that are at least **N50** bases in length"

In genome assemblies – used often to judge 'which assembly is better'

N50 contig length = 500k
Often, most assembled transcripts are *very* lowly expressed (How many 'transcripts & genes' are there really?)

* Salamander transcriptome

N50 Calculation for *Transcriptome* Assemblies??

(small)

In transcriptome assemblies – N50 is *not* very useful.

- Overzealous isoform annotation for long transcripts drives higher N50
- Very sensitive reconstruction for short lowly expressed transcripts drives lower N50

Compute N50 Based on the Top-most Highly Expressed Transcripts (ExN50)

- Sort contigs by expression value, descendingly.
- Compute N50 given minimum % total expression data thresholds => ExN50

ExN50 Profiles for Different Trinity Assemblies Using Different Read Depths

Note shift in ExN50 profiles as you assemble more and more reads.

* Candida transcriptome

Evaluating the quality of your transcriptome assembly

Full-length Transcript Detection via BLASTX

* Mouse transcriptome

Haas et al. Nat. Protoc. 2013

BUSC

Assessing genome assembly and annotation completeness with <u>Benchmarking Universal Single-</u> <u>Copy Orthologs</u>

About BUSCO

BUSCO *v2* provides quantitative measures for the assessment of genome assembly, gene set, and transcriptome completeness, based on evolutionarily-informed expectations of gene content from near-universal single-copy orthologs selected from OrthoDB *v9*.

BUSCO assessments are implemented in open-source software, with a large selection of lineage-specific sets of Benchmarking Universal Single-Copy Orthologs. These conserved orthologs are ideal candidates for large-scale phylogenomics studies, and the annotated BUSCO gene models built during genome assessments provide a comprehensive gene predictor training set for use as part of genome annotation pipelines.

UNIVERSITÉ

DE GENÈVE

☆

BUSC ,

Assessing genome assembly and annotation completeness with Benchmarking Universal Single-Copy Orthologs

#Summarized BUSCO benchmarking for file: Trinity.fasta **#BUSCO** was run in mode: trans

Summarized benchmarks in BUSCO notation: C:88%[D:53%],F:4.5%,M:7.3%,n:3023

Representing:

- 1045 **Complete Single-copy BUSCOs**
- 1617 **Complete Duplicated BUSCOs**
- **Fragmented BUSCOs** 139
- 222 **Missing BUSCOs**
- **Total BUSCO groups searched** 3023

Detonate: Which assembly is better?

"RSEM-EVAL [sic] uses a novel probabilistic model-based method to compute the joint probability of both an assembly and the RNA-Seq data as an evaluation score."

$$\operatorname{score}_{\operatorname{RSEM-EVAL}}(A) = \log P(A, D)$$

"the RSEM-EVAL score of an assembly is defined as the log joint probability of the assembly A and the reads D used to construct it"

$$\log P(A, D) = \log \int_{\Lambda} P(D|A, \Lambda) P(A|\Lambda) P(\Lambda) d\Lambda$$

$$\approx \underbrace{\log P(D|A, \Lambda_{\text{MLE}})}_{\text{likelihood}} + \underbrace{\log P(A|\Lambda_{\text{MLE}})}_{\text{assembly prior}}$$

$$- \underbrace{\frac{1}{2}(M+1)\log N}_{\text{BIC penalty}},$$

Li et al. Evaluation of de novo transcriptome assemblies from RNA-Seq data, Genome Biology 2014

Detonate: Which assembly is better?

"RSEM-EVAL [sic] uses a novel probabilistic model-based method to compute the joint probability of both an assembly and the RNA-Seq data as an evaluation score."

$$\operatorname{score}_{\operatorname{RSEM-EVAL}}(A) = \log P(A, D)$$

"the RSEM-EVAL score of an assembly is defined as the log joint probability of the assembly A and the reads D used to construct it"

Li et al. Evaluation of de novo transcriptome assemblies from RNA-Seq data, Genome Biology 2014

Detonate: Which assembly is better?

"RSEM-EVAL [sic] uses a novel probabilistic model-based method to compute the joint probability of both an assembly and the RNA-Seq data as an evaluation score."

