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Lecture & Demo: Bayesian fundamentals
Bayes theorem, priors

break

Markov chain Monte Carlo
Bayesian phylogenetics
Site-specific models applied in phylogenomic studies

lunch

Lecture: Introduction to RevBayes

break

RevBayes tutorial 1: Inferring unrooted phylogenies

dinner

Lecture: Bayesian divergence-time estimation

break

RevBayes tutorial 2: Divergence dating w/ fossil & molecular data

done!

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)



B  M L?
What’s the difference?

Bayesian:

• estimates f(θ | D)
• estimates a distribution

• parameters are random
variables

• average over nuisance
parameters

Maximum Likelihood:

• maximizes f(D | θ)
• point estimate

• parameters are
fixed/unknown

• optimize nuisance
parameters
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Let’s start with joint probability and the
simple example that Paul Lewis gives in his
lecture on Bayesian phylogenetics

Slides source: https://molevol.mbl.edu/index.php/Paul_Lewis

(photo of Paul Lewis by David Hillis)

http://phylogeny.uconn.edu/
https://molevol.mbl.edu/index.php/Paul_Lewis
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Joint probabilities
B = Black   S = Solid 
W = White  D = Dotted
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Conditional probabilities
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Bayes’ rule
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Probability of "Dotted"



Pr(D) is the marginal probability of being dotted 
To compute it, we marginalize over colors

Pr(B|D) =
Pr(B) Pr(D|B)

Pr(D)

=
Pr(D,B)

Pr(D,B) + Pr(D,W )

Paul O. Lewis (2016 Woods Hole Molecular Evolution Workshop) 8

Bayes' rule (cont.)
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Bayes' rule (cont.)

It is easy to see that Pr(D) serves as a normalization 
constant, ensuring that Pr(B|D) + Pr(W|D) = 1.0
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Joint probabilities

10

B W

Pr(D,B)D

S Pr(S,B) Pr(S,W)

Pr(D,W)
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Marginalizing over colors

11

B

W

Pr(D,B)

D

S

Pr(S,B) Pr(S,W)

Pr(D,W)

Marginal probability of 
being a dotted marble 
is the sum of all joint 

probabilities involving 
dotted marbles
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Marginal probabilities

12

B W

Pr(D,B) + Pr(D,W)D

S Pr(S,B) + Pr(S,W)

Pr(S) = marginal probability 
of being solid

Pr(D) = marginal probability 
of being dotted
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Joint probabilities

13

B W

Pr(D,B)D

S Pr(S,B) Pr(S,W)

Pr(D,W)
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Marginalizing over "dottedness"

14

B W

Pr(D,B)

D

S

Pr(S,B) Pr(S,W)

Pr(D,W)

Marginal 
probability of 
being a white 

marble
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Bayes' rule (cont.)



Pr(✓|D) =
Pr(D|✓) Pr(✓)P
✓ Pr(D|✓) Pr(✓)

Paul O. Lewis (2016 Woods Hole Molecular Evolution Workshop) 16

Bayes' rule in Statistics

D refers to the "observables" (i.e. the Data) 
    refers to one or more "unobservables"  

(i.e. parameters of a model, or the model itself): 
– tree model (i.e. tree topology) 
– substitution model (e.g. JC, F84, GTR, etc.) 
– parameter of a substitution model (e.g. a branch length, a 

base frequency, transition/transversion rate ratio, etc.) 
– hypothesis (i.e. a special case of a model) 
– a latent variable (e.g. ancestral state)

✓



B I

Estimate the probability of a hypothesis (model) conditional
on observed data.

The probability represents the researcher’s degree of belief.

Bayes’ Theorem (also called Bayes Rule) specifies the
conditional probability of the hypothesis given the data.

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)

http://bit.ly/1Jz0Ta7
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The posterior probability of a discrete parameter δ
conditional on the data D is

Pr(δ | D) = Pr(D | δ)Pr(δ)∑
δ Pr(D | δ)Pr(δ)

∑
δ Pr(D | δ)Pr(δ) is the likelihood marginalized over all
possible values of δ.

