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SO... HOW MANY DATA MATRICES SHOULD | ANALYZE?

Fernandez, Edgecombe & Giribet (2016) Syst Biol
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SO... HOW MANY DATA MATRICES SHOULD | ANALYZE?

/E

(a)

(b)

N[dll’l‘i 1 (ML)
136 genes
Ch 0% occupancy

Matrix 2 (ML)
599 penes
86.9% occupancy

Matrix 3 (ML)
1,557 penes
80.1% occupancy

Matrix 4 (ML)
5,025 genes
64.2% occupancy

matrix occupancy

Matrix 1 (STAR)
136 genes
93.0% occupancy

Matrix 1 (NJst)
136 genes
93.0% occupancy

Matrix 1 (MP-EST)
136 genes
93.0% occupancy

Matrix 2 (STAR)
599 genes
86.9% occupancy

Matrix 2 (NJst)
599 penes
86.9% occupancy

Matrix 2 (MP-EST)
599 penes
86.9% occupancy

Matrix 5 (ML)
131 genes
80.9% occupancy

comp. heterogeneity

Matrix 6 (ML)
453 penes
87.1% occupancy

Matrix 7 (ML)
2,580 genes
72.0% occupancy

Matrix 8 (ML)
500 genes (slow)
81.7% occupancy

Matrix 9 (ML)
500 genes (mid)
80.1% occupancy

Matrix 10 (ML)
557 genes (fast)
78.5% occupancy

species tree methods

matrix reduction

evolutionary rate

Matrix 11 (ML)
67 genes
92.7% occupancy

Matrix 12 (ML)
280 genes
86.9% occupancy

Matrix 13 (ML)
689 genes
80.4% occupancy

Matrix 14 (ML)
1725 genes
66.4% occupancy

benchmarked single copy orthologs

Matrix 1 (BI)
136 genes
93.0% occupancy

Matrix 2 (BD)
599 genes
86.9% occupancy

Matrix 1 (ML)
136 genes
93.0% occupancy

Matrix 11 (ML)
67 penes
92.7% occupancy

=== (Chaerilidae

Buthidac

other scorpions

bayesian inference

branch length mixtures model

Sharma, Fernandez et al. (2015) Proc Royal Soc B
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GENERATING PHYLOGENOMIC DATA MATRICES IN
TRANSCRIPTOMICS

o MISSING DATA: depends on the type of data (transcriptomes/target enr. > genomes)
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GENERATING PHYLOGENOMIC DATA MATRICES IN
TRANSCRIPTOMICS

o MISSING DATA: depends on the type of data (transcriptomes/target enr. > genomes)

Empirical evidence from different datasets in transcriptomics

e Many orthologs are shared by a few taxa,m missing data

n
e
% e We can filter the orthologs by taxon occupancy, i.e., genes that have
- a minimum of X species.
o
_C;B e Empirical results: if we chose the genes shared at least by 50% of the
n taxa, we’'ll have a matrix with 1,500 - 3,000 genes.
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GENERATING PHYLOGENOMIC DATA MATRICES IN
TRANSCRIPTOMICS

o MISSING DATA: depends on the type of data (transcriptomes/target enr. > genomes)

Empirical evidence from different datasets in transcriptomics

e Many orthologs are shared by a few taxa,m missing data

n
e
% e We can filter the orthologs by taxon occupancy, i.e., genes that have
- a minimum of X species.
o
_C;B e Empirical results: if we chose the genes shared at least by 75% of the
n taxa, we’'ll have a matrix with 500 - 1,000 genes.
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GENERATING PHYLOGENOMIC DATA MATRICES IN
TRANSCRIPTOMICS

o MISSING DATA: depends on the type of data (transcriptomes/target enr. > genomes)

Empirical evidence from different datasets in transcriptomics

e Many orthologs are shared by a few taxa,m missing data

n
e
% e We can filter the orthologs by taxon occupancy, i.e., genes that have
- a minimum of X species.
o
_C;B e Empirical results: if we chose the genes shared at least by 90% of the
n taxa, we’'ll have a matrix with 100 - 200 genes.
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Z
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GENERATING PHYLOGENOMIC DATA MATRICES IN
TRANSCRIPTOMICS

o MISSING DATA: depends on the type of data (transcriptomes/target enr. > genomes)

Empirical evidence from different datasets in transcriptomics

e < 50% taxon occupancy: PROCEED WITH CAUTION!

— Levels of missing data can be > 80-90% !!