RSEM-EVAL Genome-free metric

Li et al. Evaluation of de novo transcriptome assemblies from RNA-Seq data, Genome Biology 2014

nature protocols

NATURE PROTOCOLS | PROTOCOL

De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis

Brian J Haas, Alexie Papanicolaou, Moran Yassour, Manfred Grabherr, Philip D Blood, Joshua Bowden, Matthew Brian Couger, David Eccles, Bo Li, Matthias Lieber, Matthew D MacManes, Michael Ott, Joshua Orvis, Nathalie Pochet, Francesco Strozzi, Nathan Weeks, Rick Westerman, Thomas William, Colin N Dewey, Robert Henschel, Richard D LeDuc, Nir Friedman & Aviv Regev

Affiliations | Contributions | Corresponding authors

Nature Protocols **8**, 1494–1512 (2013) | doi:10.1038/nprot.2013.084 Published online 11 July 2013

Abundance Estimation (Aka. Computing Expression Values)

Calculating expression of genes and transcripts

Slide courtesy of Cole Trapnell

Calculating expression of genes and transcripts

Slide courtesy of Cole Trapnell

Normalized Expression Values

 Transcript-mapped read counts are normalized for both length of the transcript and total depth of sequencing.

Reported as: Number of RNA-Seq Fragments
 Per Kilobase of transcript
 per total Million fragments mapped
 FPKM

RPKM (reads per kb per M) used with Single-end RNA-Seq reads FPKM used with Paired-end RNA-Seq reads.

Transcripts per Million (TPM)

$$TPM_{i} = \frac{FPKM_{i}}{\sum_{j} FPKM} *1e6$$

Preferred metric for measuring expression

- Better reflects transcript concentration in the sample.
- Nicely sums to 1 million

Linear relationship between TPM and FPKM values.

TPM

Both are valid metrics, but best to be consistent.

FPKM

Multiply-mapped Reads Confound Abundance Estimation

Blue = multiply-mapped reads Red, Yellow = uniquely-mapped reads

Multiply-mapped Reads Confound Abundance Estimation

Blue = multiply-mapped reads Red, Yellow = uniquely-mapped reads Use Expectation Maximization (EM) to find the most likely assignment of reads to transcripts.

Performed by:

- Cufflinks, String Tie (Tuxedo)
- RSEM, eXpress (genome-free)
- Kallisto, Salmon (alignment-free)

Fast Abundance Estimation Using Pseudo-alignments and Equivalence Classes (Kallisto software, Bray et al., NBT 2016)

Adapted from Fig 1 from Bray et al.

Comparing RNA-Seq Samples

Some Cross-sample Normalization May Be Required

Why cross-sample normalization is important

Cross-sample Normalization Required Otherwise, housekeeping genes look diff expressed due to sample composition differences Subset of genes highly expressed in liver

Figure 1 Normalization is required for RNA-seq data. Data from [6] comparing log ratios of **(a)** technical replicates and **(b)** liver versus kidney expression levels, after adjusting for the total number of reads in each sample. The green line shows the smoothed distribution of log-fold-changes of the housekeeping genes. **(c)** An M versus A plot comparing liver and kidney shows a clear offset from zero. Green points indicate 545 housekeeping genes, while the green line signifies the median log-ratio of the housekeeping genes. The red line shows the estimated TMM normalization factor. The smear of orange points highlights the genes that were observed in only one of the liver or kidney the overall bias in log-fold-changes.

Adapted from: Robinson and Oshlack, Genome Biology, 2010

Normalization methods for Illumina high-throughput RNA sequencing data analysis.

