Techniques for generating phylogenomic data matrices: transcriptomics vs genomics

Rosa Fernández & Marina Marcet-Houben

TECHNIQUES FOR GENERATING PHYLOGENOMIC DATA MATRICES

	FACTORS	GENOMICS	TRANSCRIPTOMICS	TARGET ENRICHMENT	RADseq
	MISSING DATA	LOW	HIGH	HIGH	HIGH
	BALANCED LINEAGE REPRESENTATION	LOW	HIGH	HIGH	HIGH (ALLELE DROP OUT)
	GENE DUPLICATION	REAL DUPLICATIONS	ISOFORMS	DEPENDS ON PROBE DESIGN	-
	HORIZONTAL GENE TRANSFER	YES	NO	?	NO

TECHNIQUES FOR GENERATING PHYLOGENOMIC DATA MATRICES

		WHOLE GENOME	GENOME REDUCTION		
	FACTORS	GENOMICS	TRANSCRIPTOMICS	TARGET ENRICHMENT	RADseq
	MISSING DATA	LOW	HIGH	HIGH	HIGH
	BALANCED LINEAGE REPRESENTATION	LOW	HIGH	HIGH	HIGH (ALLELE DROP OUT)
	GENE DUPLICATION	REAL DUPLICATIONS	ISOFORMS	DEPENDS ON PROBE DESIGN	CAN'T BE ASSESSED
	HORIZONTAL GENE TRANSFER	CAN BE INFERRED	NOT RECOMMENDED	NO	NO

INHERENT TO THE TECHNIQUE

TECHNIQUES FOR GENERATING PHYLOGENOMIC DATA MATRICES

	FACTORS	GENOMICS	TRANSCRIPTOMICS	TARGET ENRICHMENT	RADseq
	MISSING DATA	LOW	HIGH	HIGH	HIGH
	BALANCED LINEAGE REPRESENTATION	LOW	HIGH	HIGH	HIGH (ALLELE DROP OUT)
	GENE DUPLICATION	REAL DUPLICATIONS	ISOFORMS	DEPENDS ON PROBE DESIGN	CAN'T BE ASSESSED
	HORIZONTAL GENE TRANSFER	CAN BE INFERRED	NOT RECOMMENDED	NO	NO
	EVOLUTIONARY RATE	YES	YES	YES	-
	COMPOSITIONAL HETEROGENEITY	YES	YES	YES	-
	HETEROTACHY	YES	YES	YES	-
	LONG BRANCH ATTRACTION (LBA)	YES	YES	YES	-

SO... HOW MANY DATA MATRICES SHOULD I ANALYZE?

Fernández, Edgecombe & Giribet (2016) Syst Biol

SO... HOW MANY DATA MATRICES SHOULD I ANALYZE?

Sharma, Fernández et al. (2015) Proc Royal Soc B

• **MISSING DATA:** depends on the type of data (transcriptomes/target enr. > genomes)

• **MISSING DATA:** depends on the type of data (transcriptomes/target enr. > genomes)

No. taxa

MISSING DATA: depends on the type of data (transcriptomes/target enr. > genomes)

Empirical evidence from different datasets in transcriptomics

No. taxa

MISSING DATA: depends on the type of data (transcriptomes/target enr. > genomes)

MISSING DATA: depends on the type of data (transcriptomes/target enr. > genomes)

MISSING DATA: depends on the type of data (transcriptomes/target enr. > genomes)

MISSING DATA: depends on the type of data (transcriptomes/target enr. > genomes)

• **MISSING DATA:** depends on the type of data (transcriptomes/target enr. > genomes)

LONG BRANCH ATTRACTION (LBA)

Long-Branch Attraction Problem

Some taxa have fast-evolving DNA

Often drop out at **base** of tree, clustered with:

- (a) basal lineages / outgroups
- (b) other fast-evolvers, whom they may not be related to

This is an artifact (a false result) of how computer programs analyze DNA sequences, called **long-branch attraction**

- sequences that are fast-evolving give very long branches on trees, which tend to "attract" other long branches
- sequences that are very different (fast mutating) get lumped together with other fast-evolving sequences

LONG BRANCH ATTRACTION (LBA)

• Correcting for LBA:

Compositional heterogeneity

LONG BRANCH ATTRACTION (LBA)

Correcting for LBA:

- Compositional heterogeneity
- Evolutionary rate (also related to resolving deep nodes vs shallow ones)

correcting for longbranch attraction <u>not</u> correcting for long-branch attraction

Xing-Xing Shen¹, Leonidas Salichos^{1,2}, and Antonis Rokas^{1,*} ¹Department of Biological Sciences, Vanderbilt University ²Department of Molecular Biophysics and Biochemistry, Yale University

*Corresponding author: E-mail: antonis.rokas@vanderbilt.edu. Accepted: July 25, 2016 Shen et al. (2016) Genome Biol. Evol. 8(8):2565–2580.