No. shared genes

- i50% No. faxa



GENERATING PHYLOGENOMIC DATA MATRICES IN
TRANSCRIPTOMICS

LONG BRANCH ATTRACTION (LBA)

Long-Branch Attraction Problem

a repuis  SOme taxa have fast-evolving DNA

Arthropod
(Chwiicerste)
Arthropod

(Crustacean)

amoros  Often drop out at base of tree,
o clustered with:

Mollusc
(Palyplacophoran)
Polychaete

e (@) basal lineages / outgroups
I W (b) other fast-evolvers, whom

—_ Nemaiode they may not be related to

Cnidarian

This is an artifact (a false result) of how computer programs
analyze DNA sequences, called long-branch attraction

- sequences that are fast-evolving give very long branches
on trees, which tend to “attract” other long branches

=P sequences that are very different (fast mutating) get lumped
together with other fast-evolving sequences
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LONG BRANCH ATTRACTION (LBA)

Cnidaria

Chordata
Yenoturbellida
Hemichordal.
Echinodamala

Chae lognatha e ——

Tellford et al.
2015 Curr. Biol.
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e Correcting for LBA:

Compositional heterogeneity
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e LONG BRANCH ATTRACTION (LBA)
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Abstract

Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have
shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence
inference. In contrast, much less is known about the impact of choices in the properties of the data, typically genes, on phylogenetic
inference. We investigated the relationships between 52 gene properties (24 sequence-based, 19 function-based, and 9 tree-based)
with each other and with three measures of phylogenetic signal in two assembled data sets of 2,832 yeast and 2,002 mammalian
genes. We found that most gene properties, such as evolutionary rate (measured through the percent average of pairwise identity
across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment
length, Guanine-Cytosine content, and the proportion of tree distance on internal branches divided by relative composition variability
(treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and
phylogenetic signal in which gene evolutionary rate and alignment length were simultaneously controlled, showed similar patterns
of correlations, albeit weaker in strength. Examination of the relative importance of each gene property on phylogenetic signal
identified gene alignment length, alongside with number of parsimony-informative sites and variable sites, as the most important
predictors. Interestingly, the subsets of gene properties that optimally predicted phylogenetic signal differed considerably across our
three phylogenetic measures and two data sets; however, gene alignment length and RCV were consistently included as predictors of
all three phylogenetic measures in both yeasts and mammals. These results suggest that a handful of sequence-based gene properties
are reliable predictors of phylogenetic signal and could be useful in guiding the choice of phylogenetic markers.

Key words: phylogenetic signal, nuclear gene, correlation, prediction, gene function, gene tree.
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GENERATING PHYLOGENOMIC DATA MATRICES IN
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Case study: The Opiliones Tree of Life
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GENERATING PHYLOGENOMIC DATA MATRICES IN
TRANSCRIPTOMICS
Case study: The Opiliones Tree of Life

LANIATORES ‘ FIELD EXPEDITIOi TO EXOTIC PLACES

SEQUENCING

ASSEMBLY
L DYSPNOI ‘

ORTHOLOGY INFERENCE

CYPHOPHTHALMI ‘

READY TO CREATE A MATRIX... BUT... WHICH GENES SHOULD WE INCLUDE??
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o MISSING DATA

Let’s create different matrices with different taxon occupancy to account for the effect of missing
data.
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Case study: The Opiliones Tree of Life
o MISSING DATA

Let’s create different matrices with different taxon occupancy to account for the effect of missing
data.

1) Download the folder lab_matrices_Cesky from the webpage of the workshop (click on
‘Transcriptomics’). Extract the files. In the folder, you’ll see a subset of 1:1 orthologs from
Fernandez et al. (2017) Proc Royal Soc B. (1,508 fasta files, already aligned) and 3 python
scripts.



GENERATING PHYLOGENOMIC DATA MATRICES IN
TRANSCRIPTOMICS
Case study: The Opiliones Tree of Life
o MISSING DATA

Let’s create different matrices with different taxon occupancy to account for the effect of missing
data.

1) Download the folder lab_matrices_Cesky from the webpage of the workshop (click on
‘Transcriptomics’). Extract the files. In the folder, you’ll see a subset of 1:1 orthologs from

Fernandez et al. (2017) Proc Royal Soc B. (1,508 fasta files, already aligned) and 3 python
scripts.

2) We'll need to install a couple of python libraries that are not in the instance (NumPy and
PyCogent). For that, open the terminal and type:
pip install numpy

pip install cogent


http://www.numpy.org/
http://pycogent.org/
http://pycogent.org/

GENERATING PHYLOGENOMIC DATA MATRICES IN
TRANSCRIPTOMICS

Case study: The Opiliones Tree of Life
o MISSING DATA

3) Let’s first explore the amount of missing data that we have in each taxon. Let’s run the script:

python count_species.py

Explore the amount of missing data in each taxon. Which taxa are poorly represented?