From "A comprehensive evaluation of normalization methods for Illumina high throughput RNA sequencing data analysis" Brief Bioinform. 2013 Nov;14(6):671-83 <u>http://www.ncbi.nlm.nih.gov/pubmed/22988256</u>

Differential Expression Analysis

Thx, Charlotte Soneson! 🙂

Differential Expression Analysis Involves

- Counting reads mapped to features
- Statistical significance testing

Beware of small counts leading to notable fold changes

	Sample_A	Sample_B	Fold_Change	Significant?
Gene A	1	2	2-fold	Νο
Gene B	100	200	2-fold	Yes

Variation Observed Between Technical Replicates

* plot from Brennecke, et al. Nature Methods, 2013

Observed RNA-Seq Counts Result from Random Sampling of the Population of Reads

Technical variation in RNA-Seq counts per feature is well modeled by the Poisson distribution

See: http://en.wikipedia.org/wiki/Poisson_distribution

Example: One gene*not* differentially expressed

Example: SampleA(gene) = SampleB(gene) = 4 reads

Sequencing Depth Matters

Poisson distributions for counts based on **2-fold** expression differences

No confidence in 2-fold difference. Likely observed by chance.

High confidence in 2-fold difference. Unlikely observed by chance.

From: <u>http://gkno2.tumblr.com/post/24629975632/thinking-about-rna-seq-experimental-design-for</u> and from supplementary text of Busby et al., Bioinformatics, 2013

Greater Depth = More Statistical Power

Example: Single gene, reads sampled at different sequencing depths

Reads per sample	Sample A Number of reads	Sample B Number of reads	P-value (Fishers Exact Test)
100,000	1	2	1
1,000,000	10	20	0.099
10,000,000	100	200	8.0e-09

Technical vs. Biological Replicates

RNA-Seq Technical replicates aren't essential

(Technical variation is well-modeled by the Poisson distribution)

"We find that the Illumina sequencing data are highly replicable, with relatively little technical variation, and thus, for many purposes, it may suffice **to sequence each mRNA sample only once**" Marioni et al., Genome Research, 2008

However, biological replicates *ARE* essential

total_variance = technical_variance + biological_variance

(Total variance well-modeled by negative binomial distribution)

"... **at least six biological replicates should be used**, rising to at least 12 when it is important to identify SDE genes for all fold changes." *Schurch et al., RNA, 2016*

DE Accuracy Improves with Higher Biological Replication

*Figure taken and adapted from Shurch et al., RNA, 2016

Planning Experiments: How many reads and how many replicates?

Input: max total reads, max total replicates, max total \$\$\$

Tools for DE analysis with RNA-Seq

ROTS
TSPM
DESeq2
EBSeq
NBPSeq
SAMseq
NoiSeq

(italicized not in R/Bioconductor but stand-alone)

See: http://www.biomedcentral.com/1471-2105/14/91

A comparison of methods for differential expression analysis of RNA-seq data Soneson & Delorenzi, 2013

Typical output from DE analysis

	logFC	logCPM	PValue	FDR
TRINITY DN876 c0 g1 i1	-7.15049572793027	10.6197708379285	0	0
TRINITY_DN6470_c0_g1_i1	-7.26777912190146	7.03987604865422	1.687485656951e-287	6.46813252309319e-284
TRINITY_DN5186_c0_g1_i1	-7.85623682454322	9.18570464327063	1.17049180235068e-278	2.99099671894011e-275
TRINITY_DN768_c0_g1_i1	7.72884741150304	9.7514619195169	4.32504881419265e-272	8.28895605240022e-269
TRINITY_DN70_c0_g1_i1	-12.7646078189688	7.86482982471445	3.92853491279431e-253	6.02322972829624e-250
TRINITY_DN1587_c0_g1_i1	-5.89392061881667	9.07366563894607	6.32919557933429e-243	8.08660221852944e-240
TRINITY_DN3236_c0_g1_i1	-7.27029815068473	8.02209568234202	3.64955175271959e-235	3.99678053376405e-232
TRINITY_DN4631_c0_g1_i1	-7.45310693639574	6.91664918183241	4.30540921272851e-229	4.1256583780971e-226
TRINITY_DN5082_c0_g5_i1	-5.33154406167545	10.6977538760467	2.74243356676259e-225	2.33594396920022e-222
TRINITY_DN1789_c0_g3_i1	10.2032564835076	7.32607652700285	1.44273728647186e-213	1.10600240380933e-210
TRINITY_DN4204_c0_g1_i1	4.81030233739325	9.88844409410644	9.27180216086162e-205	6.46160321501501e-202
TRINITY DN799 c0 g1 i1	-4.22044475626154	6.9937398638711	1.24746518421083e-197	7.96922341846683e-195
TRINITY DN196 c0 g2 i1	4.60597918494257	9.86878463857276	1.9819997623131e-192	1.16877001368402e-189
TRINITY_DN5041_c0_g1_i1	-4.27126549355785	9.70894399883	1.8930437900069e-185	1.03657669244235e-182
TRINITY_DN1619_c0_g1_i1	-4.47156415953777	9.22535948721718	1.76766063029526e-181	9.03392426122899e-179
TRINITY_DN899_c0_g1_i1	-4.90914328409143	7.93768691394594	1.11054513767547e-180	5.32089939088761e-178
TRINITY_DN324_c0_g2_i1	4.87160837667488	6.84850312231775	2.20092562166991e-179	9.92487989160089e-177
TRINITY_DN3241_c0_g1_i1	-4.77760618069256	7.94111259715689	1.60585457735621e-173	6.83915621667372e-171
TRINITY_DN4379_c0_g1_i1	3.85133572453294	7.23712813663389	3.48140532848425e-164	1.4046554341137e-161
TRINITY_DN1919_c0_g1_i1	4.05998814332136	6.95937301668582	1.8588621194715e-161	7.12501850393425e-159
TRINITY_DN2504_c0_g1_i1	-6.92417817059644	6.20370039359785	2.42022459856956e-160	8.83497227268296e-158
		-		-

