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An Introduction to Metagenomics

Outline for Today:

® What is metagenomics?

® What methods, theoretical basis? morning
® Why is it useful? lecture
® Where is it headed?
® How can | use it?
wet lab procedures (dry workshop) afternoon +
evening labs

e computational protocols, practices




An Introduction to Metagenomics

Outline for morning lecture:

® Microbiomes and metagenomics

® What is a microbiome?

An Introduction to Metagenomics

“All of the visible organisms that we’re familiar
with, everything that springs to mind when we
think of ‘nature’, are latecomers to life’s story.

Biological They are part of the coda. For most of the tale,
e Why are they important? motivation microbes were the only living things on Earth.”
® Methods
— I Contain Multitudes: The Microbes within Us and a Grander View of Life
® Experimental methods Ed Yong 2016
. Methods
® Analysis theory
® Analysis tools, practices
Bacteria . .
Ancestry of Life All of animal evolution and development has

Hug, et al (2016) A new view
of the tree of life.

Nature Microbiology Eukaryota

Archaea Archaea

occurred in the presence of microbes.

* Germ-free mice:
* grow slower,
* live shorter,
* have dysfunctional Gl and immune systems
* are more susceptible to stress and infections
* 1965 Dubious, repeated many times since
* This observation generalizes to virtually all animals, at varying degrees
* Without microbes:
* Horrible maladies for most animals (esp. development, metabolism)
* Most animal species would become extinct within a year (estimate)
* There would be (almost) no oxygen in the atmosphere
* ocean microbes alone account for ~half of your O3
* We'd all quickly die of COz poisoning (and later global warming)
* Most elemental cycles are predominantly microbe-driven




What are microbes!? Cell structure

Nucleoid Membrane

Ribosome Wall

Plasmid

Organelle

Flagellum

What are microbes!?

Some key differences from eukaryota (e.g. humans, plants)

® Haploid genome

® Single circular chromosome, sometimes plasmids
® Genetic malleability, metabolic diversity

® Usually no nucleus (“prokaryotes”)

e Relatively easy interspecies gene transfer

What is a microbiome!?

The totality of microbes in a defined environment,
especially their genomes and interactions with each
other and surrounding environment.

® A population of a single species/strain is a culture,
extremely rare outside of lab, some infections

® A microbiome is a mixed population of different
microbial species (microbial ecosystem)

A mixed community is the norm!

Why study microbiomes!?

Environmental Science
- Critical elemental cycles (carbon, nitrogen, sulfur, iron, ...)
- Pollution control, cleanup
- Ecology / Evolution (chloroplasts, mitochondria, symbiosis, competition, ...)




Why study microbiomes?

Industrial Applications
- Wastewater treatment (V. cholera, algal blooms, etc.)
- Bioprospecting (novel enzymes, compounds)
- Novel biosynthesis

- Fermentations: Consortia (yogurt) / wild (kombucha, Belgian ales)
e —— —

Why study microbiomes?
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Human Health
- Protection from pathogens (e.g. Clostridium difficile)
- Cancer
- Absorption/Production of nutrients in the gut (obesity, T2D)
- Development/regulation of immune system, e.g. chronic diseases
(T1D, RA, IBD, other autoimmune, UTls, periodontitis, ...)
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Some provocative oversimplifications. ..

Microbes can...

|. “Kill you by acute infection”
“Prevent same infection”
“Make you fat(ter)”

“Give you a heart attack”
“Give you cancer”

o kWD

“Rescue you from cancer”

Can you guess the condition / scenario?




Healthy colon
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Nature Rev Gastroenterology &
Hepatology

Development of CDI

= Severe diarrhea, abdominal pain, nausea and fever
= C. difficile toxins induce inflammaticn and cell death
= CDI can cause pseudomembranous colitis

Microbes can make you fat(ter)...

® Lean (n = 10) & obese donors (n=9)

® Colonization of germ-free wild-type
mice with microbiota from obese
donors causes significant increase in
total body fat

® Total body fat content was measured
before and after a 2-week colonization

® Confirm that the ob/ob microbiome has
an increased capacity for dietary energy
harvest

Turnbaugh, et al. (2006). An obesity-associated gut microbiome ..
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* Gut flora required for production of TMAO

* Supplementing diet with choline or TMAO promotes atherosclerosis (mouse)
* Gut flora suppression (Abx) inhibits dietary choline enhanced atherosclerosis
TMAQO is also a renal (kidney) toxin. Fogelman,A. M. (2015). Circulation Research.

ZN Wang, ..., Stanley Hazen. Nature 472, 57-63 (2011)
Fogelman, A. M. (2015). TMAO Is Both a Biomarker and a Renal Toxin. Circulation Research.

19

Colorectal Cancer (CRC)

* Microbes affect colonic bile pool
exposure, drug metabolism, and
mortality-correlated compounds

* Microbe-produced secondary
bile acids are among these.

* Gut microbial metabolism may
play role in beneficial or
detrimental effects of certain
foods

Sears, C. L., & Garrett,W.S. (2014). Microbes,
Microbiota, and Colon Cancer.
Cell Host & Microbe, 15(3),317-328.

Phase I-Il
drug metabolism

Cholesterol

-Glycine
~Taurine

Enterohepatic
bile
circulation

Jejunum
1 \

e
~4+Colon
Xenobiotics metabolism

Factors influenced by the microbiota
and their CRC risk effects

CRC Bile Acid
A Lithocolic acid
A Deoxycholic acid
Y Ursodeoxycholic acid

CRC Dietary components
A Red and Processed meat
A Saturated Fats
Y Polyphenols




Groundwater: Chlorinated Solvents

Dehalococcoides
Electron donors " 5
Mixed complex . .
organic materials
Hydrt|>0ysls

Organic monomers

Fermentation

Alcohols and acids

/ \
Acetate and hydrogen formation

Acetate H,
Electron acceptors  Qxidation Oxidation End products
Sulfate Sulfide 4
Iron (I11) Iron (11}
Carbon Meth
dioxide

PCE —> TCE —>csDCE—> VC ——> Ethene

McCarty, P. L. (1997). Breathing with chlorinated solvents. Science

21

Bonus microbiome show-and-tell
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Marine Picoplanl(ton most abundant organism on Earth?