Xing-Xing Shen¹, Leonidas Salichos^{1,2}, and Antonis Rokas^{1,*} ¹Department of Biological Sciences, Vanderbilt University

²Department of Molecular Biophysics and Biochemistry, Yale University

*Corresponding author: E-mail: antonis.rokas@vanderbilt.edu.

Accepted: July 25, 2016

Abstract

Shen et al. (2016) Genome Biol. Evol. 8(8):2565–2580.

Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence inference. In contrast, much less is known about the impact of choices in the properties of the data, typically genes, on phylogenetic inference. We investigated the relationships between 52 gene properties (24 sequence-based, 19 function-based, and 9 tree-based) with each other and with three measures of phylogenetic signal in two assembled data sets of 2,832 yeast and 2,002 mammalian genes. We found that most gene properties, such as evolutionary rate (measured through the percent average of pairwise identity across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment length, Guanine-Cytosine content, and the proportion of tree distance on internal branches divided by relative composition variability (treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and phylogenetic signal in which gene evolutionary rate and alignment length were simultaneously controlled, showed similar patterns of correlations, albeit weaker in strength. Examination of the relative importance of each gene property on phylogenetic signal identified gene alignment length, alongside with number of parsimony-informative sites and variable sites, as the most important predictors. Interestingly, the subsets of gene properties that optimally predicted phylogenetic signal differed considerably across our three phylogenetic measures and two data sets; however, gene alignment length and RCV were consistently included as predictors of all three phylogenetic measures in both yeasts and mammals. These results suggest that a handful of sequence-based gene properties are reliable predictors of phylogenetic signal and could be useful in guiding the choice of phylogenetic markers.

Key words: phylogenetic signal, nuclear gene, correlation, prediction, gene function, gene tree.

Shen et al. (2016) Genome Biol. Evol. 8(8):2565–2580.

Xing-Xing Shen¹, Leonidas Salichos^{1,2}, and Antonis Rokas^{1,*} ¹Department of Biological Sciences, Vanderbilt University ²Department of Molecular Biophysics and Biochemistry, Yale University

*Corresponding author: E-mail: antonis.rokas@vanderbilt.edu.

Accepted: July 25, 2016

Abstract

Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment length, Guanine-Cytosine content, and the proportion of tree distance on internal branches divided by relative composition variability (treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and

across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment length, Guanine-Cytosine content, and the proportion of tree distance on internal branches divided by relative composition variability (treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and phylogenetic signal in which gene evolutionary rate and alignment length were simultaneously controlled, showed similar patterns of correlations, albeit weaker in strength. Examination of the relative importance of each gene property on phylogenetic signal identified gene alignment length, alongside with number of parsimony-informative sites and variable sites, as the most important predictors. Interestingly, the subsets of gene properties that optimally predicted phylogenetic signal differed considerably across our three phylogenetic measures and two data sets; however, gene alignment length and RCV were consistently included as predictors of all three phylogenetic measures in both yeasts and mammals. These results suggest that a handful of sequence-based gene properties are reliable predictors of phylogenetic signal and could be useful in guiding the choice of phylogenetic markers.

Shen et al. (2016) Genome Biol. Evol. 8(8):2565–2580.

Xing-Xing Shen¹, Leonidas Salichos^{1,2}, and Antonis Rokas^{1,*} ¹Department of Biological Sciences, Vanderbilt University ²Department of Molecular Biophysics and Biochemistry, Yale University

*Corresponding author: E-mail: antonis.rokas@vanderbilt.edu.