GENERATING PHYLOGENOMIC DATA MATRICES IN
TRANSCRIPTOMICS
Case study: The Opiliones Tree of Life
o MISSING DATA

3) Let’s first explore the amount of missing data that we have in each taxon. Let’s run the script:

python count_species.py

Explore the amount of missing data in each taxon.

Which taxa are poorly represented?

You can decide on a minimum percentage of genes that you’d like the taxa to have, and delete

the rest (it should be easy to do in any text editor). Try this several times with different percentages,
and see if the support for some clades changes. Does the inclusion of poorly represented taxa affect

the support of the clades where they fall?



GENERATING PHYLOGENOMIC DATA MATRICES IN
TRANSCRIPTOMICS
Case study: The Opiliones Tree of Life
MISSING DATA
4) Now select the genes that have a taxon occupancy above a certain threshold (ie, we want to

create a matrix only with the genes that have a minimum of, let’s say, 50 species). Open the script
and have a look at it. Then run:

python select_slide.py

It will ask you to select the minimum taxon occupancy. Let’s start by 50. It will create a folder called
'orthologs_min_[number]_taxa'. Open it and check how many genes were selected with this
threshold.

Run the script with different thresholds and check how the number of genes varies.



OPILlONES

GENERATING PHYLOGENOMIC DATA MATRICES IN
TRANSCRIPTOMICS

Case study: The Opiliones Tree of Life
MISSING DATA

5) Do you remember that Opiliones had four main groups: Cyphophthalmi, Eupnoi, Laniatores and
Dyspnoi?

LANIATORES

—— DYSPNOI

CYPHOPHTHALMI
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MISSING DATA

5) Do you remember that Opiliones had four main groups: Cyphophthalmi, Eupnoi, Laniatores and

Dyspnoi?
LANIATORES

—— DYSPNOI

CYPHOPHTHALMI

If we select genes just based on taxon occupancy,
we may select some that do not include
representatives of one or more of these lineages.



GENERATING PHYLOGENOMIC DATA MATRICES IN
TRANSCRIPTOMICS
Case study: The Opiliones Tree of Life

MISSING DATA

5) Do you remember that Opiliones had four main groups: Cyphophthalmi, Eupnoi, Laniatores and

Dyspnoi?
—————LANIATORES

OPILlONES

—— DYSPNOI

CYPHOPHTHALMI

If we select genes just based on taxon occupancy,
we may select some that do not include
representatives of one or more of these lineages.

6) Let’s try to select genes that have an
homogeneous representation of all our lineages of
interest. Let’s open the decisive_genes.py script
and inspect it together.

Notice that at the end of the script we’re defining
our four lineages and choosing a minimum number
of taxa representing each lineage in the genes that
will be selected (4 in this case). Run the script:
python decisive_genes.py



GENERATING PHYLOGENOMIC DATA MATRICES IN
TRANSCRIPTOMICS
Case study: The Opiliones Tree of Life
o MISSING DATA

7) We now have 2 folders called ‘Decisive’ and ‘Non Decisive’. Check how many genes you
have in the ‘Decisive’ one. Change the threshold in the script, rerun it and check how the selected
(=decisive) genes change. Do you think this may affect phylogenetic relationships?




GENERATING PHYLOGENOMIC DATA MATRICES IN
TRANSCRIPTOMICS
Case study: The Opiliones Tree of Life
o MISSING DATA

7) We now have 2 folders called ‘Decisive’ and ‘Non Decisive’. Check how many genes you
have in the ‘Decisive’ one. Change the threshold in the script, rerun it and check how the selected
(=decisive) genes change. Do you think this may affect phylogenetic relationships?

8) Now (or in the open labs) you can play with these scripts to create different matrices, run some
trees and see how the topology and the support for each node/lineage changes.
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1) We can check compositional heterogeneity at three levels: at the level of gene, at the level of
taxon or at the level of site.
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1) We can check compositional heterogeneity at three levels: at the level of gene, at the level of
taxon or at the level of site.

2) Let’s explore compositional bias at the level of site. We're going to use a program called BMGE
(Block Mapping and Gathering with Entropy).
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e COMPOSITIONAL HETEROGENEITY

1) We can check compositional heterogeneity at three levels: at the level of gene, at the level of
taxon or at the level of site.

2) Let’s explore compositional bias at the level of site. We're going to use a program called BMGE
(Block Mapping and Gathering with Entropy).