= Prochlorococcus appears to be the most abundant organism on the planet
= Huge light harvesting proteins

= its density can reach up to 100 million cells per liter

- it can be found down to a depth of 150 m in all of the intertropical belt

= picoplankton synchronize cell division at the same time every day —> biological clock

OLIPAC cruise
Pacific Ocean 1994 Oligotrophic 16°S
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Vertical distribution of the photosynthetic picoplankton populations
determined by flow cytometry in the tropical Pacific (OLIPAC cruise, 1994).
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Yellowstone National Park

Octopus Spring
@ 90° to 93°C
@ extremely low in nutrients
@ contains abundant biomass
® home to “oldest” known bacteria

Obsidian Pool

e 75°-95°C
o high iron (Il) hydrogen sulfide
o extensive diversity (previously unknown)

Ward, D. M., Weller, R., & Bateson, M. M. (1990). Nature, 345(6270), 63-65.
Barns, S. M., Fundyga, R. E., Jeffries, M.WV,, & Pace, N. R. (1994). PNAS 91(5), 1609-1613.
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Symbiosis: sea-floor vent tube worm
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Symbiosis: sea-floor vent tube worm

Host Blood

40 T
pH~<6
Oxygen and sulfur
both present

Mixed Water = ideal
for Tube Worm and
symbiont bacteria

Vent Fluid

300-400 T

Sedimentation

Tube worm

—

I
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ﬁ Hydrothermal Fluid F\

2 2- 2-

s S S

Basalt (sulfur-containing rock)

Cavanaugh, C. M. (1983). Nature, 302(5903), 58-61.
Cavanaugh, C. M, et al. (1981). Science. 213(4505), 340-342
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Example of “model” microbiome: acid mine biofilm

Tyson, et al. (2004) Nature, 428(6978), 37-43
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acid mine biofilm

Eukaryotes 4% Sulfobacillus spp. 1%
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Tyson, et al. (2004) Nature, 428(6978), 37—-43
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Nature, 428
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acid mine biofilm

Fe(l)

Fe(ll)

Fell) ——7
soluble o

Arsenic
methylation

End: Biological Motivation

Questions before moving on!?
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Metagenomics Experimental Methods
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Exercise: How many species are present?

=4 : AR AL At Wi RIS 2L L b A
Confer amongst yourselves.We’'ll take a poll.
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Discovery of Culture Independent Techniques

The great “plate count” anomaly

B

® This is because microbiologists are able to . | p
cultivate only a small minority of naturally % Sample erganisms from environment. \3

occurring microbes N / \ /0/
. ./

® Cultivation-based cell counts are orders of
magnitude lower than direct microscopic
observation.

® Our nucleic-acid derived understanding of
microbial diversity has rapidly outpaced our
ability to culture new microbes

Staley, J.T., & Konopka, A. (1985). Measurement of in situ activities of nonphotosynthetic microorganisms in
aquatic and terrestrial habitats. Annual Review of Microbiology, 39, 321-346.
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Discovery of Culture Independent Techniques

Why is microbiome research new?

Considering that...

e We have a bacterial endosymbiont in all our cells!
e Humans have always coexisted with bacteria
e We've known about bacteria for a few hundred years

« Historically prokaryotic biology has been focused on microbes that
can be grown to large quantities/densities in the lab, especially
pathogens; or can be distinguished under the microscope.

« An example of “searching where the light is”...
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Discovery of Culture Independent Techniques
Why is microbiome research new?

Bias for cultivable microbes, especially pathogens

® Culture-based methods fail to detect most microbes
® Microbes are easy to miss (except pathogens)

® Most microbes are NOT pathogens (even the human-associated)

Availability of tools limited to last 3 decades

® Discovery of culture-independent techniques

® PCR, fast & cheap DNA sequencing, microarrays, etc

35

Discovery of Culture Independent Techniques
® [977 rRNA as evolutionary marker - Woese & Fox PNAS

® |985 Polymerase Chain Reaction (PCR) - K. Mullis Science

® |985 “Universal” Primers for rRNA sequencing - N. Pace PNAS

® 1989 PCR amplification of 165 rRNA gene - Bottger FEMS Microbiol.
® [996 Large, curated rRNA database (RDP) - Maidak Nuc.Acids Res

® |998 metagenome genomics of communities coined by Jo Handelsman

® 2001 microbiome coined by Joshua Lederberg

36




Discovery of Culture Independent Techniques

Woesewas originally scorned atithe discovery of archaea
via rRNA gene (dis)similarity.

History of modern metagenomics/microbiome research is
deeply tied to modern molecularecology
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Discovery of Culture Independent Techniques

Small subunit *16S” rRNA ribosome

O Growing peptide chain

i& ).
Outgoing
bmpty (RNA \_ ¢, ©)
w
JUA

Peptide Synthesis

Incoming tRNA

9
WA\ bound to Amino Aci

ribosome
eddACtioN

38

MessengerRNA

Discovery of Culture Independent Techniques

ribosome

® rRNA has both catalytic and
structural function.

® The small and large subunits have
different lengths, 2nd-structure, 3D
shape; but must work together.

® All of the catalytic activity of the
ribosome is carried out by the RNA;
the proteins reside on the surface
and seem to stabilize the structure.

O Growing peptide chain

i& ).
Outgoing
bmpty (RNA \_ ¢, ©)
w
JUA

Peptide Synthesis

Incoming tRNA

9
(WA bound to Amino Aci

MessengerRNA
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Discovery of Culture Independent Techniques

Small subunit “16S” rRNA

® Ubiquitous - present in all
known life (viruses don’t count)

® Functionally constant
translation, 2°-structure

® Evolves slowly - mutations
more rare than for protein-
coding genes

® |arge - information for
evolutionary inference

® No exchange - Limited
examples of rRNA gene-sharing
between organisms

® Feasibility - The right size for
available sequencing technology
(e.g. Sanger)

Escherichia coli
sm. bosomal RNA

40




Discovery of Culture Independent Techniques

16S rRNA phylogeny, Known Bacteria genome phylogeny

1987 2016

Bacteria, 1997 . 5 i df'& Bacteria | .
sgfﬁ i fif 7/ \\\“’r / /«;
. N ¥ /-
o \‘\-i:\\\ —é
— SE—— : //7 \%‘
- - / Z /// ¢
Archaea Rarteria 1087 Krehaea™ e, °@’ \\\
Eukarya Eukarya -]

|
:,‘:- \ \\O\\Wx
N\,

Archaea

Pace, N. R. (1997). A molecular view of microbial diversity
and the biosphere. Science, 276(5313), 734-740.

41

A summary of metagenomics technique

: ".,.," Lyse all cells

Extract Total DNA (and/or RNA)

- V.
#358

: : ©”
Amplicon Sequencing:
PCR amplify a single marker
gene, e.g. 16S rRNA

Shotgun Sequencing:
Direct sequencing of (fragments
of) total DNA/RNA

® Q
B

Q DNA
sequencer Relative abundances,

Genomes,
Genes,
Amplicon Metabolic profiling,
analysis Genomic structure,

Genetic variants...

Slide adapted from Curtis Huttenhower, not necessarily with permission O:-)
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A summary of metagenomics technique
o ‘9%0;

Who'’'s there?

(Taxonomic profiling)

What are they doing?

(Functional profiling)

What does it all mean?