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)

http://en.wikipedia.org/wiki/Marginal_distribution
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The posterior probability density a continuous parameter θ
conditional on the data D is

f(θ | D) = f(D | θ)f(θ)∫
θ f(D | θ)f(θ)dθ

∫
θ f(D | θ)f(θ)dθ is the likelihood marginalized over all
possible values of θ.

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)

http://en.wikipedia.org/wiki/Marginal_distribution
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Priors distributions are an important part of Bayesian
statistics

The the distribution of θ before any data are collected is
the prior

f(θ)

The prior describes your uncertainty in the parameters of
your model

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)



P

Paul Lewis gives a clear example of a prior
in action...

Slides source: https://molevol.mbl.edu/index.php/Paul_Lewis

(photo of Paul Lewis by David Hillis)

https://molevol.mbl.edu/index.php/Paul_Lewis
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If you had to guess...

0.0 ∞

1 meter 

Not knowing anything  
about my archery abilities, 
draw a curve representing 
your view of the chances of  
my arrow landing a distance 
d from the center of the target 
(if it helps, I'm standing 50 
meters away from the target)

d
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Case 1: assume I have talent

0.0

1 meter

20.0 40.0 60.0 80.0
distance in centimeters from target center

An informative prior 
(low variance) that 
says most of my  
arrows will fall within 
20 cm of the center 
(thanks for your 
confidence!)
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Case 2: assume I have a talent for missing the 
target! 

0.0

1 meter

20.0 40.0 60.0
distance in cm from target center

Also an informative prior, 
but one that says most of  
my arrows will fall within 
a narrow range just 
outside the entire target!
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Case 3: assume I have no talent

0.0

1 meter

20.0 40.0 60.0 80.0
distance in cm from target center

This is a vague prior: 
its high variance reflects 
nearly total ignorance 
of my abilities, saying  
that my arrows could  
land nearly anywhere!
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A matter of scale

∞

Notice that I haven't provided a scale for 
the vertical axis. 

What exactly does the height of this 
curve mean? 

For example, does the height of the dotted 
line represent the probability that my  
arrow lands 60 cm from the center  
of the target?

0.0 20.0 40.0 60.0

No.
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A matter of scale

∞

Notice that I haven't provided a scale for 
the vertical axis. 

What exactly does the height of this 
curve mean? 

For example, does the height of the dotted 
line represent the probability that my  
arrow lands 60 cm from the center  
of the target?

0.0 20.0 40.0 60.0

No.
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Probabilities are associated with intervals

Probabilities are attached to intervals 
(i.e. ranges of values), not individual values 

The probability of any given point (e.g.  
d = 60.0) is zero! 

However, we can ask about the probability  
that d falls in a particular range  
e.g. 50.0 < d < 65.0

0.0 20.0 40.0 60.0



P: A E
Let’s continue with the archery example: we may assume a
gamma-prior distribution on my archery skill (distance from
bullseye = d) with a shape parameter α and a scale
parameter β.

d ∼ Gamma(α, β)

f(d | α, β) = 1
Γ(α)βαdα−1e

− dβ
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This requires us to assign values for α and β based on our
prior belief

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)
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If we have some prior knowledge of the mean (m) and
variance (v) of the gamma distribution, we can compute α
and β.

m = α
β , α = m

2

v

v = α
β2 , β = mv

d ∼ Gamma(α, β)
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Let’s assume that I will consistently miss the target, this
corresponds to a gamma distribution with a mean (m) of 60
and a variance (v) of 3.

α = 1200

β = 20

d ∼ Gamma(α, β)
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Another way of expressing d ∼ Gamma(α, β) is with a
probabilistic graphical model

d

α β

gamma
distribution
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This shows that our observed datum (d = a single observed
shot) is conditionally dependent on the shape (α) and rate
(β) of the gamma distribution.