Up vs. Down regulated

Avg. expression level

Visualization of DE results and Expression Profiling
Plotting Pairwise Differential Expression Data

Significantly differently expressed transcripts have FDR <= 0.001 (shown in red)

Comparing Multiple Samples

Heatmaps provide an effective tool for navigating differential expression across multiple samples.

Clustering can be performed across both axes: -cluster transcripts with similar expression patters.

-cluster samples according to similar expression values among transcripts.

Examining Patterns of Expression Across Samples

Can extract clusters of transcripts and examine them separately.

Functional Annotation of Transcripts

RNA-Seq
Trinity
Transcripts/Proteins
Functional Data
Discovery

Automated Higher Order Biological Analysis

http://trinotate.sf.net

Find Likely Coding Regions (using TransDecoder)

-		
-		
-		
-		

- Find all ORFs
- Score each ORF according to likely coding potential (Markov model)
- Report highest scoring ORFs

http://transdecoder.github.io

BLAST SwissProt

RecName: Full=Nucleosomal histone kinase 1; AltName: Full=Protein baellchen Sequence ID: gi|75009857|sp|Q7KRY6.1|NHK1_DROME Length: 599 Number of Matches: 1

Range 1	: 40 to	347 GenPept Graphics		Vext Match	🔺 🔺 Previous Match
Score		Expect Method	Identities	Positives	Gaps
99.9 bi	ts(228) 4e-20 Compositional matrix adjust.	87/321(27%)	114/321(35%)	41/321(12%)
Query	8	SNVVGVHYRVGKKIGEGSFGMLFQGVNL	INNQP	IALKFESRKS + + F B	EV 52
Sbjct	40	TDLAKGQWRIGPSIGVGGFGEIYAACKVGEKN	YDAVVKCEPHGN	GPLFVEMHFYLRNA	KL 99
Query	53	PQLRDEYLTYKLLMGLPGIPSVYYYGQE	GMYNLLVMDLLGI VM G	PSLEDLFDYCGRRF	SP 108
Sbjct	100	EDIK-QFMQKHGLKSL-GMPYILANGSVEVNG	EKHRFIVMPRYG	SDLTKFLEQNGKRL	PE 157
Query	109	KTVAMIAKQMITRIQSVHERHFIYRDIKPDNF TV A OM O H ++ D K N	LIGFPGSKTENV	IYAVDFGMAKQYRD Y VDFG+A ++	PK 168
Sbjct	158	GTVYRLAIQMLDVYQYMHSNGYVHADLKAANI	LLGLEKGGAAQA-	-YLVDFGLASHFV-	213
Query	169	THVHRPYNEHKSLSGTARYMSINTHLGREQSR T P + K GT Y S + HLG R	RDDLESMGHVFM	YFLRGSLPWQGL L LPW OL	KA 226 A
Sbjct	214	TGDFKP-DPKKMHNGTIEYTSRDAHLG-VPTR	RADLEILGYNLI	EWLGAELPWVTQKL	LA 271
Query	227	ATNK-QKYEKIGEKKQVTPLKEL-CEG	YPKEFLQYMIYA P +M V	RNLGYEEAPDYDYL	RS 279 RS
Sbjct	272	VPPKVQKAKEAFMDNIGESLKTLFPKG	VPPPIGDFMKYV	SKLTHNQEPDYDKC	RS 326
Query	280	LFDSLLLRINETDDGKYDWTL 300 F S L ++G D +			
Sbjct	327	WFSSALKQLKIPNNGDLDFKM 347			