3) Asitis notin the instance, let's download it from here. Let’s extract it by double-clicking on it (or
from the terminal with tar -xcvf BMGE-1.12.tar.gz).


ftp://ftp.pasteur.fr/pub/gensoft/projects/BMGE/
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e COMPOSITIONAL HETEROGENEITY

1) We can check compositional heterogeneity at three levels: at the level of gene, at the level of
taxon or at the level of site.

2) Let’s explore compositional bias at the level of site. We're going to use a program called BMGE
(Block Mapping and Gathering with Entropy).

3) Asitis notin the instance, let's download it from here. Let’s extract it by double-clicking on it (or
from the terminal with tar -xcvf BMGE-1.12.tar.gz).

4) We can do different types of trimming with BMGE. You can check the user guide here. Today
we’re going to focus on detecting and trimming compositionally-heterogeneous positions. In the
terminal, type:

java -jar BMGE.jar -i examples/prmA.pam150.phy -t AA -s YES -on prmABMGE.nex

What's the difference in size before and after trimming compositionally-heterogeneous sites?


ftp://ftp.pasteur.fr/pub/gensoft/projects/BMGE/
http://gensoft.pasteur.fr/docs/BMGE/1.0/BMGE_doc.pdf

GENERATING PHYLOGENOMIC DATA MATRICES IN
TRANSCRIPTOMICS

o ADVANCED EXERCISES

1) You can check compositional heterogeneity at the level of gene and taxon with BaCoCa. You
can download it from here and play with the toy data set. You'll also need to download the
Statistics::R module.



https://www.zfmk.de/en/research/research-centres-and-groups/bacoca
http://search.cpan.org/~gmpassos/Statistics-R-0.02/lib/Statistics/R.pm
http://search.cpan.org/~gmpassos/Statistics-R-0.02/lib/Statistics/R.pm
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ADVANCED EXERCISES

1) You can check compositional heterogeneity at the level of gene and taxon with BaCoCa. You
can download it from here and play with the toy data set. You'll also need to download the
Statistics::R module.

2) You can use TIGER to bin the sites in your matrix depending on their evolutionary rate, and
then create submatrices eliminating the fast evolving ones, the slowest evolving ones, etc. (note that
they detected a bug and are working on it. The following version of the software will be called
bioTIGER but they only have a beta version of it so far).


https://www.zfmk.de/en/research/research-centres-and-groups/bacoca
http://search.cpan.org/~gmpassos/Statistics-R-0.02/lib/Statistics/R.pm
http://search.cpan.org/~gmpassos/Statistics-R-0.02/lib/Statistics/R.pm
http://mcinerneylab.com/software/tiger/#
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ADVANCED EXERCISES

1) You can check compositional heterogeneity at the level of gene and taxon with BaCoCa. You
can download it from here and play with the toy data set. You'll also need to download the
Statistics::R module.

2) You can use TIGER to bin the sites in your matrix depending on their evolutionary rate, and
then create submatrices eliminating the fast evolving ones, the slowest evolving ones, etc. (note that
they detected a bug and are working on it. The following version of the software will be called
bioTIGER but they only have a beta version of it so far).

3) With TreSpEx (from the same developers that created BaCoCa) you can do a bunch of
analyses to detect misleading signal in phylogenomic inference, such as calculating saturation
indices, genes prone to LBA artifacts, paralogy detection, etc.


https://www.zfmk.de/en/research/research-centres-and-groups/bacoca
http://search.cpan.org/~gmpassos/Statistics-R-0.02/lib/Statistics/R.pm
http://search.cpan.org/~gmpassos/Statistics-R-0.02/lib/Statistics/R.pm
http://mcinerneylab.com/software/tiger/#
http://annelida.de/research/bioinformatics/software/index.html
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GENERATING PHYLOGENOMIC DATA MATRICES IN GENOMICS

Eukaryotes - Gene duplication Prokaryotes - Horizontal gene transfer

To create a data matrix you need one-to-one orthology relationships between all the genes
that are going to form the matrix. The reconstruction methods are very sensitive to the
inclusion of paralogs and of genes that have undergone HGT processes.