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)

http://en.wikipedia.org/wiki/Graphical_model
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We can parameterize the model using the mean (m) and
variance (v), where α and β are computed using m and v.

d

α β

gamma
distribution

m v

β = m
vα = m2

v
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Sometimes it’s better to alternative parameterization. We
may have more intuition about mean and variance than we
have about shape and rate.

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)
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If somehow we happened to know the true mean and
variance of my accuracy at the archery range, we can easily
calculate the likelihood of any observed shot:

f(d | α, β) = 1
Γ(α)βαdα−1e

− dβ

d

α β

gamma
distribution

m v

β = m
vα = m2

v

f(d = 39.76 | α = 1200, β = 20) = 7.89916e− 40

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)
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RevBayes

Fully integrative Bayesian inference of
phylogenetic parameters using
probabilistic graphical models and an
interpreted language

http://RevBayes.com

d

α β

gamma
distribution

m v

β = m
vα = m2

v

Höhna, Landis, Heath, Boussau, Lartillot, Moore, Huelsenbeck, Ronquist.

2016. RevBayes: Bayesian phylogenetic inference using graphical
models and an interactive model-specification language. Systematic
Biology. (doi: 10.1093/sysbio/syu021)

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)

http://revbayes.github.io/
http://sysbio.oxfordjournals.org/content/65/4/726
http://sysbio.oxfordjournals.org/content/65/4/726
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Graphical models provide tools for
visually & computationally representing
complex, parameter-rich probabilistic
models

We can depict the conditional
dependence structure of various
parameters and other random variables

d

α β

gamma
distribution

m v

β = m
vα = m2

v

Höhna, Heath, Boussau, Landis, Ronquist, Huelsenbeck. 2014.
Probabilistic Graphical Model Representation in Phylogenetics.
Systematic Biology. (doi: 10.1093/sysbio/syu039)

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)

http://sysbio.oxfordjournals.org/content/early/2014/07/26/sysbio.syu039
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The Rev language calculating the probability of 1 data
observation observed_shot given a mean and variance.

mean <- 60
var <- 3

alpha := (mean * mean) / var
beta := mean / var

observed_shot = 39.76

d ∼ dnGamma(alpha,beta)
d.clamp(observed_shot)

d.lnProbability()

-90.0366

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)
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What if we do not know m and v?

We can use maximum likelihood or Bayesian methods for
estimating their values.

Maximum likelihood methods require us to find the values
of m and v that maximize f(d | m, v).

Bayesian methods use prior distributions to describe our
uncertainty in m and v and estimate f(m, v | d).

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)



E: H A M

We must define prior
distributions for m and v to
account for uncertainty and
estimate the posterior densities
of those parameters

Now x and y are the
parameters of the uniform
prior distribution on m and a
and b are the shape and rate
parameters of the gamma
prior distribution on v.

d

α β

gamma
distribution

m v

β = m
vα = m2

v

x y a b

uniform
distribution

gamma
distribution

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)



E: H A M
The values we choose for the parameters of these
hyperprior distributions should reflect our prior knowledge.
The previous observed shot was 39.76 cm, thus we may
use this to parameterize our hyperpriors for analysis of
future observations.

m ∼ Uniform(x, y)
x = 10.0
y = 50.0

E(m) = 30.0

v ∼ Gamma(a , b)
a = 20.0
b = 2.0

E(v) = 10.0
d

α β

gamma
distribution

m v

β = m
vα = m2

v

x y a b

uniform
distribution

gamma
distribution

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)
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The Rev language specifying a hierarchical model on shot
accuracy based on 1 new observation.

mean ∼ dnUnif(10,50)
var ∼ dnGamma(20,2)

alpha := (mean * mean) / var
beta := mean / var

observed_shot = 35.21

d ∼ dnGamma(alpha,beta)
d.clamp(observed_shot)

d.lnProbability()

depends on initial value of mean & var

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)
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Now that we have a defined model, how do we estimate
the posterior probability density?

m ∼ Uniform(x, y)
v ∼ Gamma(a , b)
d ∼ Gamma(α, β)

d

α β

gamma
distribution

m v

β = m
vα = m2

v

x y a b

uniform
distribution

gamma
distribution

f(m, v | d, a , b, x, y) ∝ f(d | α =
m2
v , β =

m
v )f(m | x, y)f(v | a , b)

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)



M C M C (MCMC)

An algorithm for approximating the posterior distribution

Metropolis, Rosenblusth, Rosenbluth, Teller, Teller. 1953. Equations of state calculations by fast computing
machines. J. Chem. Phys.