Accepted: July 25, 2016

Abstract

Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment length, Guanine-Cytosine content, and the proportion of tree distance on internal branches divided by relative composition variability (treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment length Guanine-Cutosine content, and the proportion of tree distance on internal branches divided by relative composition variability of correlations, albeit weaker in strength. Examination of the relative importance of each gene property on phylogenetic signal identified gene alignment length, alongside with number of parsimony-informative sites and variable sites, as the most important predictors. Interestingly, the subsets of gene properties that optimally predicted phylogenetic signal differed considerably across our three phylogenetic measures and two data sets; however, gene alignment length and RCV were consistently included as predictors of all three phylogenetic measures in both yeasts and mammals. These results suggest that a handful of sequence-based gene properties all three phylogenetic measures in both yeasts and mammals. These results suggest that a handful of sequence-based gene properties are reliable predictors of phylogenetic signal and could be useful in guiding the choice of phylogenetic markers. Key words: phylogenetic signal, nuclear gene, correlation, prediction, gene function, gene tree.

Case study: The Opiliones Tree of Life

Case study: The Opiliones Tree of Life

Case study: The Opiliones Tree of Life

GENERATING PHYLOGENOMIC DATA MATRICES IN TRANSCRIPTOMICS Case study: The Opiliones Tree of Life

GENERATING PHYLOGENOMIC DATA MATRICES IN TRANSCRIPTOMICS Case study: The Opiliones Tree of Life

GENERATING PHYLOGENOMIC DATA MATRICES IN TRANSCRIPTOMICS Case study: The Opiliones Tree of Life LANIATORES **EUPNOI OPILJONES** (daddy longlegs) **CYPHOPHTHALMI**

GENERATING PHYLOGENOMIC DATA MATRICES IN TRANSCRIPTOMICS Case study: The Opiliones Tree of Life

GENERATING PHYLOGENOMIC DATA MATRICES IN TRANSCRIPTOMICS Case study: The Opiliones Tree of Life

FIELD EXPEDITION TO EXOTIC PLACES **LANIATORES EUPNOI DYSPNOI**

CYPHOPHTHALMI

OPILIONES

READY TO CREATE A MATRIX... BUT... WHICH GENES SHOULD WE INCLUDE??

Case study: The Opiliones Tree of Life

<u>MISSING DATA</u>

Let's create different matrices with different taxon occupancy to account for the effect of missing data.

Case study: The Opiliones Tree of Life

MISSING DATA

Let's create different matrices with different taxon occupancy to account for the effect of missing data.

 Download the folder lab_matrices_Cesky from the webpage of the workshop (click on 'Transcriptomics'). Extract the files. In the folder, you'll see a subset of 1:1 orthologs from Fernández et al. (2017) Proc Royal Soc B. (1,508 fasta files, already aligned) and 3 python scripts.

Case study: The Opiliones Tree of Life

MISSING DATA

Let's create different matrices with different taxon occupancy to account for the effect of missing data.

- Download the folder lab_matrices_Cesky from the webpage of the workshop (click on 'Transcriptomics'). Extract the files. In the folder, you'll see a subset of 1:1 orthologs from Fernández et al. (2017) Proc Royal Soc B. (1,508 fasta files, already aligned) and 3 python scripts.
- We'll need to install a couple of python libraries that are not in the instance (<u>NumPy</u> and <u>PyCogent</u>). For that, open the terminal and type:

pip install numpy

pip install cogent

Case study: The Opiliones Tree of Life

<u>MISSING DATA</u>

3) Let's first explore the amount of missing data that we have in each taxon. Let's run the script:

python count_species.py

Explore the amount of missing data in each taxon. Which taxa are poorly represented?

Case study: The Opiliones Tree of Life

<u>MISSING DATA</u>

3) Let's first explore the amount of missing data that we have in each taxon. Let's run the script:

python count_species.py

Explore the amount of missing data in each taxon.

Which taxa are poorly represented?

You can decide on a minimum percentage of genes that you'd like the taxa to have, and delete the rest (it should be easy to do in any text editor). Try this several times with different percentages, and see if the support for some clades changes. Does the inclusion of poorly represented taxa affect the support of the clades where they fall?

Case study: The Opiliones Tree of Life

MISSING DATA

4) Now select the genes that have a taxon occupancy above a certain threshold (ie, we want to create a matrix only with the genes that have a minimum of, let's say, 50 species). Open the script and have a look at it. Then run:

python select_slide.py

It will ask you to select the minimum taxon occupancy. Let's start by 50. It will create a folder called 'orthologs_min_[number]_taxa'. Open it and check how many genes were selected with this threshold.