(Statistical analysis)

Slide adapted from Curtis Huttenhower, not necessarily with permission O:-)
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Amplicon sequencing

A summary of metagenomics technique

5; N A Environmental samples
Single microbiome: ‘, ew_”N_l R
N I\\.\Q'
‘? \ = ;:/f
| ) X5 & IA axtrac
I.  Break all cells, extract all DNA (gDNA) Iz R ‘ DR exdraction
S N
2. PCR-amplify a universal gene from gDNA
G ATy X Genomic DNA
P
3. DNA sequencing from pool of amplified genes P ’ %) .
l! ’;' ! ‘){"'} % PCR and sequencing
H : ’) P' L ) ;’
4. Cluster sequences according to species S N’
5. Count each species and make a tree 16S rRNA sequencing

TTTGTARA-TCTTCAGATAA. . .
TTTGTCAA( (G

Sequence comparison

J Bacteria .
-/_‘ — Phylogenetic trees

Tringe, S. G., & Rubin, E. M. (2005). Metagenomics: DNA sequencing of
environmental samples. Nature Reviews Genetics, 6(11), 805-814.
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A summary of metagenomics technique

Amplicon sequencing -
Vil

Many microbiomes in parallel:

DNA extraction

I. Break all cells, extract all DNA (gDNA)

2. PCR-amplify a universal gene from gDNA

pATTy Genomic DNA

using bar-coded primers, diff code for each sample | h
3. DNA sequencing from pool of amplified genes O !
. o SN LA bar{coded
4a.“De-multiplex” barcode, ID source sample Tu e A PCR and sequencing
| . et V)
4. Cluster sequences according to species . “us
5. Count each species and make a tree 16S rRNA sequencing

TTTGTAAA-TCTTCAGATAA. . .
TTTGTCAAC TGGTGAA. . .
TTTGTCAAGTCTTTGGTGAA. . .

\ V Sequence comparison

A

JA_Bacteria LI =
““Archaica Phylogenetic trees

45

A Sample from microbial community
“Known” Unknown species can dominate
Actual o [species microbial communities (Nayfach
relative Do etal., 2016) and are not detected
abundance e by reference-based methods
= =) Y
“Sh t ” - DNA from the host (Ames et al.
otgun — 3
g NG ¥ . 2015) or laboratory environment
—— - - ‘Unki
. . — b < S (Salter et al., 2014) can contami-
Sequencmg Rare species nate a biological sample
‘ DNA extraction
B o ST T e
/__i_\ @ O L taxa (Kennedy et al., 2014)
D) m N © (e} Dividing bacterial genomes have
population higher and less even genomic
O O ©) (@] O coverage (Korem et al., 2015)
Non-dividi C) ‘ DNA fragmentation
bacterial
C | populatio Extracted DNA is fragmented
= — at breakpoints that preferentially
— — occur at certain di-nucleotides
(Poptsova et al., 2014)
‘ Prepare library and sequence
D Library preparation protocol
Balisdenclzedtencin 9 affects estimated community
e— = g = T — composition (Jones et al., 2015)
= —_— — — —_
— — — i Sequencing technologies have
e
— different read lengths and error
rates (Quail et al., 2012)
‘ Quality control
E Duplicate reads eliminated
Read-tails trimmed
f— — o f— Low-quality reads filtered
DNA contamination removed
7 Ref b d Met: i
" eference-base! letagenomic "
Estimated g " Estimated
Na)/fachY S., & Pollard, K. S. S classification assembly S
. abundance Unknown taxa may Rare taxa may abundance
(20 I 6) Perspect[ve. Cel Iv —_— not be detected not be detected —
166(5), 11031116 — —
— == e —
, .
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A summary of metagenomics technique

Why not just always sequence entire (meta)genomes!?

(As Bill described in motivation for RADSeq):
« still prohibitively expensive
« for many biological questions a full sequence isn’t needed

« For low-abundance microbes, amplicon sequencing might
be the only feasible option

« This is a different kind of “Reduced representation sequencing”

« Use restrietion-enzyme-digestion PCR amplification to focus sequencing of

multiple samples on [one] homologous regions across the genomes

« Cost is a fraction of the cost of re-sequencing the metagenomes
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A summary of metagenomics technique

Culture Independent Techniques:
Number of

Metagenomics Species Counted
e Universal Gene census e

® Shotgun Metagenome Sequencing
® Transcriptomics (shotgun mRNA)
® Proteomics (protein fragments)

® Metabolomics (excreted chemicals)

48




A summary of metagenomics technique

Piles of short DNA/RNA reads from >1 organism

You can...

— Ecologically profile them

— Taxonomically or phylogenetically profile them

— Functionally profile them — gene/pathway catalogs
— Comparative/structural genomics

Prior knowledge is helpful

Caution: Correlation # Causation
* Most ‘omics results require lab confirmation

Slide adapted from Curtis Huttenhower, not necessarily with permission O:-)
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Where things are headed:“Culturomics”

“Bacterial culture was the first method used to describe the human microbiota
[after the microscope], but this method is considered outdated by many researchers
.. however, a ‘dark matter’ of prokaryotes, which corresponds to a hole in our
knowledge and includes minority bacterial populations, is not elucidated by
[metagenomic] studies...”

Lagier, J.-C., et al (2015). The Rebirth of Culture in Microbiology... Culturomics...

Clinical Microbiology Reviews, 28(1), 237-264.

S No selection

‘b LA R

Selection -
Fresh microbiota > -
sample NN
Targeted e -
phenotype NN~
a. Culture b. Re-streak c. Archive d. Phenotype
Grow distinct colonies Isolate, purify & Culture collection In vivo & in vitro
identify Whole genome sequence characterization

Browne, H. P, et al. (2016). Culturing of “unculturable” human microbiota... Nature, 533(7604), 543-546.
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Where things are headed:“Culturomics”

Present work

1476 1480 1525  Total number
g m

1304 1400 430

New species
(NS)

First isolation in
human (NH)

690

Sequencing 1 |
I

"
.cteetA.. || 2@
GTGGTA..

|. ATTGCA.. ||@||

CTGGC,

—_—— J [ I':____I

Ma, L., et al. (2014). Gene-targeted microfluidic Lagier, J.-C., et al. (2016). Culture of previously
cultivation... PNAS, I 11(27),9768-9773. uncultured... Nature Microbiology, 1(12), 1-8

51

An Introduction to Metagenomics

Outline for morning lecture:

® Microbiomes and metagenomics

® What is a microbiome?

