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}morning 
lecture

afternoon + 
evening labs}

• What is metagenomics?

• What methods, theoretical basis?

• Why is it useful?

• Where is it headed?

• How can I use it?

• wet lab procedures (dry workshop)

• computational protocols, practices

Outline for Today:

An Introduction to Metagenomics
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Biological
motivation

Methods

• Microbiomes and metagenomics

• What is a microbiome?

• Why are they important?

• Methods

• Experimental methods

• Analysis theory

• Analysis tools, practices

Outline for morning lecture:

}
}

An Introduction to Metagenomics
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“All of the visible organisms that we’re familiar 
with, everything that springs to mind when we 
think of ‘nature’, are latecomers to life’s story. 
They are part of the coda.  For most of the tale, 
microbes were the only living things on Earth.”

— I Contain Multitudes: The Microbes within Us and a Grander View of Life 
Ed Yong 2016

An Introduction to Metagenomics
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Hug, et al (2016) A new view 
of the tree of life. 
Nature Microbiology

Bacteria

Archaea

Eukaryota

Ancestry of Life
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• Germ-free mice:
• grow slower, 
• live shorter, 
• have dysfunctional GI and immune systems
• are more susceptible to stress and infections
• 1965 Dubious, repeated many times since
• This observation generalizes to virtually all animals, at varying degrees

• Without microbes:
• Horrible maladies for most animals (esp. development, metabolism)

• Most animal species would become extinct within a year (estimate)
• There would be (almost) no oxygen in the atmosphere

• ocean microbes alone account for ~half of your O2

• We’d all quickly die of CO2 poisoning (and later global warming)
• Most elemental cycles are predominantly microbe-driven

All of animal evolution and development has 
occurred in the presence of microbes.
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What are microbes? Cell structure
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Some key differences from eukaryota (e.g. humans, plants)

• Haploid genome

• Single circular chromosome, sometimes plasmids

• Genetic malleability, metabolic diversity

• Usually no nucleus (“prokaryotes”)

• Relatively easy interspecies gene transfer

What are microbes?
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• A population of a single species/strain is a culture, 
extremely rare outside of lab, some infections

• A microbiome is a mixed population of different 
microbial species (microbial ecosystem)

What is a microbiome?

The totality of microbes in a defined environment, 
especially their genomes and interactions with each 
other and surrounding environment.

A mixed community is the norm! 
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Why study microbiomes?

Environmental Science
- Critical elemental cycles (carbon, nitrogen, sulfur, iron, …)
- Pollution control, cleanup
- Ecology / Evolution (chloroplasts, mitochondria, symbiosis, competition, …)
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Environmental Science
- Critical elemental cycles (carbon, nitrogen, sulfur, iron, …)
- Pollution control, cleanup
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Industrial Applications
- Wastewater treatment (V. cholera, algal blooms, etc.)
- Bioprospecting (novel enzymes, compounds)
- Novel biosynthesis
- Fermentations: Consortia (yogurt) / wild (kombucha, Belgian ales)

Why study microbiomes?
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Environmental Science
- Critical elemental cycles (carbon, nitrogen, sulfur, iron, …)
- Pollution control, cleanup
- Ecology / Evolution (chloroplasts, mitochondria, genetic evolution, …)

Industrial Applications
- Wastewater treatment (V. cholera, algal blooms, etc.)
- Bioprospecting (novel enzymes, compounds)
- Novel biosynthesis
- Fermentations: Consortia (yogurt) / wild (kombucha, Belgian ales)

Human Health
- Protection from pathogens (e.g. Clostridium difficile)
- Cancer
- Absorption/Production of nutrients in the gut (obesity, T2D)
- Development/regulation of immune system, e.g. chronic diseases

(T1D, RA, IBD, other autoimmune, UTIs, periodontitis, …)

Why study microbiomes?
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Microbes can…

1. “Kill you by acute infection”
2. “Prevent same infection”
3. “Make you fat(ter)”
4. “Give you a heart attack”
5. “Give you cancer”
6. “Rescue you from cancer”

Some provocative oversimplifications…

Can you guess the condition / scenario?

16



C. difficile infection

Borody, et al (2011)
Nature Rev Gastroenterology &
Hepatology
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• Lean (n = 10) & obese donors (n=9)

• Colonization of germ-free wild-type 
mice with microbiota from obese 
donors causes significant increase in 
total body fat

• Total body fat content was measured 
before and after a 2-week colonization

• Confirm that the ob/ob microbiome has 
an increased capacity for dietary energy 
harvest

Turnbaugh, et al. (2006). An obesity-associated gut microbiome … Nature

Methanogenic archaea increase the efficiency of bacterial fermenta-
tion by removing one of its end products, H2. Our recent studies of
gnotobiotic normal mice colonized with the principal methanogenic
archaeon in the human gut, Methanobrevibacter smithii, and/or
B. thetaiotaomicron revealed that co-colonization not only increases
the efficiency, but also changes the specificity of bacterial polysac-
charide fermentation, leading to a significant increase in adiposity
compared with mice colonized with either organism alone15.

Comparative metagenomic analysis

Using reciprocal TBLASTX comparisons, we found that the
Firmicutes-enriched microbiomes from ob/ob hosts clustered
together, as did lean microbiomes with low Firmicutes to Bacter-
oidetes ratios (Fig. 2a). Likewise, Principal Component Analysis of
EGT assignments to KEGG pathways revealed a correlation between
host genotype and the gene content of the microbiome (Fig. 2b).

Reads were then assigned to COGs and KOs (KEGG orthology
terms) by BLASTX comparisons against the STRING-extended
COG database13, and the KEGG Genes database14 (version 37). We
tallied the number of EGTs assigned to each COG or KEGG category,
and used the cumulative binomial distribution3, and a bootstrap
analysis16,17, to identify functional categories with statistically signifi-
cant differences in their representation in both sets of obese and lean
littermates. As noted above, capillary sequencing requires cloned
DNA fragments; the pyrosequencer does not, but produces relatively
short read lengths. These differences are a likely cause of the shift in
relative abundance of several COG categories obtained using the two
sequencing methods for the same sample (Fig. 1b). Nonetheless, com-
parisons of the caecal microbiomes of lean versus obese littermates
sequenced with either method revealed similar differences in their
functional profiles (Fig. 1c).

The ob/ob microbiome is enriched for EGTs encoding many
enzymes involved in the initial steps in breaking down otherwise
indigestible dietary polysaccharides, including KEGG pathways for
starch/sucrose metabolism, galactose metabolism and butanoate
metabolism (Fig. 1d; Supplementary Fig. 3 and Supplementary
Table 6). EGTs representing these enzymes were grouped according
to their functional classifications in the Carbohydrate Active
Enzymes (CAZy) database (http://afmb.cnrs-mrs.fr/CAZY/). The
ob/ob microbiome is enriched (P , 0.05) for eight glycoside hydrolase

families capable of degrading dietary polysaccharides including
starch (CAZy families 2, 4, 27, 31, 35, 36, 42 and 68, which contain
a-glucosidases, a-galactosidases and b-galactosidases). Finished gen-
ome sequences of prominent human gut Firmicutes have not been
reported. However, our analysis of the draft genome of E. rectale has
revealed 44 glycoside hydrolases, including a significant enrichment
for glycoside hydrolases involved in the degradation of dietary
starches (CAZy families 13 and 77, which contain a-amylases and
amylomaltases; P , 0.05 on the basis of a binomial test of E. rectale
versus the finished genomes of Bacteroidetes—Bacteroides thetaiotao-
micron ATCC29148, B. fragilis NCTC9343, B. vulgatus ATCC8482
and B. distasonis ATCC8503).