Expansion of Signhal Transduction Pathways
in Fungi by Extensive Genome Duplication
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Number of genes you can select to reconstruct your matrix according to species.
Less species means we’ll introduce missing data

Number of species Strict one-to-one
18 11
17 27
16 50
15 92
14 165
13 243
12 311
11 384




Tricks to expand your dataset to reconstruct a data matrix:
delete species specific expansions

—Prot E
—Prot D

L pProt A2 1.11

1 ——ProtA3
_':;;—M




Number of genes you can select to reconstruct your matrix according to species.
Less species means we’ll introduce missing data

Delete species

Number of species Strict one-to-one specific duplications
18 11 54
17 27 117
16 50 183
15 92 285
14 165 441
13 243 599
12 311 725

11 384 857



TreeKO: a duplication-aware algorithm for the comparison of
phylogenetic trees

Marina Marcet-Houben and Toni Gabaldﬁn'

ete-compare

calculate distances and compare trees

Phylogenetic tree that contains duplications Obtain the list of orthologous trees



Prot E
Cprot D1
prot D2
Prot B3
Prot B2
Prot A4
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Prot B1
Prot A1
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Prot A3
—
1.67

Gene tree with duplications

Prot E

— “Prot D1
. I
Prot B2

—Prot E

—'{F‘ rot D1

—Prot A3

Prot C
Prot B1

Obtain orthologous trees
and keep only those that
contain the seed protein




Number of genes you can select to reconstruct your matrix according to species.
Less species means we’ll introduce missing data

Number of species Strict one-to-one spg)cei;iitzjgliesai?izns Obtain t? (retgé)logous
18 11 54 198
17 27 117 444
16 50 183 687
15 92 285 1122
14 165 441 1633
13 243 599 2176
12 311 725 2662

11 384 857 3197



Toward Automatic Reconstruction of a Highly
Resolved Tree of Life

Francesca D. Ciccarelli-2>", Tobias Doerks!"’, Christian von Mering!, Christopher J. Creevey!, Berend
Snel®, Peer Bork!™f
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Divide & Conquer approach to reconstruct nested phylogenetic trees.
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There are several drawback to this method:

1.- Branch lengths will need to be calculated afterwards since they will be changing every
time a node is re-calculated.

2.- It strictly depends on the consecutives trees being correct, a bad decision will destroy the
whole analysis. Errors tend to happen more often in early branches where less data can be
used and therefore tend to have a bigger effect.

3.- It is highly dependant on having a good outgroup.




100% GT support
50% GT support

® optimized node (alrt=1.0)
® optimized node (alrt<1.0)
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Growing the Tree of Life

A nested phylogenetic reconstruction approach provides scalable resolution in the eukaryotic Tree
Of Life

http://tol.cgenomics.org/



1.- Exercice: How to get trees that have only one-to-one orthologs given a list of gene trees.
Download the list of phylogenetic trees from the evomics website.

Open an ipython terminal. We will first obtain the list of trees that only contain one-to-one orthologs.

import ete3

def get species name (node) :
return node.split (™ ") [1]

outfile = open (“oneZone trees.txt”,”w”)
for line in open (“trees.1000.txt”) :

line = line.strip()

code,newick = line.split (“\t”)

t = ete3.PhyloTree (newick, sp naming function=get species name)

species size = len(t.get species())

leaf size = len(t.get leaves())

if species size == leaf size:

print >>outfile,code,len(t.get species()),t.write()

outfile.close ()




2.- Exercice: Filter out species specific duplications




3.- Exercice: Obtain orthologous trees

outfile = open(“list orthologous trees.txt”,”w”)
for line 1n open(“fileName.txt”):
line = line.strip()
code,newick = line.split (“\t”)
t = ete3.PhyloTree (newick, sp naming function=get species name)
t = t.collapse lineage specific expansions ()
orthoTrees = t.get speciation trees() [2]
best ortho tree = None
for ot in orthoTrees:
tree size = len(ot.get leaf names())
if not best ortho tree:
best ortho tree = ot
else:
saved tree size = len(best ortho tree.get leaf names())
1f saved tree size < tree size:
best ortho tree = ot
print code, len(best ortho tree.get leaf names()),best ortho tree.write()

outfile.close ()




4.- Exercice: Obtain a tree using a super-tree approach

outfile = open (“duptree trees.txt”,”w”)
for line 1n open(“fileName.txt”):
line = line.strip()
code,newick = line.split (“\t”)
t = ete3.PhyloTree (newick, sp naming function=get species name)
for leaf in t.iter leaves():
leaf.name = leaf.species
print t.write (format=9)
outfile.close ()

Download duptree from their website: http://genome.cs.iastate.edu/CBL/DupTree/
Uncompress the file tar -zxvf linux.i386.tar.gz
Now use duptree to obtain the super-tree:

./linux-i386/duptree -i duptree trees.txt -o species tree.nw

Genome-Scale Phylogenetics: Inferring the Plant Tree of Life from
18,896 Gene Trees

J. Gordon Burleiqh_1'2" Mukul 5. Bansal,a'q Oliver ELI|I':‘-I'|S|ZEiI'|.3 Stefanie Hartmann.ﬁ'ﬁ André ‘u".fehe-.:}I and Todd J.
Vision?



http://genome.cs.iastate.edu/CBL/DupTree/