Run the script with different thresholds and check how the number of genes varies.

Case study: The Opiliones Tree of Life

<u>MISSING DATA</u>

5) Do you remember that Opiliones had four main groups: Cyphophthalmi, Eupnoi, Laniatores and Dyspnoi?

Case study: The Opiliones Tree of Life

<u>MISSING DATA</u>

5) Do you remember that Opiliones had four main groups: Cyphophthalmi, Eupnoi, Laniatores and Dyspnoi?

Case study: The Opiliones Tree of Life

<u>MISSING DATA</u>

5) Do you remember that Opiliones had four main groups: Cyphophthalmi, Eupnoi, Laniatores and Dyspnoi?

If we select genes just based on taxon occupancy, we may select some that do not include representatives of one or more of these lineages.

6) Let's try to select genes that have an homogeneous representation of all our lineages of interest. Let's open the **decisive_genes.py** script and inspect it together.

Notice that at the end of the script we're defining our four lineages and choosing a minimum number of taxa representing each lineage in the genes that will be selected (4 in this case). Run the script: **python decisive_genes.py**

Case study: The Opiliones Tree of Life

MISSING DATA

7) We now have 2 folders called **'Decisive'** and **'Non Decisive'**. Check how many genes you have in the **'Decisive'** one. Change the threshold in the script, rerun it and check how the selected (=decisive) genes change. Do you think this may affect phylogenetic relationships?

Case study: The Opiliones Tree of Life

MISSING DATA

7) We now have 2 folders called **'Decisive'** and **'Non Decisive'**. Check how many genes you have in the **'Decisive'** one. Change the threshold in the script, rerun it and check how the selected (=decisive) genes change. Do you think this may affect phylogenetic relationships?

8) Now (or in the open labs) you can play with these scripts to create different matrices, run some trees and see how the topology and the support for each node/lineage changes.

<u>COMPOSITIONAL HETEROGENEITY</u>

1) We can check compositional heterogeneity at three levels: at the level of **gene**, at the level of **taxon** or at the level of **site**.

<u>COMPOSITIONAL HETEROGENEITY</u>

1) We can check compositional heterogeneity at three levels: at the level of **gene**, at the level of **taxon** or at the level of **site**.

2) Let's explore compositional bias at the level of **site**. We're going to use a program called BMGE (Block Mapping and Gathering with Entropy).

COMPOSITIONAL HETEROGENEITY

1) We can check compositional heterogeneity at three levels: at the level of **gene**, at the level of **taxon** or at the level of **site**.

2) Let's explore compositional bias at the level of **site**. We're going to use a program called BMGE (Block Mapping and Gathering with Entropy).

3) As it is not in the instance, let's download it from <u>here</u>. Let's extract it by double-clicking on it (or from the terminal with **tar -xcvf BMGE-1.12.tar.gz**).

COMPOSITIONAL HETEROGENEITY

1) We can check compositional heterogeneity at three levels: at the level of **gene**, at the level of **taxon** or at the level of **site**.

2) Let's explore compositional bias at the level of **site**. We're going to use a program called BMGE (Block Mapping and Gathering with Entropy).

3) As it is not in the instance, let's download it from <u>here</u>. Let's extract it by double-clicking on it (or from the terminal with **tar -xcvf BMGE-1.12.tar.gz**).

4) We can do different types of trimming with BMGE. You can check the user guide <u>here</u>. Today we're going to focus on detecting and trimming compositionally-heterogeneous positions. In the terminal, type:

java -jar BMGE.jar -i examples/prmA.pam150.phy -t AA -s YES -on prmABMGE.nex

What's the difference in size before and after trimming compositionally-heterogeneous sites?

ADVANCED EXERCISES

1) You can check compositional heterogeneity at the level of gene and taxon with BaCoCa. You can download it from <u>here</u> and play with the toy data set. You'll also need to download the <u>Statistics::R</u> module.

ADVANCED EXERCISES

1) You can check compositional heterogeneity at the level of gene and taxon with BaCoCa. You can download it from <u>here</u> and play with the toy data set. You'll also need to download the <u>Statistics::R</u> module.

2) You can use <u>TIGER</u> to bin the sites in your matrix depending on their evolutionary rate, and then create submatrices eliminating the fast evolving ones, the slowest evolving ones, etc. (note that they detected a bug and are working on it. The following version of the software will be called bioTIGER but they only have a beta version of it so far).