EGTs encoding proteins that import the products of these glyco-
side hydrolases (ABC transporters), metabolize them (for example,
a- and b-galactosidases KO7406/7 and KO1190, respectively), and
generate the major end products of fermentation, butyrate and
acetate (pyruvate formate-lyase, KO0656, and other enzymes in the
KEGG ‘Butanoate metabolism’ pathway; and formate-tetrahydro-
folate ligase, KO1938, the second enzyme in the homoacetogenesis
pathway for converting CO2 to acetate) are also significantly enriched
in the ob/ob microbiome (binomial comparison of pyrosequencer-
derived ob1 and lean1 data sets, P , 0.05) (Fig. 1d; Supplementary
Fig. 3 and Supplementary Table 6).

As predicted from our comparative metagenomic analyses, the ob/
ob caecum has an increased concentration of the major fermentation
end-products butyrate and acetate (Fig. 3a). This observation is also
consistent with the fact that many Firmicutes are butyrate produ-
cers18–20. Moreover, bomb calorimetry revealed that ob/ob mice have
significantly less energy remaining in their faeces relative to their lean
littermates (Fig. 3b).

Microbiota transplantation

We performed microbiota transplantation experiments to test
directly the notion that the ob/ob microbiota has an increased capa-
city to harvest energy from the diet and to determine whether
increased adiposity is a transmissible trait. Adult germ-free C57BL/
6J mice were colonized (by gavage) with a microbiota harvested
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Figure 2 | Microbiomes cluster according to host genotype. a, Clustering of
caecal microbiomes of obese and lean sibling pairs based on reciprocal
TBLASTX comparisons. All possible reciprocal TBLASTX comparisons of
microbiomes (defined by capillary sequencing) were performed from both
lean and obese sibling pairs. A distance matrix was then created using the
cumulative bitscore for each comparison and the cumulative score for each
self–self comparison. Microbiomes were subsequently clustered using
NEIGHBOUR (PHYLIP version 3.64). b, Principal Component Analysis
(PCA) of KEGG pathway assignments. A matrix was constructed containing
the number of EGTs assigned to each KEGG pathway in each microbiome
(includes KEGG pathways with .0.6% relative abundance in at least two
microbiomes, and a standard deviation .0.3 across all microbiomes), PCA
was performed using Cluster3.0 (ref. 25), and the results graphed along the
first two components.
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Figure 3 | Biochemical analysis and microbiota transplantation
experiments confirm that the ob/ob microbiome has an increased capacity
for dietary energy harvest. a, Gas-chromatography mass-spectrometry
quantification of short-chain fatty acids in the caeca of lean (n 5 4) and
obese (n 5 5) conventionally raised C57BL/6J mice. b, Bomb calorimetry of
the faecal gross energy content (kcal g21) of lean (1/1, ob/1; n 5 9) and
obese (ob/ob; n 5 13) conventionally raised C57BL/6J mice. c, Colonization
of germ-free wild-type C57BL/6J mice with a caecal microbiota harvested
from obese donors (ob/ob; n 5 9 recipients) results in a significantly greater
percentage increase in total body fat than colonization with a microbiota
from lean donors (1/1; n 5 10 recipients). Total body fat content was
measured before and after a two-week colonization, using dual-energy X-ray
absorptiometry. Mean values 6 s.e.m. are plotted. Asterisks indicate
significant differences (two-tailed Student’s t-test of all datapoints,
*P , 0.05, **P # 0.01, ***P , 0.001).
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Microbes can make you fat(ter)…
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ZN Wang, …, Stanley Hazen. Nature 472, 57-63 (2011) 
Fogelman, A. M. (2015). TMAO Is Both a Biomarker and a Renal Toxin. Circulation Research.

Gut microbes promote cardiovascular disease 

• Gut flora required for production of TMAO
• Supplementing diet with choline or TMAO promotes atherosclerosis (mouse)
• Gut flora suppression (Abx) inhibits dietary choline enhanced atherosclerosis
• TMAO is also a renal (kidney) toxin. Fogelman, A. M. (2015). Circulation Research.
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Colorectal Cancer (CRC)
• Microbes affect colonic bile pool  

exposure, drug metabolism, and 
mortality-correlated compounds

• Microbe-produced secondary 
bile acids are among these.

• Gut microbial metabolism may 
play role in beneficial or 
detrimental effects of certain 
foods

Sears, C. L., & Garrett, W. S. (2014). Microbes, 
Microbiota, and Colon Cancer. 
Cell Host & Microbe, 15(3), 317–328.
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McCarty, P. L. (1997). Breathing with chlorinated solvents. Science

Dehalococcoides
Groundwater: Chlorinated Solvents
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Bonus microbiome show-and-tell
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Marine picoplankton most abundant organism on Earth?

- Prochlorococcus appears to be the most abundant organism on the planet
- Huge light harvesting proteins
- its density can reach up to 100 million cells per liter
- it can be found down to a depth of 150 m in all of the intertropical belt

- picoplankton synchronize cell division at the same time every day —> biological clock

Vertical distribution of the photosynthetic picoplankton populations 
determined by flow cytometry in the tropical Pacific (OLIPAC cruise, 1994).
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Octopus Spring Obsidian Pool

•75° - 95°C
•high iron (II) hydrogen sulfide
•extensive diversity (previously unknown)

•90° to 93°C
•extremely low in nutrients
•contains abundant biomass
•home to “oldest” known bacteria

Yellowstone National Park

Ward, D. M., Weller, R., & Bateson, M. M. (1990). Nature, 345(6270), 63–65.
Barns, S. M., Fundyga, R. E., Jeffries, M. W., & Pace, N. R. (1994). PNAS 91(5), 1609–1613.
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Symbiosis: sea-floor vent tube worm

Riftia
pachyptila

Seafloor
hydrothermal
vent
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Symbiosis: sea-floor vent tube worm

Cavanaugh, C. M. (1983). Nature, 302(5903), 58–61.
Cavanaugh, C. M., et al. (1981).  Science. 213(4505), 340–342
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acid mine biofilm

Tyson, et al. (2004) Nature, 428(6978), 37–43

Example of “model” microbiome:

27

Tyson, et al. (2004) Nature, 428(6978), 37–43

acid mine biofilm

28



acid mine biofilm

Tyson, et al. (2004) Nature, 428(6978), 37–43
29

End: Biological Motivation

Questions before moving on?

30

Metagenomics Experimental Methods

31

Exercise: How many species are present?

Confer amongst yourselves. We’ll take a poll.
32



The great “plate count” anomaly

• Cultivation-based cell counts are orders of 
magnitude lower than direct microscopic 
observation. 

• This is because microbiologists are able to 
cultivate only a small minority of naturally 
occurring microbes

• Our nucleic-acid derived understanding of 
microbial diversity has rapidly outpaced our 
ability to culture new microbes

Staley, J. T., & Konopka, A. (1985). Measurement of in situ activities of nonphotosynthetic microorganisms in 
aquatic and terrestrial habitats. Annual Review of Microbiology, 39, 321–346.

Discovery of Culture Independent Techniques

33

• We have a bacterial endosymbiont in all our cells! 
• Humans have always coexisted with bacteria 
• We’ve known about bacteria for a few hundred years 

Why is microbiome research new?
Considering that…

• Historically prokaryotic biology has been focused on microbes that 
can be grown to large quantities/densities in the lab, especially 
pathogens; or can be distinguished under the microscope. 