BLASTX and BLASTP

Significant Pfam-A Matches

Show or hide all alignments.

Family	Description	Entry type	Clan	Envelope		Alignment		нмм		нмм	Bit	E-	Predicted	Show/hide
				Start	End	Start	End	From	То	length	score	value	sites	alignment
<u>Glyco hydro 63N</u>	Glycosyl hydrolase family 63 N- terminal <u></u>	Domain	n/a	41	261	41	258	1	225	228	202.9	6.7e- 60	n/a	Show
<u>Glyco hydro 63</u>	Glycosyl hydrolase family 63 C- terminal <u></u>	Domain	<u>CL0059</u>	297	806	298	806	2	491	491	622.6	4.4e- 187	n/a	Show

Comments or questions on the site? Send a mail to pfam-help@ebi.ac.uk. European Molecular Biology Laboratory

SignalP-4.0 euk predictior >Sequence

Signal Peptides via SignalP

SignalP-4.0 prediction (euk networks): Sequence

# Measu	ire P	osition	Value	Cutoff	signal peptide	de?
max.	С	20	0.724			
max.	Y	20	0.769			
max.	S	5	0.915			http://www.cbs.dtu.dk/services/SignalP/
mean	S	1-19	0.820			
	D	1-19	0.797	0.450 Y	(ES	
Name=Se	equenc	e SP='	YES' Cle	eavage site	e between pos. 3	19 and 20: VSA-MP D=0.797 D-cutoff=0.450 Networks=SignalP-noT

Trans-membrane Domains via TmHMM

Topology=i36-55059-81i93-1100125-147i174-1960206-228i241-2600280-302i309-3280338-360i373-3950448-467i

http://www.cbs.dtu.dk/services/TMHMM/

GoSeq for Functional Enrichment Testing

Trinotate Gene Ontology Assignments

METHOD OPEN ACCESS

Gene ontology analysis for RNA-seq: accounting for selection bias

Matthew D Young, Matthew J Wakefield, Gordon K Smyth and Alicia Oshlack 🔤

Genome Biology 2010 11:R14 DOI: 10.1186/gb-2010-11-2-r14 © Young et al.; licensee BioMed Central Ltd. 2010

Gene ontology functional enrichment

	(+) Differentially Expressed	(-) Not Differentially Expressed	Totals	
+ Gene Ontology	50	200	250	
- Gene Ontology	1950	17800	19750	
Totals	2000	18000	20000	

	drawn	not drawn	total
green marbles	k	K–k	К
red marbles	n – k	N + k - n - K	N – K
total	n	N – n	Ν