Biological
® Why are they important? motivation
® Methods
® Experimental methods
Methods

® Analysis theory

® Analysis tools, practices

52




End Metagenomics
Lecture |

Questions!
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Introduction to Microbiome /
Metagenome Analysis Concepts

Gastrointestinal

PC1 (13%)
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eSequence Processing (OTUs)
*Denoising
eChimera detection
eConstruction of sequence clusters (OTUs)
eComparing microbiomes
eDistances, Diversity
sExploratory Data Analysis
*QOrdination Methods
ehierarchical dendrogram
sextract patterns from a plot
sclusters - gap statistic
egradient - regression, modeling, etc.
¢ Identifying important microbes/taxa
eprojected points, coinertia (plots)
einferential testing
emodeling
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eSequence Processing (OTUs)
*Denoising
eChimera detection
eConstruction of sequence clusters (OTUs)
eComparing microbiomes
eDistances, Diversity
sExploratory Data Analysis
*QOrdination Methods
ehierarchical dendrogram
sextract patterns from a plot
sclusters - gap statistic
egradient - regression, modeling, etc.
¢ Identifying important microbes/taxa
eprojected points, coinertia (plots)
einferential testing
emodeling
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Amplicon sequencing (esp. 16S rRNA gene) remains the first
and most-common culture-independent method applied to
new microbiome samples. ($, time)

Some pervasive misunderstandings in the field:

(1) Sequences must be processed through an ad hoc
clustering procedure, generating “OTUs”, and

(2) Resolution <3% sequence similarity not reliable, nor
perhaps even useful

These presumptions are untrue.

There is enough information from current Illumina platforms to
support de novo single-nucleotide resolution in practice.
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Motivation: Lingering problems with “OTU”

imagine sequencing reads
streaming from a single true
sequence...

:“
g,
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Motivation: Lingering problems with “OTU”

The deeper you
sequence, the more
you expect to find
reads outside the
— radius by chance.

r=3%
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Motivation: Lingering problems with “OTU”

+ False Positives - e.g. 1000s of OTUs when only 10s of sequences present

» Consequently, richness appears to depend on library size
» Microbiome distances that appear to depend on library size

« Poor Seqg/Taxonomic Resolution - defined by arbitrary similarity radius

» Accuracy - Abundance estimates biased and noisier than necessary.

+ Cost - Poor data efficiency ~ larger costs to achieve same inference.

* Cost - Computational scaling is quadratic (~N2). Becomes costly or intractable as datasets

get larger, or more numerous (meta analysis)

+ Unstable - OTU sequence and count depend on input

» must re-run clustering if any data added/removed, or
« if you want to compare against an external dataset

+ Recent open-source methods seem to focus on speed, are analytically worse than UPARSE

(a 2012 OTU method)...

« OTU results appear to plateau/degrade with larger library

- DADAZ2 improves with more data

"if getting the wrong answer as quickly as possible is important... then there
are a number of options..."
—Jon Bentley (as conveyed by R. Gentleman, BioC 2016)
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False-positive performance as measured in a microbial
community of known composition (“mock community”)

False-positive performance as measured in a microbial
community of known composition (“mock community”)

Kopylova, et al (2016). mSystems Kopylova, et al (2016). mSystems
4000 4 Open-source sequence clustering methods improve the state of 4000 Open-source sequence clustering methods improve the state of
the art. the art.
3000 3000
n n
=) =)
o o
g 2000 + - 2000
1000 1 1000 1
Correct Correct
Q- — C— - - - -——-——*answer Q- — C— - - - -——-——*answer
DADA2  mothur SUMAClust  Swarm uclust  UPARSE DADA2  mothur SUMAClust  Swarm uclust  UPARSE
Method Method
http://benjjneb.github.io/dada2/R/SotA.html http://benjjneb.github.io/dada2/R/SotA.html
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Anecdotal example of mitigated dependence of . _ .
observed richness on sequencing effort Example: vaginal microbiome
Observed Features v. Library Size
- * Subject-discriminating strain-level resolution of Lactobacillus crispatus
© 2000 » Repeated samples from vaginal microbiome of 42 pregnant women
Q
[%2]
S OTU Method DADA2
2 1500- 1091 | |
2 Strain
S Method 0.75- . s
= >
o) DADA2 3 . L2
=~ S oTu
@ 1000 - SFOTIPARSE 9]
£ 2907 M oru 1 = w3
2 g L4
@ 0.25- . L
g 500 - | e
€ 0.00- - WL - el
> T T T T T T T T T T
z Sample Sample

200 400 600
Library Size (thousands seq reads)
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Data: Maclntyre et al. Scientific Reports, 2015.

64




How does this work?

65

DADA?2 algorithm cartoon

Initial guess: one real sequence + errors
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DADA?2 algorithm cartoon

DADA?2 algorithm cartoon

>

Infer initial error model under this assumption.

A c G T

A | 097 102 102 102

Pl‘(i N _] ) = c | 102 0.97 102 102
G 102 102 0.97 102

T 102 102 102 0.97
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) O

Reject unlikely error under model. Recruit errors.

not an error

A C G T

A 0.97 102 102 102
C | 102 0.97 102 102
G| 102 102 0.97 102
T 102 102 102 0.97
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DADA?2 algorithm cartoon

5

Update the model.

A C G T
A 997 10- 103 103
C 10 0.997 102 102
G 105 10. 0.997 10
T 103 10. 103 0.997
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DADA?2 algorithm cartoon

not an error
\ ° /

Reject more sequences under new model

not an error

A C G T

A D997 105 10 10

C 103 0.997 10 10

G 103 10. 0.997 10

T 103 10. 103 0.997
70

DADA?2 algorithm cartoon

Update model again

A c G T

>

998 1x10k  2x105 2x1j0-+

a

4x10s 0999 3x104 1x103

Q

X105 3x10f 0.999 6x10s

-

Px104 2x1Q3  1x104 0998

7

DADA?2 algorithm cartoon

Convergence: all errors are plausible

A c G T
A 0998 1x10k  2x105 2x1j0+
C dx10s 0999 3x104 1x1s

Q

X105 3x10f 0.999 6x10s

-

Px104 2x1Q3  1x104 0998
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Luon

fi T s e
Biga e s e
e T S
S5 e Thm fen

0 10 20 3 40 0 10 20 30 40 0 10 20 30 40 O 10 20 30 40
Consensus quality score

-&wN—AO

Error frequency (log10)

Luon

#wNAO

« selfConsist mode for DADA2 includes joint inference of error rates as function of quality score.
+ red line is expected error rate if Q-scores were exactly correct

« black line is DADA2’s empirical model (smooth)

* Notice especially underestimates of errors at high values, Q >30

* For illumina these differences are specific to sequencing run and read direction

« for small lib sizes, can aggregate estimate across libraries from the same run/direction
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This sounds complicated.
Isn’t it really expensive and
time-consuming to compute?
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This sounds complicated.
Isn’t it really expensive and
time-consuming to compute?

No.