ADVANCED EXERCISES

1) You can check compositional heterogeneity at the level of gene and taxon with BaCoCa. You can download it from <u>here</u> and play with the toy data set. You'll also need to download the <u>Statistics::R</u> module.

2) You can use <u>TIGER</u> to bin the sites in your matrix depending on their evolutionary rate, and then create submatrices eliminating the fast evolving ones, the slowest evolving ones, etc. (note that they detected a bug and are working on it. The following version of the software will be called bioTIGER but they only have a beta version of it so far).

3) With <u>TreSpEx</u> (from the same developers that created BaCoCa) you can do a bunch of analyses to detect misleading signal in phylogenomic inference, such as calculating saturation indices, genes prone to LBA artifacts, paralogy detection, etc.

Exercise for the break...

			IER
		C	\bullet
three positive reviews, but	overblown	apologize for the delay	maddening lack of
completely unsupported	flim-flam	a poor fit for this journal	awkward
insufficient detail	aoios Review	a valuable paper, but	numerous grammatical errors
frothy	outdated	increased competition for space	far too long
by contrast, reviewer 3	misleading	lacks novelty	applaud the effort
	three positive reviews, but completely unsupported insufficient detail frothy by contrast, reviewer 3	Image: series of the series	Image: three positive reviews, butoverblownapologize for the delaycompletely unsupportedflim-flama poor fit for this journalinsufficient detailImage: the this pour point of this pour pour point of this pour point of this pour pour pour pour pour pour pour

Exercise for the break...

REJ	ECT			
out	three provides the review of the second seco	overblown	apologize for the delay	maddening lack of
	completely unsupported	f	a potent for the journal	awkward
bewildering	ingtent	aoios REVIEW	a te partitu	ni mercus gradina dical
sp vzed	*	outdated	increased competition for space	fartong
handwaving	by ast, rev 3	misleading	lac≯ velty	
axiosreview.org				

GENERATING PHYLOGENOMIC DATA MATRICES IN GENOMICS

Eukaryotes - Gene duplication

Prokaryotes - Horizontal gene transfer

To create a data matrix you need one-to-one orthology relationships between all the genes that are going to form the matrix. The reconstruction methods are very sensitive to the inclusion of paralogs and of genes that have undergone HGT processes.

Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication

Luis M. Corrochano,^{1,*} Alan Kuo,² Marina Marcet-Houben,^{3,4} Silvia Polaino,⁵ Asaf Salamov,² José M. Villalobos-Escobedo,⁶ Jane Grimwood,^{2,7} M. Isabel Álvarez,⁶ Javier Avalos,¹ Diane Bauer,² Ernesto P. Benito,^{8,9} Isabelle Benoit,¹⁰ Gertraud Burger,¹¹ Lola P. Camino,¹ David Cánovas,¹ Enrique Cerdá-Olmedo,¹ Jan-Fang Cheng,² Angel Domínguez,⁸ Marek Eliás,¹² Arturo P. Eslava,⁸ Fabian Glaser,¹³ Gabriel Gutiérrez,¹ Joseph Heitman,¹⁴ Bernard Henrissat,^{15,16} Enrique A. Iturriaga,⁸ B. Franz Lang,¹¹ José L. Lavin,¹⁷ Soo Chan Lee,¹⁴ Wenjun Li,¹⁴ Erika Lindquist,² Sergio López-Garcia,¹⁸ Eva M. Luque,¹ Ana T. Marcos,¹ Joel Martin,² Kevin McCluskey,¹⁹

Number of genes you can select to reconstruct your matrix according to species. Less species means we'll introduce missing data

Number of species	Strict one-to-one	
18	11	
17	27	
16	50	
15	92	
14	165	
13	243	
12	311	
11	384	

Tricks to expand your dataset to reconstruct a data matrix: delete species specific expansions

Number of genes you can select to reconstruct your matrix according to species. Less species means we'll introduce missing data

Number of species	Strict one-to-one	Delete species specific duplications	
18	11	54	
17	27	117	
16	50	183	
15	92	285	
14	165	441	
13	243	599	
12	311	725	
11	384	857	