The probability of drawing exactly k green marbles can be calculated by the formula

$$P(X=k)=f(k;N,K,n)=rac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}.$$

Trinotate Web for Interactive Analysis

Blast Hits, Pfam Domains, etc. **TrinotateWeb Entry Point** Trinotate Web for Annotation and Expression Analysis Pote per pege: [Starting plan w.PREn [] of 55 Center expression values: __dverage __median __more Server Transcript Annotations (Gene: comp3142_c0, Transcript: comp3142_c0_seq2) Stats land, Insura/diffEran (PO.001, C3 -matrix Rell, State sharters, fixed, P., 2 Various summary stats go here Got 8694 genes and 9299 transcripts Searcl hs_rep1 Text search of transcript annotation: log_rep1 Pfam for m.2492 ds_rep1 PD1398.16 1AB1/Mov34/MPN/PAD-1 ubioutin on Still needed: search based on specific attribute: pfam, go, kegg, etc BLAST for m 2491 pression Comparisons (Volcano and MA pl plat_rep1 AMSH3 ARATHIPerID:40.321E:2e-49 Re Sp_ds Sp_hs Sp_log hsive Spinla GF30(STALP_HUMAN(PerID: 33.41)E:2e-48 log vs. Sp_plat SR558ISTALP_PONABIPerID:33.411E:5e-48 Re Multi-sample Comparisons (Expression Profiling) Go to the interactive heatmap for all DE transcripts. Analyses of clusters of expression profiles edgeR_trans/diffExpr.P0.001_C2_matrix_R_all_RData_dusters_fixed_P_20 with 55 clusters 0 7 24 caraciti42_cd_seail Very Early Release and nig villeart • Ma Mgniffcart • No • Tea Just Scratching the Surface pectate sequence Heatmaps Volcano Plots MA-Plots Individual Transcript

Clustered Expression Profiles

Transcript/Protein Annotation Report

Expression Profiles

Transcript and **Protein Sequences**

Deciphering the Cell Circuitry of Limb Regeneration Via Single Cell Transcriptome Studies

Axolotl (Ambystoma mexicanum) Transcriptomics

Axolotl "water monster", aka Mexican salamander or Mexican walking fish.

- Model for vertebrate studies of tissue regeneration
- Short generation time
- Can fully regenerate a severed limb in just weeks.
- Genome estimated at ~30 Gb (not yet sequenced)

Key morphological steps during limb regeneration

Jessica Whited, Mark Mannucci, Ari Haberberg

1. Building a reference Axolotl transcriptome

1.3 billion of 100 bp paired-end Illumina reads

limb tissues and select other tissues with biological replicates

Framework for De novo Transcriptome Assembly and Analysis

Axolotl Transcriptome De novo Assembly Statistics And Quality Assessment

In silico Normalization

Counts of Transcripts					
Trinity contigs (transcripts)	1,554,055				
Trinity components (genes)	1,388,798				

Min. length 200 bases

ExN50 looks good!

Percent of Non-normalized Fragments Mapping as Properly Paired to Transcriptome

Biological Replicates Cluster According to Sample

Pearson Correlation Matrix for Tissue Replicates

2. Identification of Tissue-enriched Expression

EdgeR, min 4-fold change, FDR <= 1e-3

Identification of Tissue-enriched Gene Expression

Most Highly Expressed Blastema-enriched Genes

Functional Characterization of Blastema-enriched KAZD1

In situ hybridization of kazald1 over course of regeneration

Work by Jessica Whited's group, Cell Reports, 2017

Viral-based Delivered Over-expression of KAZD1 Leads to Regeneration Defects

Work by Jessica Whited's group, Cell Reports, 2017

Summary of Key Points

- RNA-Seq is a versatile method for transcriptome analysis enabling quantification and novel transcript discovery.
- Expression quantification is based on sampling and counting reads derived from transcripts
- Fold changes based on few read counts lack statistical significance.
- Trinity assembly and supported downstream computational analysis tools facilitate transcriptome studies.
- The Trinity framework can empower transcriptome studies for organisms lacking reference genome sequences (ex. Axolotl)

Acknowledgements

Aviv Regev Brian Haas Timothy Tickle Asma Bankapur

Jill Mesirov James Robinson

BRIGHAM AND WOMEN'S HOSPITAL

Nathalie Pochet

Salamander limb regeneration

Jessica Whited Tia DiTommaso Tae Lee Anna Guzikowski Donald Bryant

Thomas Doak Carrie Ganote Robert Henschel Ben Fulton

Trinotate & TrinoateWeb

Brian Couger Leonardo Gonzalez

Informatics Technology for Cancer Research