• An example of “searching where the light is”…

Discovery of Culture Independent Techniques

34

• Culture-based methods fail to detect most microbes

• Microbes are easy to miss (except pathogens)

• Most microbes are NOT pathogens (even the human-associated)

Bias for cultivable microbes, especially pathogens

• Discovery of culture-independent techniques

• PCR, fast & cheap DNA sequencing, microarrays, etc

Availability of tools limited to last 3 decades

Discovery of Culture Independent Techniques

Why is microbiome research new?

35

• 1977 rRNA as evolutionary marker - Woese & Fox PNAS

• 1985 Polymerase Chain Reaction (PCR) - K. Mullis Science

• 1985 “Universal” Primers for rRNA sequencing - N. Pace PNAS

• 1989 PCR amplification of 16S rRNA gene - Böttger FEMS Microbiol.

• 1996 Large, curated rRNA database (RDP) - Maidak Nuc. Acids Res

• 1998 metagenome genomics of communities coined by Jo Handelsman

• 2001 microbiome coined by Joshua Lederberg

Discovery of Culture Independent Techniques

36



• 1977 rRNA as evolutionary marker - Woese & Fox PNAS

• 1985 Polymerase Chain Reaction (PCR) - K. Mullis Science

• 1985 “Universal” Primers for rRNA sequencing - N. Pace PNAS

• 1989 PCR amplification of 16S rRNA gene - Böttger FEMS Microbiol.

• 1996 Large, curated rRNA database (RDP) - Maidak Nuc. Acids Res

• 1998 metagenome genomics of communities coined by Jo Handelsman

• 2001 microbiome coined by Joshua Lederberg

Woese was originally scorned at the discovery of archaea 
via rRNA gene (dis)similarity.

History of modern metagenomics/microbiome research is 
deeply tied to modern molecular ecology

Discovery of Culture Independent Techniques
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Discovery of Culture Independent Techniques

ribosomeSmall subunit “16S” rRNA 

ribosome

in action

38

ribosome

• rRNA has both catalytic and 
structural function.

• The small and large subunits have 
different lengths, 2nd-structure, 3D 
shape; but must work together.

• All of the catalytic activity of the 
ribosome is carried out by the RNA; 
the proteins reside on the surface 
and seem to stabilize the structure.

Discovery of Culture Independent Techniques
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Small subunit “16S” rRNA 
• Ubiquitous - present in all 

known life (viruses don’t count)

• Functionally constant 
translation, 2o-structure

• Evolves slowly - mutations 
more rare than for protein-
coding genes

• Large - information for 
evolutionary inference

• No exchange - Limited 
examples of rRNA gene-sharing 
between organisms

• Feasibility - The right size for 
available sequencing technology 
(e.g. Sanger)

Discovery of Culture Independent Techniques

40



Pace, N. R. (1997). A molecular view of microbial diversity 
and the biosphere. Science, 276(5313), 734–740.

0.1

1987 1997

Archaea

Eukarya 

16S rRNA phylogeny, Known Bacteria 

Discovery of Culture Independent Techniques

0.1

2016

Archaea

Eukarya 

genome phylogeny
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A summary of metagenomics technique

Lyse all cells 
Extract Total DNA (and/or RNA)

Amplicon Sequencing: 
PCR amplify a single marker 
gene, e.g. 16S rRNA

Relative abundances, 
Genomes, 

Genes, 
Metabolic profiling, 
Genomic structure, 
Genetic variants...

DNA  
sequencer

Slide adapted from Curtis Huttenhower, not necessarily with permission O:-)

Amplicon 
analysis

Shotgun Sequencing: 
Direct sequencing of (fragments 

of) total DNA/RNA

42

Who’s there? 
(Taxonomic profiling) 

What are they doing? 
(Functional profiling) 

What does it all mean? 
(Statistical analysis)

Slide adapted from Curtis Huttenhower, not necessarily with permission O:-)

A summary of metagenomics technique
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• Single microbiome:

1. Break all cells, extract all DNA (gDNA)

2. PCR-amplify a universal gene from gDNA

3. DNA sequencing from pool of amplified genes

4. Cluster sequences according to species

5. Count each species and make a tree

Tringe, S. G., & Rubin, E. M. (2005). Metagenomics: DNA sequencing of 
environmental samples. Nature Reviews Genetics, 6(11), 805–814.

Amplicon sequencing
A summary of metagenomics technique

44



• Many microbiomes in parallel:

1. Break all cells, extract all DNA (gDNA)

2. PCR-amplify a universal gene from gDNA

3. DNA sequencing from pool of amplified genes

4. Cluster sequences according to species

5. Count each species and make a tree

using bar-coded primers, diff code for each sample

bar-coded
4a. “De-multiplex” barcode, ID source sample

Amplicon sequencing
A summary of metagenomics technique

45

“Shotgun” 
sequencing

Nayfach, S., & Pollard, K. S. 
(2016). Perspective. Cell, 
166(5), 1103–1116.

46

(As Bill described in motivation for RADSeq): 

• still prohibitively expensive 

• for many biological questions a full sequence isn’t needed 

• For low-abundance microbes, amplicon sequencing might 
be the only feasible option

Why not just always sequence entire (meta)genomes?

• This is a different kind of “Reduced representation sequencing” 

• Use restriction enzyme digestion PCR amplification to focus sequencing of 
multiple samples on [one] homologous regions across the genomes 

• Cost is a fraction of the cost of re-sequencing the metagenomes

A summary of metagenomics technique
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• Universal Gene census

• Shotgun Metagenome Sequencing

• Transcriptomics (shotgun mRNA)

• Proteomics (protein fragments)

• Metabolomics (excreted chemicals)

Number of 
Species CountedMetagenomics

$

Culture Independent Techniques:

A summary of metagenomics technique

48



• Piles of short DNA/RNA reads from >1 organism 

• You can... 
– Ecologically profile them 
– Taxonomically or phylogenetically profile them 
– Functionally profile them – gene/pathway catalogs 
– Comparative/structural genomics 

• Prior knowledge is helpful 
• Caution: Correlation ≠ Causation 

• Most ‘omics results require lab confirmation

Slide adapted from Curtis Huttenhower, not necessarily with permission O:-)

A summary of metagenomics technique
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Where things are headed: “Culturomics”

Browne, H. P., et al. (2016). Culturing of “unculturable” human microbiota… Nature, 533(7604), 543–546.

Lagier, J.-C., et al (2015). The Rebirth of Culture in Microbiology… Culturomics…
Clinical Microbiology Reviews, 28(1), 237–264.

“Bacterial culture was the first method used to describe the human microbiota 
[after the microscope], but this method is considered outdated by many researchers 
… however, a ‘dark matter’ of prokaryotes, which corresponds to a hole in our 
knowledge and includes minority bacterial populations, is not elucidated by 
[metagenomic] studies…”

50

Lagier, J.-C., et al. (2016). Culture of previously 
uncultured… Nature Microbiology, 1(12), 1-8

Ma, L., et al. (2014). Gene-targeted microfluidic 
cultivation… PNAS,111(27), 9768–9773.

Where things are headed: “Culturomics”

51

An Introduction to Metagenomics

Biological
motivation

Methods

• Microbiomes and metagenomics

• What is a microbiome?

• Why are they important?

• Methods

• Experimental methods

• Analysis theory

• Analysis tools, practices

Outline for morning lecture:

}
}
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End Metagenomics 
Lecture 1

Questions?

53

Introduction to Microbiome / 
Metagenome Analysis Concepts

54

•Sequence Processing (OTUs)  
•Denoising 
•Chimera detection 
•Construction of sequence clusters (OTUs) 

•Comparing microbiomes 
•Distances, Diversity 
•Exploratory Data Analysis 

•Ordination Methods 
•hierarchical dendrogram 
•extract patterns from a plot 

•clusters - gap statistic 
•gradient - regression, modeling, etc. 

