
Workshop	on	identifying	drug	resistance	mutations	in	TB	sequencing	data	
Tuesday,	December	13th	

Christopher	Desjardins,	Ph.D.	
Broad	Institute	

	
In	this	workshop	we’ll	examine	some	sequencing	data	from	isolates	of	multidrug-
resistant	tuberculosis.	We’ll	go	from	downloading	the	sequencing	data	all	the	way	to	
identifying	which	drugs	the	strain	is	resistant	to.	
	
Downloading	data	from	SRA	
	
Sometimes	you’ll	be	analyzing	data	you	sequenced	yourself.	But	other	times	you	will	
be	augmenting	your	own	data	with	already	published	sequence	or	even	conducting	
a	study	entirely	on	already	published	sequences.	In	this	case	it	is	quite	useful	to	use	
the	SRA-toolkit	(https://www.ncbi.nlm.nih.gov/books/NBK158900/)	to	download	
reads	from	NCBI’s	short	read	archive	(SRA),	where	an	enormous	amount	of	
sequencing	data	is	deposited.	The	SRA-toolkit	can	download	and	convert	SRA	data	
to	a	variety	of	formats,	but	for	our	purposes	we	will	only	use	the	command	that	
converts	SRA	data	to	FASTQ	format.	FASTQ	format	is	going	to	be	the	format	of	
sequencing	data	most	commonly	used	by	alignment	and	assembly	programs.	
	
We’re	going	to	start	by	downloading	data	from	an	isolate	of	drug-resistant	
Mycobacterium	tuberculosis.	The	SRA	identification	number	of	the	sequencing	
isolate	is	SRR1181122.	
	
fastq-dump	--split-3	SRR1181122	
	
The	option	--split-3	is	telling	the	program	to	write	two,	potentially	three,	
different	FASTQ	files.	The	way	sequencing	works	is	that	you	break	of	your	DNA	into	
many	smaller	fragments	of	DNA.	Then	you	sequence	both	ends	of	each	fragment,	
creating	a	pair	of	reads	(called	mates)	for	each	fragment.	Therefore	you	usually	get	
two	FASTQ	files:	one	for	the	left	read	and	one	for	the	right	read.	Sometimes,	you	get	
a	third	file	of	reads	without	mates,	depending	on	whether	they	are	present	in	the	
dataset.	It	is	important	to	exclude	them	from	your	two	primary	FASTQ	files	because	
they	can	cause	downstream	problems	if	included.	
	
Let’s	take	a	closer	look	at	the	FASTQ	format.	Every	sequence	gets	four	lines	in	the	
file:	
	
@SRR1181122.1	
AGATTAGCATCACTGCTGGGTCCGTC	
+SRR1181122.1	
CCCFFFFFHHHHHJJJJJJJGHHFGI	
	
The	first	and	third	lines	are	the	read	name,	the	second	line	is	the	actual	sequence,	
and	the	fourth	line	shows	the	quality	of,	or	confidence	in,	the	base	call	at	each	



position.	You	can	read	more	about	the	FASTQ	format	on	Wikipedia	
(https://en.wikipedia.org/wiki/FASTQ_format).	
	
Aligning	reads	to	a	reference	with	BWA	
	
Once	you	reads	have	been	converted	to	FASTQ	format,	the	next	step	is	to	align	those	
reads	to	a	reference.	We’re	going	to	use	BWA	(http://bio-bwa.sourceforge.net/),	
which	is	a	widely	used	aligner	for	DNA	sequence	data.	
	
The	reference	is	usually	in	FASTA	format,	which	is	used	to	represent	one	or	more	
DNA	or	amino	acid	sequences.	In	this	format,	each	sequence	starts	with	a	header	
line	that	begins	with	“>”	followed	by	the	sequence	name,	while	subsequent	lines	
contain	the	sequence	itself.	For	example:	
	
>MT_H37RV_BRD_V5	
TTGACCGATGACCCCGGTTCAGGCTTCACCACAGTGTGGAACGCGGTCGTCTCCGAACTT	
AACGGCGACCCTAAGGTTGACGACGGACCCAGCAGTGATGCTAATCTCAGCGCTCCGCTG	
	
Now	that	you	have	your	reference,	you	still	need	to	do	one	more	thing	before	you	
begin	your	alignment:	you	need	to	index	the	reference.	Think	of	indexing	the	
reference	like	creating	a	table	of	contents	or	the	index	at	the	back	of	a	book.	This	
will	allow	the	alignment	program	to	search	your	genome	much	faster	than	if	it	had	
to	read	through	the	entire	reference	sequence	each	time	it	wanted	to	know	
something	about	it.	
	
bwa	index	tb_reference/H37Rv.fa	
	
Now	that	we	have	the	referenced	index,	we	can	run	the	actual	alignment.	We	give	
BWA	the	reference	FASTA	and	the	left	and	right	FASTQ	files,	and	we	tell	it	to	write	
the	output	to	a	specific	file.	
	
bwa	mem	tb_reference/H37Rv.fa	SRR1181122_1.fastq	
SRR1181122_2.fastq	>	SRR1181122.sam	
	
BWA	outputs	alignments	in	a	format	called	SAM.	You	can	read	more	about	it	at	the	
Samtools	website	(http://samtools.github.io/hts-specs/SAMv1.pdf).	Next,	view	
your	SAM	file	with	“more”	or	“head.”	The	first	part	of	the	SAM	file	is	called	the	
header	and	is	each	line	starts	with	@.	The	header	gives	information	about	the	length	
and	name	of	sequences	in	your	reference,	and	what	command	produced	the	current	
SAM	file.	Below	the	header	are	columns	that	include	all	the	information	from	your	
original	FASTQ	file	plus	information	on	how	it	aligns	(or	doesn’t	align)	to	your	
reference.		
	