TreeKO: a duplication-aware algorithm for the comparison of phylogenetic trees

Marina Marcet-Houben and Toni Gabaldón

ete-compare

calculate distances and compare trees

Gene tree with duplications

Obtain orthologous trees and keep only those that contain the seed protein Number of genes you can select to reconstruct your matrix according to species. Less species means we'll introduce missing data

Number of species	Strict one-to-one	Delete species specific duplications	Obtain orthologous trees
18	11	54	198
17	27	117	444
16	50	183	687
15	92	285	1122
14	165	441	1633
13	243	599	2176
12	311	725	2662
11	384	857	3197

Toward Automatic Reconstruction of a Highly Resolved Tree of Life

Francesca D. Ciccarelli^{1,2,3,*}, Tobias Doerks^{1,*}, Christian von Mering¹, Christopher J. Creevey¹, Berend Snel⁴, Peer Bork^{1,5,†}

Based on very few genes.

The tree of one percent

To build such a broad tree it is difficult to obtain a set of gene trees that are not affected by duplications of HGT events and that are still present in the majority of the species

Divide & Conquer approach to reconstruct nested phylogenetic trees.

There are several drawback to this method:

1.- Branch lengths will need to be calculated afterwards since they will be changing every time a node is re-calculated.

2.- It strictly depends on the consecutives trees being correct, a bad decision will destroy the whole analysis. Errors tend to happen more often in early branches where less data can be used and therefore tend to have a bigger effect.

3.- It is highly dependant on having a good outgroup.

http://tol.cgenomics.org/
1.- Exercice: How to get trees that have only one-to-one orthologs given a list of gene trees.

Download the list of phylogenetic trees from the evomics website.

Open an ipython terminal. We will first obtain the list of trees that only contain one-to-one orthologs.

```
import ete3
def get species name(node):
    return node.split(" ")[1]
outfile = open("one2one trees.txt", "w")
for line in open("trees.1000.txt"):
    line = line.strip()
    code, newick = line.split("\t")
    t = ete3.PhyloTree(newick, sp naming function=get species name)
    species size = len(t.get species())
    leaf size = len(t.get leaves())
    if species size == leaf size:
        print >>outfile,code,len(t.get species()),t.write()
outfile.close()
```

2.- Exercice: Filter out species specific duplications

```
outfile = open("filtered_trees.txt","w")
for line in open("trees.1000.txt"):
    line = line.strip()
    code,newick = line.split("\t")
    t = ete3.PhyloTree(newick,sp_naming_function=get_species_name)
    t = t.collapse_lineage_specific_expansions()
    if len(t.get_leaves()) == len(t.get_species()):
        print >>outfile,code,len(t.get_species()),t.write()
outfile.close()
```

```
outfile = open("list orthologous trees.txt","w")
for line in open("fileName.txt"):
    line = line.strip()
    code, newick = line.split("\t")
    t = ete3.PhyloTree(newick, sp naming function=get species name)
    t = t.collapse lineage specific expansions()
    orthoTrees = t.get speciation trees()[2]
    best ortho tree = None
    for ot in orthoTrees:
        tree size = len(ot.get leaf names())
        if not best ortho tree:
            best ortho tree = ot
        else:
             saved tree size = len(best ortho tree.get leaf names())
             if saved tree size < tree size:
                 best ortho tree = ot
    print code,len(best ortho tree.get leaf names()),best ortho tree.write()
outfile.close()
```

4.- Exercice: Obtain a tree using a super-tree approach

```
outfile = open("duptree_trees.txt","w")
for line in open("fileName.txt"):
    line = line.strip()
    code,newick = line.split("\t")
    t = ete3.PhyloTree(newick,sp_naming_function=get_species_name)
    for leaf in t.iter_leaves():
        leaf.name = leaf.species
    print t.write(format=9)
    outfile.close()
```

Download duptree from their website: <u>http://genome.cs.iastate.edu/CBL/DupTree/</u> Uncompress the file tar -zxvf linux.i386.tar.gz Now use duptree to obtain the super-tree:

./linux-i386/duptree -i duptree_trees.txt -o species_tree.nw

Genome-Scale Phylogenetics: Inferring the Plant Tree of Life from 18,896 Gene Trees

J. Gordon Burleigh, ^{1,2,*} Mukul S. Bansal, ^{3,4} Oliver Eulenstein, ³ Stefanie Hartmann, ^{5,6} André Wehe, ³ and Todd J. Vision^{2,5}