• Identifying important microbes/taxa 
•projected points, coinertia (plots) 
•inferential testing 
•modeling
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•Exploratory Data Analysis 

•Ordination Methods 
•hierarchical dendrogram 
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•modeling
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Amplicon sequencing (esp. 16S rRNA gene) remains the first 
and most-common culture-independent method applied to 
new microbiome samples. ($, time) 

Some pervasive misunderstandings in the field:
(1) Sequences must be processed through an ad hoc 

clustering procedure, generating “OTUs”, and  
(2) Resolution <3% sequence similarity not reliable, nor 

perhaps even useful 

These presumptions are untrue.

There is enough information from current Illumina platforms to 
support de novo single-nucleotide resolution in practice. 

57

imagine sequencing reads 
streaming from a single true 
sequence…

Motivation: Lingering problems with “OTU”

58

r = 3%

The deeper you 
sequence, the more 
you expect to find 
reads outside the 
radius by chance.

Motivation: Lingering problems with “OTU”

59

• False Positives - e.g. 1000s of OTUs when only 10s of sequences present
• Consequently, richness appears to depend on library size
• Microbiome distances that appear to depend on library size

• Poor Seq/Taxonomic Resolution - defined by arbitrary similarity radius
• Accuracy - Abundance estimates biased and noisier than necessary.
• Cost - Poor data efficiency ~ larger costs to achieve same inference.
• Cost - Computational scaling is quadratic (~N2). Becomes costly or intractable as datasets 

get larger, or more numerous (meta analysis)
• Unstable - OTU sequence and count depend on input

• must re-run clustering if any data added/removed, or
• if you want to compare against an external dataset

• Recent open-source methods seem to focus on speed, are analytically worse than UPARSE 
(a 2012 OTU method)…

• OTU results appear to plateau/degrade with larger library
• DADA2 improves with more data

"if getting the wrong answer as quickly as possible is important... then there 
are a number of options…"

—Jon Bentley (as conveyed by R. Gentleman, BioC 2016)

Motivation: Lingering problems with “OTU”

60



http://benjjneb.github.io/dada2/R/SotA.html

False-positive performance as measured in a microbial 
community of known composition (“mock community”)

Correct
answer

Kopylova, et al (2016). mSystems
Open-source sequence clustering methods improve the state of 
the art.

61

http://benjjneb.github.io/dada2/R/SotA.html

Correct
answer

Kopylova, et al (2016). mSystems
Open-source sequence clustering methods improve the state of 
the art.

False-positive performance as measured in a microbial 
community of known composition (“mock community”)

62
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Anecdotal example of mitigated dependence of 
observed richness on sequencing effort

63

• Subject-discriminating strain-level resolution of Lactobacillus crispatus 
• Repeated samples from vaginal microbiome of 42 pregnant women

DADA2 Advantages: Real Data
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Lactobacillus crispatus sampled from 42 pregnant women

Data: MacIntyre et al. Scientific Reports, 2015.

Example: vaginal microbiome
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How does this work?

65

Initial guess: one real sequence + errors

100

5

50

DADA2 algorithm cartoon
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Infer initial error model under this assumption.

100

5 

50

A 

C 

G 

T

A 

0.97 

10-2 

10-2 

10-2

C 

10-2 

0.97 

10-2 

10-2

G 

10-2 

10-2 

0.97 

10-2

T 

10-2 

10-2 

10-2 

0.97

Pr(i → j) =

DADA2 algorithm cartoon
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5

50 
100 

not an error 

Reject unlikely error under model. Recruit errors.
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T
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0.97 

10-2 
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10-2 

0.97 

10-2 

10-2
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10-2 

10-2 

0.97

DADA2 algorithm cartoon
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Update the model.
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A   0.997
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0.997 
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0.997

DADA2 algorithm cartoon
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Reject more sequences under new model
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not an error
not an error

A 

A   0.997
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10-3
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10-3
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T

10-3 

10-3 

10-3

0.997 

10-3 

10-3

10-3 

0.997 

10-3

10-3 

10-3 

0.997

DADA2 algorithm cartoon
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Update model again

A C G T

A   0.998    1x10-4    2x10-3  2x10-4 

C  6x10-5    0.999    3x10-6  1x10-3 

G  1x10-3    3x10-6    0.999   6x10-5 

T   2x10-4    2x10-3    1x10-4   0.998

100

5

50

DADA2 algorithm cartoon
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Convergence: all errors are plausible

100

5

50

A C G T

A   0.998    1x10-4    2x10-3  2x10-4 

C  6x10-5    0.999    3x10-6  1x10-3 

G  1x10-3    3x10-6    0.999   6x10-5 

T   2x10-4    2x10-3    1x10-4   0.998

DADA2 algorithm cartoon
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• selfConsist mode for DADA2 includes joint inference of error rates as function of quality score.
• red line is expected error rate if Q-scores were exactly correct
• black line is DADA2’s empirical model (smooth)
• Notice especially underestimates of errors at high values, Q >30
• For illumina these differences are specific to sequencing run and read direction

• for small lib sizes, can aggregate estimate across libraries from the same run/direction 
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This sounds complicated. 
Isn’t it really expensive and 
time-consuming to compute?
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No.  
Unlike OTU methods, DADA2 can work on each sequence 
library independently. The outputs are sequences 
themselves, which are intrinsically comparable. This has 
important bonus for computation: embarrassingly parallel 

• “Horizontal Scaling”, each sample in parallel  
• Much faster for large projects 
• Can use cheap commodity hardware (e.g. your laptop), 

rather than expensive, high-memory clusters 
• Robust: results don’t change with new data 
• Bad data or failure from one sample can’t affect others

This sounds complicated. 
Isn’t it really expensive and 
time-consuming to compute?
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DADA2

DADA2

Hierarchical

Greedy
Greedy

Hierarchical

Compute performance, as the required 
number of sequence alignments

Number of Reads Number of Samples

One Sample One Study
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Computational Performance - each point is a sample

Peak 
Memory 
(Mb)

Unique Seqs (thousands)

Time 
(min)

Raw File Size (Mb)

Dataset-1 Dataset-2

Raw File Size (Mb)

Time 
(min)

Peak 
Memory 
(Mb)

Unique Seqs (thousands)
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Applications
•Any amplicon target… not just 16S rRNA or even microbiome 
•Detection of low-abundance microbes 
•Strains that are unique to an individual host 
•Strains that are associated with a particular patient outcome 
•Improved shotgun metagenomic inference (e.g. PiCRUST, etc.) 

•Mitigate ambiguity of representative genome to use 
•Detecting pathogens (special cases) 
•Bridging gap to world where shotgun is cheap enough
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DADA2

http://benjjneb.github.io/dada2/

DADA1: Rosen MJ, Callahan BJ, Fisher DS, Holmes SP
(2012) Denoising PCR-amplified metagenome data. BMC bioinformatics, 13(1), 283.