Hastings. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika.

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)



M C M C (MCMC)

More on MCMC from Paul Lewis and his
lecture on Bayesian phylogenetics

Slides source: https://molevol.mbl.edu/index.php/Paul_Lewis

(photo of Paul Lewis by David Hillis)

https://molevol.mbl.edu/index.php/Paul_Lewis
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Markov chain Monte Carlo (MCMC)

For more complex problems, we might settle for a 

good approximation
to the posterior distribution
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MCMC robot’s rules

Uphill steps are  
always accepted

Slightly downhill steps 
are usually accepted

Drastic “off the cliff” 
downhill steps are almost 
never accepted

With these rules, it  
is easy to see why the 

robot tends to stay near  
the tops of hills
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(Actual) MCMC robot rules

Uphill steps are  
always accepted 
because R > 1

Slightly downhill steps 
are usually accepted 
because R is near 1

Drastic “off the cliff” 
downhill steps are almost 
never accepted because 
     R is near 0

Currently at 1.0 m 
Proposed at 2.3 m 
R = 2.3/1.0 = 2.3

Currently at 6.2 m 
Proposed at 5.7 m 
R = 5.7/6.2 =0.92 Currently at 6.2 m 

Proposed at 0.2 m 
R = 0.2/6.2 = 0.03

6

8

4

2

0

10

The robot takes a step if it draws  
a Uniform(0,1) random deviate 
that is less than or equal to R



=

f(D|�⇤)f(�⇤)
f(D)

f(D|�)f(�)
f(D)

Paul O. Lewis (2016 Woods Hole Molecular Evolution Workshop) 44

Cancellation of marginal likelihood

When calculating the ratio R of posterior densities, the marginal 
probability of the data cancels.

f(�⇤|D)

f(�|D)

Posterior 
odds

=
f(D|�⇤)f(�⇤)
f(D|�)f(�)

Likelihood 
ratio

Prior odds
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Target vs. Proposal Distributions

Pretend this proposal 
distribution allows good 
mixing. What does good 

mixing mean?
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Trace plots

“White noise” 
appearance is a sign of 
good mixing

I used the program Tracer to create this plot: 
http://tree.bio.ed.ac.uk/software/tracer/ 

AWTY (Are We There Yet?) is useful for 
investigating convergence: 

http://king2.scs.fsu.edu/CEBProjects/awty/
awty_start.php
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Target vs. Proposal Distributions

Proposal distributions 
with smaller variance...

Disadvantage: robot takes  
smaller steps, more time  
required to explore the 
same area

Advantage: robot seldom 
refuses to take proposed 
steps
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If step size is too 
small, large-scale 
trends will be 
apparentlo

g(
po

st
er

io
r)
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Target vs. Proposal Distributions

Proposal distributions 
with larger variance...

Disadvantage: robot  
often proposes a step 
that would take it off 
a cliff, and refuses to 
move

Advantage: robot can 
potentially cover a lot of  
ground quickly
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Chain is spending long periods of time 
“stuck” in one place

“Stuck” robot is indicative of  step sizes 
that are too large (most proposed steps 
would take the robot “off the cliff”)
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Metropolis-coupled Markov chain Monte Carlo 
(MCMCMC)

• MCMCMC involves running several chains 
simultaneously 

• The cold chain is the one that counts, the rest 
are heated chains 

• Chain is heated by raising densities to a power 
less than 1.0 (values closer to 0.0 are warmer)

Geyer, C. J. 1991. Markov chain Monte Carlo maximum likelihood for dependent data. Pages 156-163 in Computing Science and 
Statistics (E. Keramidas, ed.).
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Heated chains act as scouts for the 
cold chain

53

cold

heated

Cold chain robot can easily 
make this jump because it is 
uphill

Hot chain robot can also 
make this jump with high 

probability because it is only 
slightly downhill
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cold

heated

Hot chain and cold chain 
robots swapping places

Swapping places means 
both robots can cross 
the valley, but this is 

more important for the 
cold chain because its 
valley is much deeper



M C M C (MCMC)

Thanks, Paul!