Unfortunately,	while	SAM	files	are	human	readable,	they	actually	aren’t	very	
machine	readable.	So	you’ll	want	to	convert	your	SAM	files	to	BAM	files,	which	is	an	
equivalent	format	that	will	look	like	gibberish	to	you	but	is	much	more	easily	



understood	by	the	computer.	You’ll	also	notice	that	the	BAM	file	is	more	compact	
and	requires	less	space	to	store	on	your	computer,	making	it	a	preferred	format	for	
long-term	storage	of	alignment	data.	For	this	conversion	we’re	going	to	use	a	suite	
of	tools	for	viewing	and	manipulating	SAM	and	BAM	files	called	Samtools	
(http://samtools.github.io/).	Samtools	has	a	number	of	subcommands	and	the	one	
we’ll	use	first	is	view.	
	
samtools	view	-bh	SRR1181122.sam	>	SRR1181122.bam	
	
We’ve	used	two	options	in	our	command	here:	-b	tells	the	program	to	output	in	
BAM	format	and	-h	tells	the	program	to	include	the	header	in	the	output.	If	we	lose	
the	header,	this	can	cause	problems	in	downstream	analysis.	
	
Finally,	we’ll	index	and	sort	our	BAM	file	as	many	downstream	applications	will	
expect	this	and	fail	if	we	haven’t	done	it.	
	
samtools	sort	SRR1181122.bam	>	SRR1181122.sorted.bam	
	
samtools	index	SRR1181122.sorted.bam	
	
	
Calling	SNPs	with	Pilon	
	
Now	that	we’ve	aligned	our	reads	to	our	reference	and	prepared	our	BAM	file,	we’re	
ready	to	call	SNPs.	For	this	we’re	going	to	use	Pilon	
(https://github.com/broadinstitute/pilon/wiki),	a	dual	function	tool	that	does	both	
assembly	improvement	and	SNP	calling.	Two	nice	aspects	of	SNP	calling	in	Pilon	for	
our	purposes	are	that	it	doesn’t	require	a	lot	of	user	input	and	that	it	was	originally	
designed	for	SNP	calling	in	haploid	genomes.	Since	Pilon	is	written	in	a	computer	
language	called	java,	we	have	to	call	the	language	first	and	then	tell	it	where	the	
program	is.	We	also	have	to	give	it	the	genome	FASTA,	our	aligned	BAM	file,	tell	it	to	
call	SNPs	instead	of	improve	an	assembly,	and	where	to	write	output,	all	like	so:	
	
java	-Xmx4G	-jar	/usr/bin/pilon-1.20.jar	--genome	
tb_reference/H37Rv.fa	--bam	SRR1181122.sorted.bam	--variant	--
output	SRR1181122	
	
Pilon	writes	SNPs	to	a	file	format	called	VCF.	You	can	read	about	VCF	format	at	the	
Samtools	website	(https://samtools.github.io/hts-specs/VCFv4.2.pdf).	The	first	part	
of	the	VCF	file	is	called	the	header	and	is	each	line	starts	with	##.	The	header	gives	a	
lot	of	information	about	how	the	VCF	was	generated	and	explains	abbreviations	that	
appear	later	in	the	VCF.	The	final	header	line	of	the	VCF	starts	with	#	and	gives	
names	for	the	10	columns	in	the	body	of	the	VCF:	
	
1) #CHROM:	the	fasta	sequence	



2) POS:	the	position	in	the	fasta	sequence	
3) ID	
4) REF:	the	reference	base	at	that	position	
5) ALT:	the	alternate	base	at	that	position	
6) QUAL:	quality	of	the	base	call	at	that	position	
7) FILTER:	whether	the	position	passes	or	fails	quality	controls	
8) INFO:	more	detailed	information	
9) FORMAT:	format	of	the	following	genotype	columns	
10) SAMPLE:	sample	genotype	
	
Take	a	few	minutes	to	examine	the	VCF.	Can	you	use	your	UNIX	skills	to	identify	
lines	with	variants?	
	