Divisive Amplicon Denoising Algorithm - ver.2

DADA2: High resolution sample inference from amplicon data

Benjamin J Callahan1,*, Paul J McMurdie2, Michael J Rosen3, Andrew W Han2,
Amy Jo Johnson2 and Susan P Holmes1

1Department of Statistics, Stanford University
2Second Genome, South San Francisco, CA

3Department of Applied Physics, Stanford University
*Corresponding Author: benjamin.j.callahan@gmail.com

. CC-BY-NC-ND 4.0 International licensethis preprint is the author/funder. It is made available under a 
The copyright holder for; http://dx.doi.org/10.1101/024034doi: bioRxiv preprint first posted online August 6, 2015; 

R package available on BioConductor

July 2016
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Diversity

(That is, we are now switching to an overview of methods 
related to the formal analysis of ecological diversity)
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Diversity of diversity 
(diversity of greek letters used in ecology)
• α – diversity within a community, # of species
• β – diversity between communities (differentiation), 

species identity is taken into account
• γ – (global) diversity of the site, γ = α × β, but only this 

simple if α and β are independent
• Probably others, but α and β are most common
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Anderson, M. J., et al. (2011). Navigating the multiple meanings of β diversity: a roadmap for the 
practicing ecologist. Ecology Letters, 14(1), 19–28.

community structure!, we mean a change in the identity, relative abundance, biomass
and ⁄ or cover of individual species. Questions associated with turnover include: How
many new species are encountered along a gradient and how many that were initially
present are now lost? What proportion of the species encountered is not shared when
we move from one unit to the next along this gradient? Turnover can be expressed as a
rate, as in a distance–decay plot (e.g. Nekola & White 1999; Qian & Ricklefs 2007).
Turnover, by its very nature, requires one to define a specific gradient of interest with
directionality. For example, the rate of turnover in an east–west direction might differ
from that in a north–south direction (e.g. Harrison et al. 1992).

The second type of b diversity is the notion of variation in community structure
among a set of sample units (Fig. 2b) within a given spatial or temporal extent, or
within a given category of a factor (such as a habitat type or experimental treatment).

This is captured by Whittaker!s original measures of b diversity as variation in the
identities of species among units (see bW below) or the mean Jaccard dissimilarity
among communities (see !d below). Here, the essential questions are: Do we see the
same species over and over again among different units? By how much does the
number of species in the region exceed the average number of species per sampling
unit? What is the expected proportion of unshared species among all sampling units?
Variation is measured among all possible pairs of units, without reference to any
particular gradient or direction, and has a direct correspondence with multivariate
dispersion or variance in community structure (Legendre et al. 2005; Anderson et al.
2006).

MEASURES OF b DIVERSITY

The two most commonly used classes of measures of b diversity used in studies of
either turnover or variation are: (1) the classical metrics, calculated directly from
measures of c (regional) and a (local) diversity and (2) multivariate measures, based on
pairwise resemblances (similarity, dissimilarity or distance) among sample units.

Classical metrics

Let ai be the number of species (richness) in sample unit i, let !a ¼
PN

i¼1 ai=N be the
average number of species per unit obtained from a sample of N units within a larger
area or region, and let c be the total number of species for this region. One of the
original measures described as b diversity by Whittaker (1960) was bW ¼ c=!a.
It focuses on species! identities alone and is the number of times by which the richness
in a region is greater than the average richness in the smaller-scale units. It thus
provides a multiplicative model which, being additive on a log scale (Jost 2007), can also
be used to calculate additive partitions of b diversity at multiple scales (Crist et al. 2003).

An additive rather than multiplicative model is given by bAdd ¼ c" !a (Lande 1996;
Crist & Veech 2006). bAdd, like bW, can be partitioned across multiple scales (Veech &
Crist 2009). bAdd is in the same units as !a and c, so is easy to communicate in applied
contexts (Gering et al. 2003) and can be compared across multiple studies, when !a and
bAdd are expressed as proportions of c (Veech et al. 2003; Tuomisto 2010a).

More recently, Jost (2007) has defined a measure that also includes relative
abundance information: bShannon = Hc ⁄ Ha, where Hc ¼ expðH 0pooledÞ is an expon-
entiated Shannon–Wiener index (i.e. effective diversity) for the c-level sample unit
(obtained by pooling abundances for each species across all a-level units) and
Ha ¼

PN
i¼1 expðH 0i Þ=N is the average of the exponentiated indices calculated for each

a-level sample unit. bShannon shares the property with bW of being multiplicative, and
thus additive on a log scale, H 0b ¼ H 0c "H 0a (MacArthur et al. 1966). It can also be
partitioned for a hierarchy of spatial scales (Ricotta 2005; Jost 2007).

Multivariate measures

We first define a sampled community as a row vector y of length p containing values for
each of p species within a given sample unit (a plot, core, quadrat, transect, tow, etc.).
The values in the vector may be presence ⁄ absence data, counts of species! abundances
or some other quantitative or ordinal values (biomass, cover, etc.). A set of N such
vectors (sampled communities) generates a matrix Y, with N rows and p columns.
We shall use Dy (or dij) to denote a change in community structure from one unit
ði ¼ 1; . . . ;N Þ to another ð j ¼ 1; . . . ;N Þ, as would be measured by a given pairwise
dissimilarity measure [Jaccard (dJ), Bray–Curtis (dBC), etc.]. Multivariate measures of
b diversity begin from a matrix D containing all pairwise dissimilarities (dij or Dy)
among the sample units. For N units, there will be m = N(N ) 1) ⁄ 2 pairwise
dissimilarity values.

b diversity as turnover can be estimated as the rate of change in community structure
along a given gradient x, which we shall denote as ¶y ⁄ ¶x. For example, the similarity
between pairs of samples [denoted here as (1 ) Dy) for measures like Jaccard, where
0 £ Dy £ 1] is expected to decrease with increasing geographical distance. Given a
series of sample units along a spatial gradient (as in Fig. 2a), we can fit, for example, an
exponential decay model as: (1 ) Dyk) = exp(l + bDxk + ek), where (1 ) Dyk) is the
similarity between the kth pair of sample units and Dxk is the geographic distance (the
difference in latitude, say) between the kth pair, for all unique pairs k ¼ 1; . . . ;m.
This is visualized by a distance–decay plot of (1 ) Dyk) vs. Dx. The estimated slope, in
absolute value, is a direct measure (on a log scale) of turnover (¶y ⁄ ¶x; Fig. 2a; Nekola
& White 1999; Vellend 2001; Qian et al. 2005; Qian & Ricklefs 2007): the steeper the
slope (larger negative values in the exponential decay), the more rapid the turnover.
Note that Dx might also denote environmental change along a gradient, such as
altitude, soil moisture, temperature or depth; it need not necessarily be a spatial
distance.

b diversity as variation in community structure among N sample units shall be
denoted by r̂2. This idea is captured by the notion of the dispersion of sample units in
multivariate space (Anderson et al. 2006) and can be measured directly using the sum of
squared interpoint dissimilarities: r̂2 ¼ 1

N ðN"1Þ
P

i; j<i d 2
ij (e.g. Legendre & Anderson

1999; Anderson 2001; McArdle & Anderson 2001), the average interpoint dissimilarities
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Figure 1 Plot showing the number of peer-reviewed articles published in the primary

literature having "beta diversity! in their title for each year from 1974 to 2009, based on ISIs

Web of Science database (note: this also includes titles that have used the greek letter

representation "b diversity!).

(a) Directional turnover in community structure

Sample unit

Transect

Spatial, temporal or environmental gradient

(b) Variation in community structure (non-directional)

Sample unit

Spatial extent
of sampling area

Figure 2 Schematic diagram of two conceptual types of b diversity for ecology: (a) turnover

in community structure along a gradient and (b) variation in community structure among

sample units within a given area.