Unlike OTU methods, DADA2 can work on each sequence
library independently. The outputs are sequences
themselves, which are intrinsically comparable. This has
important bonus for computation: embarrassingly parallel

“Horizontal Scaling”, each sample in parallel

e Much faster for large projects

e (Can use cheap commodity hardware (e.g. your laptop),
rather than expensive, high-memory clusters

¢ Robust: results don’'t change with new data

e Bad data or failure from one sample can'’t affect others
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Compute performance, as the required
number of sequence alignments

One Sample One Study
1es114 Hierarchical i Hierarchical
1e+16 1
§1e+08- DA 2 %
E’ E:nens- Greedy
< <
ror05 Greedy /
) 1e+10+ / DADA2

1e+03  1es0s 100 7 10000
Number of Reads Number of Samples
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computational Ferrormance - each point Is a sample

100+
100+

Time Time
(min) (min)
Dataset-1 Dataset-2

Raw File Size (Mb)
Unique Segs (thousands)

; ! 10 100
10 100

Peak Peak
Memory Memory
o-(Mb) (Mb)
o Unique Segs (thousands) Raw File Size (Mb)

0 L. 50 . . 100 150 » P P

7

Applications

* Any amplicon target... not just 16S rRNA or even microbiome

¢Detection of low-abundance microbes

eStrains that are unique to an individual host

eStrains that are associated with a particular patient outcome

eImproved shotgun metagenomic inference (e.g. PICRUST, etc.)
*Mitigate ambiguity of representative genome to use

¢Detecting pathogens (special cases)

*Bridging gap to world where shotgun is cheap enough
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DADA>

Divisive Amplicon Denoising Algorithm - ver.2

NATURE METHODS | BRIEF COMMUNICATION July 2016

DADAZ2: High-resolution sample inference from lllumina
amplicon data

Benjamin J Callahan'", Paul J McMurdie?, Michael J Rosen®, Andrew W Han?,
Amy Jo Johnson? and Susan P Holmes!

Department of Statistics, Stanford University
2Second Genome, South San Francisco, CA
3Department of Applied Physics, Stanford University
*Corresponding Author: benjamin.j.callahan@gmail.com

http://benjjneb.github.io/dada2/ R package available on BioConductor

DADA:Rosen M|, Callahan BJ, Fisher DS, Holmes SP
(2012) Denoising PCR-amplified metagenome data. BMC bioinformatics, 13(1), 283.

79

Diversity

(That is, we are now switching to an overview of methods
related to the formal analysis of ecological diversity)
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Diversity of diversity
(diversity of greek letters used in ecology)

* a — diversity within a community, # of species
* B — diversity between communities (differentiation),
species identity is taken into account

* Yy — (global) diversity of the site, y = a x 3, but only this
simple if a and B are independent

* Probably others, but a and B are most common

81

Beta-Diversity

Peer-reviewed articles having “beta diversity” in title
307

251

No. of papers
g 8

-
o
|

70.70.70.70.70 7070 7070 0. 70 0. 70 70 .0, S <P, ), <
9579579579579 784 780 “80 780 "0 "o "0, 90 79050 S0 S0 S0, S0
G A A A N NN

Anderson, M. J., et al. (2011). Navigating the multiple meanings of 3 diversity: a roadmap for the
practicing ecologist. Ecology Letters, 14(1), 19-28.
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Beta-Diversity

» Microbial ecologists typically use beta diversity as a broad umbrella
term that can refer to any of several indices related to compositional
differences (Differences in species content between samples)

» For some reason this is contentious, and there appears to be
ongoing (and pointless?) argument over the possible definitions

» For our purposes, and microbiome research, when you hear “beta-
diversity”, you can probably think:

Diversity of species composition
or

Analysis comparing whole microbiomes to one another

http://en.wikipedia.org/wiki/Beta_diversity

83

Distances between microbiomes
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Community Distance

Communities are a vector of abundances:

X ={X1, X2, X3, ...}

E.coli.eee
P fluorescens: ®
B. subtilis: ®
P acnes:
D. radiodurans:
H. pylori: eeeeeee
L. crispatus:

x ={3,1,1,0,0,7,0}

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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Community Distance Properties

- Range from 0 to 1

- Distance to self is 0

- If no shared taxa, distance is 1

- Triangle inequality (metric)

- Joint absences do not affect distance (biology)

- Independent of absolute counts (metagenomics)

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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The Distance Spectrum

Categorical Phylogenetic

Presence/ Jaccard Unifrac
Absence
Quantitative : Weighted
Abundance Bray-Curtis Unifrac

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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Jaccard

Dist(A, B) = 1- (A n B)/(A U B)
= ((xa>0) & (x>0))/((xa>0) | (x8>0))

Intuition: Fraction of shared types unique to
one of the communities

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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Bray-Curtis Unifrac

- ——

_ IXi - yi — Distx, V) = e
Dist(x, ¥) = S = = —

D=1 D=~05

Tr
| | |
X1 X2 X3 X4 Xs X6

Intuition: City block distance. Sum of Intuition: Fraction of shared tree unique to
absolute differences over total abundance. one of the communities
Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-) Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-) Lozupone and Knight (2008)

Weighted Unifrac .

Weighted UniFrac
branchlengths weighted by difference in red and blue
HEEN | L1 1]
(] [
| 1] | 1|
(] o
= | = | |
e o —~ —~ —~ |
H meeo amee ® (] e o [ 3 o ®
o 8 : B S
o ] ®
® ° [ ([ ] [
® ® ® ® ( ® [
[ o [
: : :
e .
Intuition: The cost of turning one distribution into the Jaccard: Jaccard: Jaccard:
other; where the cost is the amount of “dirt” moved Bray: Bray: Bray:
times the distance by which it is moved. Unifrac: Unifrac: Unifrac:
W-Unifrac: W-Unifrac: W-Unifrac:
Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-) Lozupone et al. (2007) Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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; r
° ° e o ° ° )
® ° °
° ° ®
° ° °
° ° ) ° °
o ® ®
: : :
([ ] )
Jaccard: d=0 Jaccard: Distant Jaccard: Distant
Bray: Bray: Bray:
Unifrac: Unifrac: Unifrac:
W-Unifrac: W-Unifrac: W-Unifrac:

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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; ;
° ° e o ° ° )
o ° °
° ° ®
o ° °
° ° ) ° °
o °® ®
: : :
® )
Jaccard: d=0 Jaccard: Distant Jaccard: Distant
Bray: Distant Bray: Similar Bray: Distant
Unifrac: Unifrac: Unifrac:
W-Unifrac: W-Unifrac: W-Unifrac:

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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; ;
° ° e o ° ° )
o ° °
° ° ®
o ° °
° ° ) [ °
o ® °®
H . °
® )
Jaccard: d=0 Jaccard: Distant Jaccard: Distant
Bray: Distant Bray: Similar Bray: Distant
Unifrac: d=0 Unifrac: Similar Unifrac: Distant
W-Unifrac: W-Unifrac: W-Unifrac:

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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; ;
° ° e o ° ° )
o ° °
° ° ®
o ° °
° ° ) [ °
o ® ®
: : :
([ ] )
Jaccard: d=0 Jaccard: Distant Jaccard: Distant
Bray: Distant Bray: Similar Bray: Distant
Unifrac: d=0 Unifrac: Similar Unifrac: Distant

W-Unifrac: Distant W-Unifrac: Similar W-Unifrac: Similar

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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Presence/
Absence

Quantitative
Abundance

The Distance Spectrum

phyloseq distances
manhattan

euclidean

canberra

bray

kulczynski

jaccard

gower

altGower

morisita-horn

mountford

) raup

Weighted binomial
Unifrac chao

cao

jensen-shannon

unifrac

weighted-unifrac

Categorical Phylogenetic

Jaccard Unifrac

Bray-Curtis

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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What do we do with distances between
microbiome samples?