Slides source: https://molevol.mbl.edu/index.php/Paul_Lewis

See MCMCRobot, a helpful
software program for learning
MCMC by Paul Lewis

http://www.mcmcrobot.org

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)

https://molevol.mbl.edu/index.php/Paul_Lewis
http://www.mcmcrobot.org


RB D: H A M
The Rev language specifying the MCMC sampler for the
hierarchical model on archery accuracy.

... # model specification from previous demo

mymodel = model(beta)

moves[1] = mvSlide(mean,delta=1.0,tune=true,weight=3.0)
moves[2] = mvScale(var,lambda=1.0,tune=true,weight=3.0)

monitors[1] = mnModel(file="archery_mcmc_1.log",printgen=10, ...)
monitors[2] = mnScreen(printgen=1000, mean, var)

mymcmc = mcmc(mymodel, monitors, moves,nruns=1)

mymcmc.burnin(generations=10000,tuningInterval=1000)

mymcmc.run(generations=40000,underPrior=false)

MCMC screen output

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)
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Summary of the MCMC sample for the mean distance from
target center.

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)
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The trace-plot of the MCMC samples for the mean distance
from target center

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)
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Under this model, we do a good job of estimating the
mean, but when judging archery skill, precision (variance) is
as (if not more) important than accuracy
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d

α β

gamma
distribution

m v

β = m
vα = m2

v

x y a b

uniform
distribution

gamma
distribution

Thus, it is also worth evaluating the estimated posterior
distribution for the variance component of our model

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)
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The posterior estimate of
the variance (v) is quite
different from the true
value (4.0) and from the
highest likelihood value
found by our MCMC (MLE
= 3.51374).
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This indicates that the prior is having a strong influence on
the posterior. Why do you think that is?

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)
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When the prior closely
matches the posterior, it can
indicate that the data are
not very informative for this
parameter.
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Remember that our data were only 6 observed shots. What
would happen if I had 600 arrows?

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)



E: W   M D

With 100X more observations, we can estimate the mean
and variance with greater precision.
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Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)
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How is this applied to phylogenetic inference?

Jukes-Cantor (1969) on an unrooted tree

seq

PhyloCTMC

Q

JC

 

Tree

bli ⌧
Exponential Uniform

10 N

i 2 2N � 3

for (i in 1:n_branches) {
bl[i] ⇠ dnExponential(10.0)

}
topology ⇠ dnUniformTopology(taxa)
psi := treeAssembly(topology, bl)

Q <- fnJC(4)

seq ⇠ dnPhyloCTMC( tree=psi, Q=Q, type="DNA" )

seq.clamp( data )

(image source RevBayes Substitution Models Tutorial)

We can assemble a phylogenetic model in the same way,
using previously described models and probability
distributions as priors.

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)

https://github.com/revbayes/revbayes_tutorial/blob/master/tutorial_TeX/RB_CTMC_Tutorial/RB_CTMC_Tutorial.pdf


B P
With a defined model we simply then have to:

• draw starting values for every random variable in the
model

• define moves on each random variable that propose
new values

• then for each step in our MCMC, choose a parameter
and update it according to the correct proposal.