20 M. J. Anderson et al. Idea and Perspective

! 2010 Blackwell Publishing Ltd/CNRS

Beta-Diversity
Peer-reviewed articles having “beta diversity” in title  
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http://en.wikipedia.org/wiki/Beta_diversity

• Microbial ecologists typically use beta diversity as a broad umbrella 
term that can refer to any of several indices related to compositional 
differences (Differences in species content between samples)

• For some reason this is contentious, and there appears to be 
ongoing (and pointless?) argument over the possible definitions

• For our purposes, and microbiome research, when you hear “beta-
diversity”, you can probably think:

Diversity of species composition
or 
Analysis comparing whole microbiomes to one another

Beta-Diversity
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Distances between microbiomes
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Community Distance

Communities are a vector of abundances: 
x = {x1, x2, x3, …}

E. coli:  
P. fluorescens: 

B. subtilis: 
P. acnes: 

D. radiodurans: 
H. pylori: 

L. crispatus:

x = {3,1,1,0,0,7,0}

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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Community Distance Properties

• Range from 0 to 1
• Distance to self is 0
• If no shared taxa, distance is 1
• Triangle inequality (metric)
• Joint absences do not affect distance (biology)
• Independent of absolute counts (metagenomics)

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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The Distance Spectrum

Jaccard Unifrac

Bray-Curtis Weighted
Unifrac

Presence/
Absence

Quantitative
Abundance

Categorical Phylogenetic

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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Jaccard

Dist(A, B) = 1 - (A ∩ B)/(A ⋃ B) 
= ((xA>0) & (xB>0))/((xA>0) | (xB>0))

Intuition: Fraction of shared types unique to 
one of the communities

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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Bray-Curtis

Intuition: City block distance. Sum of 
absolute differences over total abundance.

∑ |xi - yi|
∑xi +∑yi

Dist(x, y) =

x1     x2     x3     x4     x5     x6 

= +

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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Unifrac

Intuition: Fraction of shared tree unique to 
one of the communities

Lozupone and Knight (2008)

+
+

+Dist(x, y) =

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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Weighted Unifrac

Intuition: The cost of turning one distribution into the 
other; where the cost is the amount of “dirt” moved 

times the distance by which it is moved.

Lozupone et al. (2007)Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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Jaccard:
Bray:

Unifrac:
W-Unifrac:

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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Jaccard:
Bray:

Unifrac:
W-Unifrac:

d=0 Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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Jaccard:
Bray:

Unifrac:
W-Unifrac:

d=0 
Distant 

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 
Similar 

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 
Distant 

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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Jaccard:
Bray:

Unifrac:
W-Unifrac:

d=0 
Distant 
d=0 

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 
Similar 
Similar 

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 
Distant 
Distant 

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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Jaccard:
Bray:

Unifrac:
W-Unifrac:

d=0 
Distant 
d=0 
Distant

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 
Similar 
Similar 
Similar

Jaccard:
Bray:

Unifrac:
W-Unifrac:

Distant 
Distant 
Distant 
Similar

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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The Distance Spectrum

Jaccard Unifrac

Bray-Curtis Weighted
Unifrac

Presence/
Absence

Quantitative
Abundance

Categorical Phylogenetic
phyloseq distances
manhattan 
euclidean 
canberra 
bray 
kulczynski 
jaccard 
gower 
altGower 
morisita-horn 
mountford 
raup 
binomial 
chao 
cao 
jensen-shannon 
unifrac 
weighted-unifrac 
...Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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What do we do with distances between 
microbiome samples?

For starters: Plot / exploratory analysis
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Ordination Methods
Project high-dimensional data onto lower dimensions

0,1,5,1,0,1,2,1,0,0,9,… 
7,2,0,0,0,0,0,0,1,0,0,… 
0,0,0,0,0,0,8,0,0,0,1,… 
0,0,0,1,0,1,2,0,0,0,5,… 
0,1,0,2,0,0,0,1,0,0,4,… 
0,0,0,1,9,1,2,5,2,0,1,… 
0,0,0,0,0,1,2,1,8,0,0,… 
0,0,0,0,9,4,0,0,0,0,1,… 
. 
.

P taxa

N 
sa

m
pl

es

P-dimensions 2-dimensions
Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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Ordination Methods
Project high-dimensional data onto lower dimensions

0,1,5,1,0,1,2,1,0,0,9,… 
7,2,0,0,0,0,0,0,1,0,0,… 
0,0,0,0,0,0,8,0,0,0,1,… 
0,0,0,1,0,1,2,0,0,0,5,… 
0,1,0,2,0,0,0,1,0,0,4,… 
0,0,0,1,9,1,2,5,2,0,1,… 
0,0,0,0,0,1,2,1,8,0,0,… 
0,0,0,0,9,4,0,0,0,0,1,… 
. 
.

P taxa

N 
sa

m
pl

es

P-dimensions 2-dimensions

Intuition:
Each PC axis is projection that maximizes the area of the shadow 
Equivalently - max(sum of square of distances between points)
Goal: “See” as much variation as possible

Slide graciously provided by Susan Holmes, not necessarily with permission O:-)
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Multi-dimensional Scaling

Why MDS? It works with any distance!

Input distance matrix can by Bray-Curtis, Unifrac, …

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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MDS Details

• Algorithm starts from D inter-point distances: 
- Center the rows and columns of the distance matrix:  

 S = -1/2 H D(2) H
- Compute SVD by diagonalizing S: S = U Λ UT 

- Extract Euclidean representations: X = U Λ1/2 
• The relative values of diagonal elements of Λ gives the 

proportion of variability explained by each of the axes. 
• The valued of Λ should always be looked at in deciding how 

many dimensions to retain

Given distances between each observation (sample), MDS finds the 
closest approximation of that in lower dimensional Euclidean space.

NMDS is similar, but minimizes a different function 
(difference in distance ranks) 

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)
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MDS Scree Plot

1 3 5 7 9 11

MDS Dimension

La
m

bd
a

0
1

2
3

4

Slide graciously provided by Benjamin Callahan, not necessarily with permission O:-)

These values are the relative quantity of 
variability represented in each new dimension
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• Looking for patterns (the “I-test”) 
• Always look at scree plot 
• Biplot (if legible) 
• Use multiple distances 

• For which D is pattern strongest? 
• phyloseq (and R/Rmd) make this easy!

Best Practices

Choice
Slide graciously provided by Susan Holmes, not necessarily with permission O:-)

“Unsupervised Learning”
Exploratory Data Analysis

“Ordination Methods”
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What we “learn” depends on the data.

• How many axes are probably useful?
• Are there clusters? How many?
• Are there gradients?
• Are the patterns consistent with covariates
• (e.g. sample observations)
• How might we test this?

“Unsupervised Learning”
Exploratory Data Analysis

“Ordination Methods”
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• Are there clusters? How many?

Technique:
Gap Statistic

“Unsupervised Learning”
Exploratory Data Analysis

“Ordination Methods”
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• Are there gradients?
• Are they explained by one or 

more sample covariates?

Technique:
PC Regression (statistics’ “PCR”)

“Unsupervised Learning”
Exploratory Data Analysis

“Ordination Methods”
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• Are the patterns consistent with covariates?

Technique:
Permutational Multivariate ANOVA
vegan::adonis( )
(note: this works with discrete and continuous variables)

“Unsupervised Learning”
Exploratory Data Analysis

“Ordination Methods”
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(Multiple) Hypothesis testing of microbial 
differential abundance

Healthy Tumor

Relative 
Abundance

109

(Multiple) Hypothesis testing of microbial 
differential abundance

Healthy Tumor

Relative 
AbundanceClinically-motivated question:  

“Does this microbe occur in different 
abundance between healthy/disease tissue?” 

Can we ask this for every microbe observed in 
the dataset? 