For starters: Plot / exploratory analysis
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N samples

Ordination Methods

Project high-dimensional data onto lower dimensions

P taxa

0,1,51,0,1,2,1,0,0,9,...
7,2,0,0,0,0,0,0,1,0,0,...
0,0,0,0,0,0,8,0,0,0,1,...
0,0,0,1,0,1,2,0,0,0,5,...
0,1,0,2,0,0,0,1,0,0,4,...
0,0,0,1,9,1,2,5,2,0,1,...
0,0,0,0,0,1,2,1,8,0,0,... 0.4

0,0,0,0,9,4,0,0,0,0,1,... 02 0.0 0.2

Axis.1 [39.5%]

e
o

diet
BK
Western

—>

Axis.2 [14.4%]
S
N

P-dimensions 2-dimensions

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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Ordination Methods
Intuition:

Each PC axis is projectioh that maximizes the area of the shadow
Equivalently - max(sum of square of distances between points)
Goal: “See” as much variation as possible

; «ta

Slide graciously provided by Susan Holmes, not necessarily with permission O:-)
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Multi-dimensional Scaling

Why MDS? It works with any distance!
Two
Many dimensions
dimensions

Input distance matrix can by Bray-Curtis, Unifrac, ...

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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MDS Details

Given distances between each observation (sample), MDS finds the
closest approximation of that in lower dimensional Euclidean space.

 Algorithm starts from D inter-point distances:
- Center the rows and columns of the distance matrix:
S=-1/2HD@H
- Compute SVD by diagonalizing S: S = U A UT
Extract Euclidean representations: X = U A2
* The relative values of diagonal elements of A gives the
proportion of variability explained by each of the axes.
* The valued of A should always be looked at in deciding how
many dimensions to retain

NMDS is similar, but minimizes a different function
(difference in distance ranks)

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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MDS Scree Plot

These values are the relative quantity of
variability represented in each new dimension

< —

Lambda
2
|

1 3 5 7 9 11

MDS Dimension

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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Exploratory Data Analysis

“Unsupervised Learning”

“Ordination I\/Iethods”/

DATA

(variances)

Looking for patterns (the “I-test”) hang

Always look at scree plot of

Biplot (if legible) Data @
Use multiple distances

(means)

Best Practices

* For which D is pattern strongest?
» phyloseq (and R/Rmd) make this easy!

Choice !
Slide graciously provided by Susan Holmes, not necessarily with permission O:-)
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Exploratory Data Analysis

“Unsupervised Learning”
“Ordination Methods”

What we “learn” depends on the data.

+ How many axes are probably useful?

« Are there clusters? How many?

+ Are there gradients?

* Are the patterns consistent with covariates
* (e.g. sample observations)

* How might we test this?
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Exploratory Data Analysis

“Unsupervised Learning”
“Ordination Methods”

* Are there clusters? How many?

Technique:
Gap Statistic
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Exploratory Data Analysis

“Unsupervised Learning”
“Ordination Methods”

* Are there gradients?
- Are they explained by one or
more sample covariates?

Technique:
PC Regression (statistics’ “PCR”)
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Exploratory Data Analysis

“Unsupervised Learning”
“Ordination Methods”

- Are the patterns consistent with covariates?

Technique:
Permutational Multivariate ANOVA

vegan::adonis( )
(note: this works with discrete and continuous variables)
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(Multiple) Hypothesis testing of microbial

differential abundance

Relative
Abundance

sqgrt(Abundance)
°0

Clinically-motivated question:
“Does this microbe occur in different
abundance between healthy/disease tissue?”

sli o Can we ask this for every microbe observed in
8: the dataset?
© 0
Is it cheating to perform the same test over and
over until a hit?
Healthy Tumor
Multiple Hypothesis Testing Multiple Hypothesis Testing
® |n general, we .oftgn want to test many hypotheses at once. TABLE 1
® p-values are distributed uniformly when null hypothesis is true Number of errors committed when testing m null hypotheses
® The expected number of rejections by chance is m*
Declared Declared Total
P-values under Null hypothesis with 100 trials non-significant significant
0.5-
0.4- True null hypotheses U A\ mg
. Non-true null hypotheses T S m—mg
=03~ rejected
3 © FALSE m—R R m
©o02- © TRUE
0.1- .
Y : Method Category Control p.adjust
0.00 025 o-go 075 100 Bonferroni FWER P(V=1) "bonferroni"
Holm's FWER P(V>1) "holm"
B-H FDR P(V/R) "BH", "fdr"

m
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Multiple Hypothesis Testing

Independent filtering

@ Is a general approach that can substantially increase
the [statistical] efficiency of experiments

@ Uses filter/ test pairs that are independent under the
null hypothesis

@ but correlated under the alternative

e.g. remove features with very low mean abundance

Bourgon, Gentleman, & Huber (2010) Independent filtering increases detection power

for high-throughput experiments. PNAS 107(21) 9546-9551
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Model Uncertainty in NGS Count Data

Poisson-only Count Simulation

True Species (or Gene) Proportion in Simulation

rue”species probor

Proportion

Ill.ll------
A & ¢ [ [ ¥ & " i H I3 i M N

Species or Gene

114

Model Uncertainty in NGS Count Data

Poisson-only Count Simulation

One realizatign of the simulation (blue)

realization of multinomial Sampli

Proportion

03+
02~
L]
01-
[ ]
[ ] [ ]
A 8 ¢ o £ ¢ 3 " i H ® L M M

Species or Gene
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Model Uncertainty in NGS Count Data

0.4-

* Uncertainty Library Size
[?epends.on IE 100
Library Size °

2000

* This describes £

g 30000

sequencing
technical replicates
quite well

0.1

0.0-

i
B c D E F G H | J K L M N
species

Species or Gene
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Model Uncertainty in NGS Count Data

Poisson-enly Geunt Simulation

* Uncertainty
Depends on .
Library Size

Observed

Variance
* This describes

sequencing 100 Library Size
technical replicates 100
quite well
2000
30000

Mean Count

v '
100 10000

17

Model Uncertainty in NGS Count Data

Est. Variance NGS Count Data

Real Data (Biological Replicates) o
1e+08 —
1e+05 —
1e+02 — y
Variance /ﬁ o
L~ Poisson

Mean Count
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Model Uncertainty in NGS Count Data

Negative Binomial
: 2,,2
Variance = U Sj + ¢i€sj u;,

Est. Variance NGS Count Data

Poisson Overdispersion Real Data (Biological Replicates) o
1e+08 —
» Over-dispersion
+ Strong Function of Mean
¢ Share Information Across 1e+05 =
Genes to Improve Fit
(Performance)
1e+02 — y
Variance //; o
L~ Poisson

Mean Count
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Model Uncertainty in NGS Count Data

* Negative Binomial is an infinite mixture of Poisson R.V.