• propose a new tree topology and accept or reject
• propose a new model parameter value and accept or
reject

• save the current state of every random variable (tree,
branch lengths, base frequencies, etc.) after every k
number of states

• after n MCMC steps, evaluate the run for signs of
non-convergence

• summarize the tree and other parameters
Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)
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Complex data require complex models and careful analysis

Many people feel that
genome-scale data will
overcome model
misspecification

Genomic datasets with
many sparsely sampled
lineages are prone to
systematic biases from
overly simple models
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These issues are part of the Porifera-sister vs. Ctenophora-
sister debate over the last 8 years

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)
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In the case of the animal
phylogeny, it is argued that
some resolutions may be
due to long-branch
attraction because simple
models do not account for
site-specific amino acid
profiles
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figure adapted from Nicolas Lartillot

(Phyloseminar.org, 2016)

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)

https://www.youtube.com/watch?v=2zJuuXjX978
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This problem may be
exacerbated by including
few species from distant
outgroups
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Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)
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Phylogenomic studies often ignore site-specific amino acid
profiles by applying uniform models or locus-partitioned
models

Flexible, non-parametric
Bayesian models can
accommodate this complex
process heterogeneity

These models include both
uniform and locus-specific
models (they are nested)

YMIPTSELKPGELRLLE

YMVPTQDLAPGQFRLLE

YMTPTTDLPLGHFRLLE

YMLPPLFLEPGDLRLLD

MAYPMQLGFQDATSPIM

MAHPTQLGFKDAAMPVM

MANHSQLGFQDASSPIM

MAHAAQVGLQDATSPIM

VETIWTILPAIILILIA

IEIVWTILPAVILVLIA

VELIWTILPAIVLVLLA

METVWTILPAIILVLIA

Uniform effect

YMIPTSELKPGELRLLE

YMVPTQDLAPGQFRLLE

YMTPTTDLPLGHFRLLE

YMLPPLFLEPGDLRLLD

MAYPMQLGFQDATSPIM

MAHPTQLGFKDAAMPVM

MANHSQLGFQDASSPIM

MAHAAQVGLQDATSPIM

VETIWTILPAIILILIA

IEIVWTILPAVILVLIA

VELIWTILPAIVLVLLA

METVWTILPAIILVLIA

Locus-specific effects

YMIPTSELKPGELRLLE

YMVPTQDLAPGQFRLLE

YMTPTTDLPLGHFRLLE

YMLPPLFLEPGDLRLLD

MAYPMQLGFQDATSPIM

MAHPTQLGFKDAAMPVM

MANHSQLGFQDASSPIM

MAHAAQVGLQDATSPIM

VETIWTILPAIILILIA

IEIVWTILPAVILVLIA

VELIWTILPAIVLVLLA

METVWTILPAIILVLIA

Site-specific effects

(Lartillot & Phillippe, MBE, 2004; Lartillot et al., Bioinformatics, 2009)

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)
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Models that treat amino acid profiles as random effects
across sites can accommodate these patterns

Implemented as the CAT
family of models in
Phylobayes (Lartillot et al.,
Bioinformatics, 2009)

F Note that this is NOT
the same as the CAT
model for rate
heterogeneity in RAXML!!
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Nicolas Lartillot has also written some blog posts on this
topic (as well as several other Bayesian phylogenetics
concepts) and see his Phyloseminar explaining these models:
https://www.youtube.com/watch?v=2zJuuXjX978

Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)

http://megasun.bch.umontreal.ca/People/lartillot/www/index.htm
http://bayesiancook.blogspot.cz/
http://phyloseminar.org/
https://www.youtube.com/watch?v=2zJuuXjX978
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Bayesian analysis of genomic data under complex models has
many challenges

• Many parameters require long MCMC runs to effectively
sample all parameters, this problem gets worse with more
complex models

• Even complex models like CAT-GTR (in Phylobayes) are
likely inadequate for many genome-scale datasets

• There is no one-size-fits-all method or model for
phylogenetic data

• Thorough analysis takes expensive computational resources

• Thorough analysis takes a LONG time even with access to
HPC resources

But...amazing progress on models & algorithms has been made in

our field and we will overcome these obstacles in the very near

future. Then, we will be faced with new, more difficult challenges.

This is why phylogenetics is fun!
Tracy A. Heath (2017 Workshop on Phylogenomics, Český Krumlov, CZ)