Is it cheating to perform the same test over and 
over until a hit?
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Multiple Hypothesis Testing
• In general, we often want to test many hypotheses at once.
• p-values are distributed uniformly when null hypothesis is true

• The expected number of rejections by chance is m*α 
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Method Category Control p.adjust
Bonferroni FWER P(V≥1) "bonferroni"
Holm's FWER P(V≥1) "holm"
B-H FDR P(V/R) "BH", "fdr"

Multiple Hypothesis Testing
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•Is a general approach that can substantially increase 
the [statistical] efficiency of experiments 

•Uses filter/ test pairs that are independent under the 
null hypothesis

•but correlated under the alternative

Bourgon, Gentleman, & Huber (2010) Independent filtering increases detection power 
for high-throughput experiments. PNAS 107(21) 9546-9551

Independent filtering

e.g. remove features with very low mean abundance

Multiple Hypothesis Testing
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Poisson-only Count Simulation

True Species (or Gene) Proportion in Simulation

Proportion

Species or Gene

Model Uncertainty in NGS Count Data
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Poisson-only Count Simulation

One realization of the simulation (blue)

Proportion

Species or Gene

Model Uncertainty in NGS Count Data
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Poisson-only Count Simulation

Species or Gene

100

2000

30000

Library Size

Model Uncertainty in NGS Count Data

• Uncertainty 
Depends on 
Library Size

• This describes 
sequencing 
technical replicates 
quite well
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Mean Count

100

2000

30000

Library Size

Poisson-only Count Simulation

Observed 
Variance

• Uncertainty 
Depends on 
Library Size

• This describes 
sequencing 
technical replicates 
quite well

Model Uncertainty in NGS Count Data
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Mean Count

Common Scale Rarefied
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Model Uncertainty in NGS Count Data
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• Over-dispersion

• Strong Function of Mean

• Share Information Across 
Genes to Improve Fit 
(Performance)

Common Scale Rarefied
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Poisson Overdispersion
Est. Variance NGS Count DataVariance =

Mean Count

Negative Binomial

Model Uncertainty in NGS Count Data

Real Data (Biological Replicates)
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• Negative Binomial is an infinite mixture of Poisson R.V.

• Intuition: “NB is relevant when we have (almost) as many different 
distributions (poisson means) as observations”

• Borrow from RNA-Seq analysis implementations? (Yes)

• Robinson, Oshlack (2010). A scaling normalization… RNA-Seq data. Genome Biology
• Anders, & Huber (2010). Differential expression … sequence count data. Genome Biology

Independent Filtering. More effort is needed to optimize
Independent Filtering for differential abundance detection, and
rigorously define the theoretical basis and heuristics applicable to
microbiome data. Ideally a formal application of Independent
Filtering of OTUs would replace many of the current ad hoc
approaches that often include poor reproducibility, poor justifica-
tion, and the opportunity to introduce bias.

Some of the justification for the rarefying procedure has
originated from exploratory sample-wise comparisons of micro-
biomes for which it was observed that a larger library size also
results in additional observations of rare species, leading to a
library size dependent increase in estimates of both alpha- and
beta-diversity [24,69], especially UniFrac [70]. It should be
emphasized that this represents a failure of the implementation
of these methods to properly account for rare species and not
evidence that diversity depends on library size. Rarefying is far
from the optimal method for addressing rare species, even when
analysis is restricted solely to sample-wise comparisons. As we
demonstrate here, it is more data-efficient to model the noise and

address extra species using statistical normalization methods based
on variance stabilization and robustification/filtering. Though
beyond the scope of this work, a Bayesian approach to species
abundance estimation would allow the inclusion of pseudo-counts
from a Dirichlet prior that should also substantially increase
robustness to rare species.

Our results have substantial implications for past and future
microbiome analyses, particularly regarding the interpretation of
differential abundance. Most microbiome studies utilizing high-
throughput DNA sequencing to acquire culture-independent
counts of species/OTUs have used either proportions or rarefied
counts to address widely varying library sizes. Left alone, both of
these approaches suffer from a failure to address overdispersion
among biological replicates, with rarefied counts also suffering
from a loss of power, and proportions failing to account for
heteroscedasticity. Previous reports of differential abundance
based on rarefied counts or proportions bear a strong risk of bias
toward false positives, and may warrant re-evaluation. Current
and future investigations into microbial differential abundance

Figure 6. Performance of differential abundance detection with and without rarefying. Performance summarized here by the ‘‘Area Under
the Curve’’ (AUC) metric of a Receiver Operator Curve (ROC) [59] (vertical axis). Briefly, the AUC value varies from 0.5 (random) to 1.0 (perfect),
incorporating both sensitivity and specificity. The horizontal axis indicates the effect size, shown as the actual multiplication factor applied to OTU
counts in the test class to simulate a differential abundance. Each curve traces the respective normalization method’s mean performance of that
panel, with a vertical bar indicating a standard deviation in performance across all replicates and microbiome templates. The right-hand side of the
panel rows indicates the median library size, ~NNL, while the darkness of line shading indicates the number of samples per simulated experiment. Color
shade and shape indicate the normalization method. See Methods section for the definitions of each normalization and testing method. For all
methods, detection among multiple tests was defined using a False Discovery Rate (Benjamini-Hochberg [52]) significance threshold of 0.05.
doi:10.1371/journal.pcbi.1003531.g006
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Negative Binomial t-distribution
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Effect Size Effect Size

McMurdie & Holmes (2014).  PLoS 
Computational Biology
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End:
Introduction to Microbiome / 

Metagenome Analysis Concepts

Questions?

121

Performance in a computationally simulated community

122

Balanced HMP Extreme

Three other “mock” microbiome communities

Better FP and FN performance than UPARSE…

DADA2 Accuracy benchmarks

123

DADA2 Error Model 
•Errors independent b/w different sequences 
•Errors independent b/w sites within a sequence 
•Errant sequence i is produced from j with probability 

equal to the product of site-wise substitution 
probabilities:

DADA2 algorithm assumptions

•Each substitution probability depends on original nt, 
substituting nt, and quality score

124



DADA2 Abundance Model 
• Errors are independent across reads 
• Abundance of reads w/ sequence i produced from more-abundant 

sequence j is poisson distributed 
• Probability of abundance equals error rate, λj→i, multiplied by the 

abundance of “parent” sequence, j. 
• i has count greater than or equal to one 
• “Abundance p-value” for sequence i is thus:

DADA2 algorithm assumptions

• “Probability of seeing an abundance of sequence i that is equal to or 
greater than observed value, by chance, given sequence j.”

• A low pA indicates that there are more reads of sequence i than can be 
explained by errors introduced during the amplification and sequencing 
of nj copies 
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• To ensure overall significance at a given α, one performs each
individual test at α’ = α/m

• Useful when need to correct for just a few hypotheses
• Very stringent, results in “loss of power”

- increase in Type II error, decreases sensitivity

Multiple Testing - Bonferroni

126

• Rather than control probability of any errors, FDR instead controls the 
proportion of False Positives in the set of positives.

• Input: p-values for a set of univariate tests 

• Output: p-values that are adjusted to FDR: “q-values”

• e.g. A collection of tests rejected at PFDR<=0.05
will have 5% or fewer false positives

• This is what is meant be “controlling” the false positive rate

Multiple Testing - Benjamini-Hochberg

Benjamini & Hochberg (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to 
Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289–300.
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Introduction to 
Microbiome / Metagenome 
Analysis Tools and Practices
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1. Probably-not-comprehensive summary of metagenomic tools
2. Short sermon on the virtues of reproducible analysis
3. Introduction to phyloseq & send-off this afternoon’s lab

Introduction to 
Microbiome / Metagenome 
Analysis Tools and Practices

129

Timeline of microbial community studies using high-throughput sequencing.