* Intuition:“NB is relevant when we have (almost) as many different
distributions (poisson means) as observations”

* Borrow from RNA-Seq analysis implementations? (Yes)

Negative Binomial t-distribution

McMurdie & Holmes (2014). PLoS
Computational Biology

A.U.C. » ' ]
| | 2 A
» A
A
lA : - —3
Effect Size Effect Size

* Robinson, Oshlack (2010). A scaling normalization... RNA-Seq data. Genome Biology
* Anders, & Huber (2010). Differential expression ... sequence count data. Genome Biology
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End:

Introduction to Microbiome /
Metagenome Analysis Concepts

Questions!?
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Inferred abundance

Performance in a computationally simulated community

mothur (an) DADA2
8 ° _
<
° Q
o %80 le) 8 ("{)l ]
3 7 Q ® S
Q, he) ]
o8 c
®° 3
o 0 o
S o 9% o © 1 —
Al OO Lo -~
q 2
84 g g 7
- o, =
o 8 -
o - _|
I I I I I I I I I I I I
0 100 200 300 400 0 50 100 200 300

True abundance True abundance

TP: 978 TP: 1042
FP: 272 FP: 0
FN: 77 FN: 13
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Frequency (Log-scale)

3

5

a)

o

DADA?Z Accuracy benchmarks

Three other “mock” microbiome communities

Balanced HMP

b)

| 8] o

, NG o 4 ) B 8
. tp 0B g % &

b .0

; oy

, o )

0

: -3
/ N5
M\ A A

10 100 1 10
Hamming (Log-scale) Hamming (Log-scale)

c)

1

Extreme

10
Hamming (Log-scale)

Better FP and FN performance than UPARSE...

123

100

Vs. UPARSE
® Added

® Same

DADAZ2 algorithm assumptions

DADAZ2 Error Model

e Errors independent b/w different sequences

e Errors independent b/w sites within a sequence

e Errant sequence i is produced from j with probability
equal to the product of site-wise substitution
probabilities:

Njosi = [Top(G() — i(1),q(1))

e Each substitution probability depends on original nt,
substituting nt, and quality score
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DADAZ2 algorithm assumptions

DADA2 Abundance Model

e Errors are independent across reads

e Abundance of reads w/ sequence i produced from more-abundant
sequence j is poisson distributed

¢ Probability of abundance equals error rate, Aj—i, multiplied by the
abundance of “parent” sequence, j.

e i has count greater than or equal to one

¢ “Abundance p-value” for sequence i is thus:

pA(J = 1) = Do, Ppois(MjNj—i, @) /(1 = ppois(1jAj—i, 0))

+ “Probability of seeing an abundance of sequence i that is equal to or
greater than observed value, by chance, given sequence j.”

¢ A low pa indicates that there are more reads of sequence i than can be
explained by errors introduced during the amplification and sequencing
of nj copies
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Multiple Testing - Bonferroni

* To ensure overall significance at a given &, one performs each
individual test at &’ = &(/m
* Useful when need to correct for just a few hypotheses
*Very stringent, results in “loss of power”
- increase in Type |l error, decreases sensitivity
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Multiple Testing - Benjamini-Hochberg

Rather than control probability of any errors, FDR instead controls the
proportion of False Positives in the set of positives.

Input: p-values for a set of univariate tests

Output: p-values that are adjusted to FDR:“qg-values”

e.g.A collection of tests rejected at Prpr<=0.05
will have 5% or fewer false positives

This is what is meant be “controlling” the false positive rate

Benjamini & Hochberg (1995). Controlling the False Discovery Rate:A Practical and Powerful Approach to

Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289-300.
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Introduction to
Microbiome / Metagenome
Analysis Tools and Practices

[
Gastrointestinal
3S) o
iS) ag 0&'
< | Urogenital % .
o 0
3\5 = 2 © = s Oral
< 3
oy
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o
Russell[Cobb

PC1 (13%)
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Introduction to
Microbiome / Metagenome
Analysis Tools and Practices

|. Probably-not-comprehensive summary of metagenomic tools
2. Short sermon on the virtues of reproducible analysis
3. Introduction to phyloseq & send-off this afternoon’s lab
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Timeline of microbial community studies using high-throughput sequencing.

o
|ﬁ|Human " Animal 6 Environment

Terabases
MetaHit
600Gb
130 Gb Soil

l l 100 Gb human gut
) 30 Gb HMP 168
L 14Gb Cow rumen @
¢ e
e ®
4 Gb Costal ocean o
Gigabases 2 Gb Lean/obese gut
+-600 Mb Open ocean
250 Mb Human ~ *
150 Mb Lean mouse microbiome
80 Mb Deep sea B P
10 Mb Diarrheal
illness *
Megabases
T T T T T T T 1
2006 2007 2008 2009 2010 2011 2012 2013

Gevers D, Knight R, Petrosino JF, Huang K, et al. (2012) The Human Microbiome Project: A Community Resource for the Healthy Human Microbiome. PLoS Biol

10(8): €1001377. doi:10.1371/journal.pbio.1001377
DY)
B'PLOS |siotoer
D

http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001377
Slide graciously provided by Dirk Gevers, not necessarily with permission O:-) TENTH ANNIVERSARY
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| 6S rRNA Databases

- GreenGenes - http://greengenes.secondgenome.com
- Silva - www.arb-silva.de

* Ribosomal Database Project (RDP) - https://rdp.cme.msu.edu

¢ ~100Ks - millions of unique 16S rRNA genes
eCurated taxonomy
e(Classification tools (e.g. RDP classifier, ARB, etc.)