Gevers D, Knight R, Petrosino JF, Huang K, et al. (2012) The Human Microbiome Project: A Community Resource for the Healthy Human Microbiome. PLoS Biol 
10(8): e1001377. doi:10.1371/journal.pbio.1001377 
http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1001377

Slide graciously provided by Dirk Gevers, not necessarily with permission O:-)
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16S rRNA Databases
• GreenGenes - http://greengenes.secondgenome.com
• Silva - www.arb-silva.de
• Ribosomal Database Project (RDP) - https://rdp.cme.msu.edu

•~100Ks - millions of unique 16S rRNA genes 
•Curated taxonomy 
•Classification tools (e.g. RDP classifier, ARB, etc.)
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(16S rRNA) Amplicon Sequence 
Processing Tools:

• QIIME(2) (and ‘Qiita’?) - http://qiime.org/
• mothur - www.mothur.org/
• usearch - www.drive5.com/usearch
• DADA2 - https://github.com/benjjneb/dada2

Afternoon will be spent using QIIME2 
Daniel has much more to say about it…
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MetaPhlAn: Taxonomic profiling using 
unique marker genes

133

Gene X

X is a core gene for clade Y X is a unique marker gene for clade Y

• ~1M most representative markers used for identification 
• 184±45 markers per species (target 200) 

• ~7,100 species (excludes incomplete annotations, spp., etc.) 
• False positive/False negative rates of ~1 in 106 
• Profiles all domains of life: bacteria, viruses, euks, archaea 
• Strain level profiling using marker barcodes and SNPs 
• Quasi-markers used to resolve ambiguity in postprocessing

http://huttenhower.sph.harvard.edu/metaphlanSlide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)
133

Typical shotgun metagenome and 
metatranscriptome analyses

Samples

M
ic

ro
be

s

Relative  
abundances

Samples

G
en

es
 o

r 
Pa

th
w

ay
s

Relative  
abundances

Taxonomic 
Profiling Assembly

Functional 
Profiling

Gene content inference 
(e.g. PICRUSt, etc.)

Slide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)
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Microbiome meta’omic analyses: 
assembly

khmer (Pell 2012)

MetaAMOS (Treangen 2013)

MetaVelvet (Namiki 2012)

Meta-IDBA (Peng 2011) Genovo (Laserson 2011)

IDBA-UD (Peng 2012)
Ray (Boisvert 2012)

SPAdes (Bankevich 2012)
MEGAHIT (Li 2015)Slide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)
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Microbiome meta’omic analyses: 
assembly

Slide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)
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MetaPhlAn2: Trans-kingdom profiling

137

http://huttenhower.sph.harvard.edu/metaphlan2

Slide graciously provided by Curtis Huttenhower, not necessarily with permission O:-)
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Reproducible analysis of
microbiome / metagenome data

• Why make the effort? 
• What if I don’t want someone else reproducing 

my analysis? 
• What if I don’t know how? 
• Isn’t it enough to provide a cursory description in 

the methods section with a light sprinkling of 
literature citations? 
• (I call this a “science poem” of your analysis)

138

illustrative example favoring reproducible analysis:
“Enterotypes of the human genome”
MDS on supported distance metrics: enterotype data

139

illustrative example favoring reproducible analysis:
“Enterotypes of the human genome”
MDS on supported distance metrics: enterotype data

Four!

Gap statistic

http://joey711.github.io/phyloseq/gap-statistic.html
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microbiome data

Reproducible analysis workflow with R-markdown

HTML 
book pdf 

article pdf 
website 

dashboard 
Word Doc 

…
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Key Packages:
vegan 
ape
distory
phangorn 
picante
metagenomeSeq
ggtree

phyloseq
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ape
package

OTU Abundance
otu_table

Sample Variables
sample_data 

Taxonomy Table
taxonomyTable 

Phylogenetic Tree
phylo

otu_table sample_data tax_table phy_tree

otu_table sample_data tax_table

read.tree
read.nexus
read_tree

as as as

import

phyloseq
constructor:

Biostrings
package

Reference Seq.
XStringSet

DNAStringSet
 RNAStringSet

AAStringSet

phyloseq

Experiment Data

otu_table,
sam_data,
tax_table,
phy_tree
refseq

Accessors:
get_taxa
get_samples
get_variable
nsamples
ntaxa
rank_names
sample_names
sample_sums
sample_variables
taxa_names
taxa_sums

Processors:
filter_taxa
merge_phyloseq
merge_samples
merge_taxa
prune_samples
prune_taxa
subset_taxa
subset_samples
tip_glom
tax_glom

matrix matrixdata.frame

optional

refseq

data

data structure & APIphyloseq
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phyloseq

Preprocessing

Import

Direct Plots

plot_network plot_heatmap plot_ordination

distance ordinate

Summary / Exploratory
Graphics

filter_taxa

filterfun_sample

genefilter_sample

prune_taxa

prune_samples

subset_taxa

subset_samples

transform_sample_counts

import_biom

import_mothur

import_pyrotagger

import_qiime

import_RDP

plot_tree

plot_richness

plot_bar

bootstrap
permutation tests
regression
discriminant analysis
multiple testing
gap statistic
clustering
procrustes

Inference, Testing

sample data

OTU cluster output

Input

raw

phyloseq
processed

work flowphyloseq
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graphics
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phyloseq graphics

ordu = ordinate(GP1, "PCoA", "unifrac", weighted = TRUE)
plot_ordination(GP1, ordu, color = "SampleType", shape = "human")

147

supported 
ordination 

methods

plot_ordination()
samples-only

joey711.github.io/phyloseq/plot_ordination-examples.html

Ordination on bray-curtis dist: Global Patterns data

joey711.github.io/phyloseq/distance

phyloseq
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plot_network; Enterotype data, bray−curtis, max.dist=0.25
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plot_tree; Bacteroidetes−only. Merged samples, tip_glom=0.1
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plot_network()

plot_bar()

plot_heatmap()

plot_tree()

plot_richness()

phyloseq
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gpt <- subset_taxa(GlobalPatterns, Kingdom == "Bacteria")
gpt <- prune_taxa(names(sort(taxa_sums(gpt), TRUE)[1:300]), gpt)
plot_heatmap(gpt, sample.label = "SampleType")

joey711.github.io/phyloseq/plot_heatmap-examples.html
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ig <- make_network(enterotype, dist.fun = "bray", max.dist = 0.3)
plot_network(ig, enterotype, color = "SeqTech", shape = "Enterotype", 

line_weight = 0.4, label = NULL)
joey711.github.io/phyloseq/plot_network-examples.html

plot_network()
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joey711.github.io/phyloseq/plot_tree-examples.html

plot_tree(physeq, nodelabf=nodeplotboot(80, 0, 3), color="SampleType",
           label.tips="taxa_names", ladderize="left")

plot_tree()
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plot_bar()

joey711.github.io/phyloseq-demo/Restroom-Biogeography.html

plot_bar(restroomRm19, "SURFACE", fill = "family19", title = title) + coord_flip() + ylab("Percentage of 
Sequences") + ylim(0, 100)

Restroom Biogeography, Top 19 OTUs
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plot_richness()

joey711.github.io/phyloseq/plot_richness-examples.html

GPst = merge_samples(GP, "SampleType")
p = plot_richness(GPst, x="human", color="SampleType", measures=c("Chao1", "Shannon"))
p + geom_point(size = 5, alpha = 0.7)
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