131

(16S rRNA) Amplicon Sequence
Processing Tools:

- QIIME(2) (and ‘Qiita’?) - http://qgiime.org/
+ mothur - www.mothur.org/
usearch - www.drive5.com/usearch

DADA2 - https://github.com/benjjneb/dada2

Afternoon will be spent using QIIME2
Daniel has much more to say about it...
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MetaPhlAn: Taxonomic profiling using Typical shotgun metagenome and
unique marker genes metatranscriptome analyses

o
PR

X'is a core gene for clade Y X is a unique marker gene for clade Y

Taxonomic
Profiling

Assembly

Functional
Profiling Fa™ Rt
9 e Meige

eggNO Gy.0 A\
c N
N4
Samples Gene content inference Samples
(e.g. PICRUSY, etc.)

o)

Quasi-markers used to resolve ambiguity in postprocessing +——
Relative Relative R E——

http://huttenhower.spRijaryard edpnstaeha Curtis Huttenhower, not necessarily with permission O:-) 133 abundances Slide graciously provided by Curtis AbHBIANGS S ot necessarily with permission O:-)
133 134
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Microbes

Pathways

Genes or

Microbiome meta’omic analyses: Microbiome meta’omic analyses:
assembly assembly

an ion of Velvet to
de novo metagenome assembly from short

P25
sequence reads
MetAMOS: t: bl d I line for AMOS N N
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MetaPhlAn2: Trans-kingdom profiling
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Visit number
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I Gender
Dataset

Staphylococcus caprae/capitis
Propionibacterium sp KPL1844
Merkel cell polyomavirus

Finegoldia magna
Campylobacter ureolyticus
Peptoniphilus rhinitidis
| | Propionibacterium granulosum

| | [ | Staphylococcus epidermidis

Propionibacterium avidum
B EIlIpn Malassezia globosa

Corynebacterium tuberculostearicum

1 Corynebacterium kroppenstedtii

Micrococcus luteus
|
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Enhydrobacter aerosaccus
Polyomavirus HPyV7
Corynebacterium pseudogenitalium
Rothia dentocariosa
Haemophilus parainfluenzae
Corynebacterium matruchotii
Streptococcus mitis/oralis/pneumoniae
Corynebacterium accolens
Corynebacterium durum
11 M | Propionibacterium phage P101A
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d.edu/metaphlan2
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Reproducible analysis of
microbiome / metagenome data

* Why make the effort?

* What if | don’t want someone else reproducing
my analysis?

* What if | don’t know how?

* Isn't it enough to provide a cursory description in
the methods section with a light sprinkling of
literature citations?

* (I call this a “science poem” of your analysis)
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illustrative example favoring reproducible analysis:
“Enterotypes of the human genome”

MDS on supported distance metrics: enterotype ggta
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illustrative example favoring reproducible analysis:
“Enterotypes of the human genome”

MDS on supported distance mea:c}\r:_i‘g“s‘»__‘;__gmg_rggmﬁ ggta
, ' ‘\ % vh b ’
Gap-statistic

_9w

-33; 02+ http://joey711.github.io/phyloseq/gap-statistic.html
F
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Reproducible analysis workflow with R-markdown

microbiome data

l

phyloseq

@PLOS | ONE

OPEN a ACCESS Freely available online

phyloseq: An R Package for Reproducible Interactive
Analysis and Graphics of Microbiome Census Data

Paul J. McMurdie, Susan Holmes*

Department of Statistics, Stanford University, Stanford, California, United States of America

knitr md pandoc |- Key Packages.
vegan
HTML ape
book paf distor
article pdf Y
website phangorn
dashboard picante
Word Doc metagenomeSeq
ggtree
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ph)’|Oseq data structure & API ph)’|Oseq work flow
Input Import
| - 2pe Biosrngs .
matrix data.frame matrix import_mothur phyloseq Direct Plots
R e el N

read.tree

read.nexus

otu_table as sample_data tax_table
read_tree
OTU Abundance Sample Variables Taxonomy Table Phylogenetic Tree Reference Seq.
otu_table sample_data taxonomyTable phylo XStringSet

Accessors: Processors:
get_taxa filter_taxa
get_samples merge_phyloseq
get_variable merge_samples

refseq

. nsamples merge_taxa
Experiment Data ntaxa prune_samples
constructor: phyloseq rank_names prune_taxa
k phyloseq otu_table, sample_names subset_taxa
sam_data, sample_sums subset_samples
: tax_table, -3 | sample_variables tip_glom
import phy_tree taxa_names tax_glom
1 refseq taxa_sums
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import_giime

plot_richness

import_RDP /
Preprocessing

filter_taxa \
filterfun_sample
genefilter_sample
prune_taxa >
prune_samples
subset_taxa
subset_samples
transform sample_counts /

plot_tree

phyloseq

processed

l \ Inference, Testing

bootstrap
distance ordinate permutation tests

regression
discriminant analysis
multiple testing

gap statistic
clustering

procrustes @

— plot_bar

Summary / Exploratory
Graphics

plot_ordination

plot_heatmap
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phyloseq

plot_ordination() g

graphics

|- plot_heatmap()
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_ plot_richness()

phyloseq

plot_ordination()

o

graphics

Biplo; type="biplot”

é&?; biplot

Splt Pt type="spi”

split &%
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MDS/PCoA on weighted-UniFrac distance, GlobalPatterns
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ordu = ordinate(GP1, "PCoA", "unifrac", weighted = TRUE)
plot_ordination(GP1, ordu, color = "SampleType", shape = "human")
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phyloseq

supported

ordination
o I methods
Ordination on bray-curtis dist: Global Patterns data
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phyloseq

graphics

plot_ordination()

plot_tree()

plot_richness()
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gpt <- subset_taxa(GlobalPatterns, Kingdom == "Bacteria")
gpt <- prune_taxa(names(sort(taxa_sums(gpt), TRUE)[1:300]), gpt)
plot_heatmap(gpt, sample.label = "SampleType")

joey711.github.io/phyloseq/plot_heatmap-examples.html
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ig <- make_network(enterotype, dist.fun = "bray", max.dist = 0.3)
plot_network(ig, enterotype, color = "SeqTech", shape = "Enterotype",
line_weight = 0.4, label = NULL)

plot_tree(physeq, nodelabf=nodeplotboot(80, 0, 3), color="SampleType",
label.tips="taxa_names", ladderize="left")

joey711.github.io/phyloseqg/plot_network-examples.html
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joey711.github.io/phyloseq/plot_tre les.html

152
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plot_bar(restroomRm19, "SURFACE", fill = "family19", title = title) + coord_flip() + ylab("Percentage of
Sequences") + ylim(0, 100)

GPst = merge_samples(GP, "SampleType")

p = plot_richness(GPst, x="human", color="SampleType", measures=c("Chao1", "Shannon"))

p + geom_point(size = 5, alpha = 0.7)

joey71 | github.io/phyloseq-demo/Restroom-Biogeography.html
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joey7 | github.io/phyloseg/plot_richness-examples.html
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Schedule for today

Sec |Day | Start | End Topic

Lead Instr.

1 Mes | 09:00 | 10:00 | Introduction to Metagenomics. Culture independent Joey
techniques, 16S rRNA, etc.

Exploratory data analysis, Distances, PCoA, Ordinati
taxa & sample-level inferences

2 Men | 18:9 | 14:9@ | Introduction to microbiome analysis concepts -- V Joey
iQn

V.
3 Mes | 1M:60 | 1118® | Introduction to microbiome analysis practices: \/ Joey
QIIME, phyloseq, reproducible research
--- | Nes | 12:00 | 14:00 | Lunch ---
4 Mes | 14:00 | 17:00 | QIIME Lab Daniel

- Man 17:00 | 19:00 | Dinner -—-

5 Mes | 19:00 | 22:00 | phyloseq Lab Joey
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