Because	there	is	information	about	every	base,	the	VCF	file	produced	by	Pilon	is	
quite	large.	However,	we	can	simply	the	VCF	if	remove	high	quality	reference	bases	
and	assume	an	then	assume	any	base	missing	is	a	high	quality	reference	base,	which	
can	be	recovered	from	the	original	reference	fasta.	To	do	this	we’ll	use	a	tool	called	
reducevcf	(http://genomeview.org/manual/Reducevcf).	
	
java	-jar	/usr/bin/reducevcf.jar	-i	SRR1181122.vcf	-o	
SRR1181122.reduced.vcf	–k	
	
Note	that	the	reduced	VCF	is	only	1%	of	the	size	of	the	original	VCF,	saving	a	large	
amount	of	disk	space.	However,	TB	is	a	highly	conserved	genome	and	compression	
will	scale	inversely	with	divergence	from	the	reference	genome.	Regardless,	
examine	the	VCF	now	and	you’ll	see	how	much	easier	it	is	to	examine	sites	with	
variants	by	eye.	
	
Annotating	VCFs	with	VCF	Annotator	
	
Once	you’ve	identified	SNPs,	the	next	step	is	to	determine	the	functional	impact	of	
those	SNPs.	To	do	this	we’ll	use	VCF	annotator	
(http://vcfannotator.sourceforge.net/),	a	script	that	reads	in	a	genome	sequence	in	
FASTA	format,	an	annotation	in	GFF	format,	and	SNP	calls	in	VCF	format,	and	
predicts	functional	impacts	of	SNPs.	
	
VCF_annotator.pl	--genome	tb_reference/H37Rv.fa	--gff3	
tb_reference/H37Rv.gff3	--vcf	SRR1181122.reduced.vcf	--codon-
based	>	SRR1181122.reduced.annot.vcf	
	
If	you	look	at	the	new	VCF	file,	you’ll	notice	an	11th	column	has	been	added.	This	
column	gives	extensive	information	about	the	functional	effect	of	the	mutation.	A	
few	key	effect	types	are	noted	at	the	end	of	the	column,	including:	
	
(NSY):	nonsynonymous	mutation	



(SYN):	synonymous	mutation	
(NON):	nonsense	mutation	(gain	of	stop	codon)	
(RTH):	read-through	mutation	(loss	of	stop	codon)	
INSERTION[length]:	insertion,	with	length	in	brackets	
DELETION[-length]:	deletion,	with	length	in	brackets	
	
Take	a	few	minutes	to	examine	the	VCF.	Can	you	see	different	mutation	types?	Can	
you	count	the	frequency	of	each	mutation	type?	
	
Identifying	drug	resistance	mutations	
	
Unfortunately,	there	aren’t	good	available	tools	for	finding	specific	mutations	in	a	
VCF	(at	least	not	that	I	know	of).	However,	you	can	use	some	basic	command	lines	
skills	to	pull	them	out.		
	
First,	we’re	going	to	look	for	a	mutation	in	the	katG	gene	(RVBD_1908c)	called	
S315T	(serine	to	threonine	at	codon	315),	which	encodes	resistance	to	isoniazid,	
and	is	the	most	common	drug	resistance	mutation	in	TB	genomes.	We	can	do	this	in	
a	number	of	ways:	
	
1) Look	for	any	mutations	in	katG:	

	
grep	-i	katg	SRR1181122.reduced.annot.vcf	
	

2) Look	for	any	mutations	in	Rv1908c:	
	

grep	RVBD_1908c	SRR1181122.reduced.annot.vcf	
	
3) Look	specifically	for	the	S315T	mutation	in	any	gene:	
	

grep	Ser-315-Thr	SRR1181122.reduced.annot.vcf	
	

Can	you	think	of	pros	and	cons	to	each	approach?	
	 	
The	isolate	SRR1181122	came	from	a	hospital	in	Belarus.	The	first-line	treatment	
for	TB	in	Belarus	is	a	four-drug	cocktail	including	isoniazid,	rifampicin,	
pyrazinamide,	and	ethambutol.	Below	is	a	more	comprehensive	table	of	known	drug	
resistance	mutations	for	these	drugs	in	TB.	Can	you	figure	out	how	resistant	isolate	
SRR1181122	is	to	first-line	treatment?	
	
Drug	 Mutations	
Isoniazid	 Any	nonsynonymous	mutation	in	katG	at	

codon	315;	any	mutation	in	the	inhA	
promoter	

Rifampicin	 Any	nonsynonymous	mutation	in	the	



rpoB	codons	430-562	
Pyrazinamide	 Any	mutation	in	the	pncA	promoter;	any	

mutation	in	pncA	that	causes	loss	of	
function	

Ethambutol	 Any	nonsynonymous	mutation	in	the	
embB	codons	306,	406,	or	497	

	
For	second-line	therapy,	patients	receive	a	different	four-drug	cocktail,	including	a	
fluoroquinalone	such	as	ofloxacin,	and	injectable	such	as	amikacin,	ethionamide,	and	
streptomycin.	Below	is	a	more	comprehensive	table	of	known	drug	resistance	
mutations	for	these	drugs	in	TB.	Can	you	figure	out	how	resistant	isolate	
SRR1181122	is	to	second-line	treatment?	
	
Drug	 Mutations	
Ofloxacin	 Any	nonsynonymous	mutation	in	the	

gyrA	codons	88,	90,	91,	or	94	
Amikacin	 Any	mutation	at	rrs	positions	1400,	

1401,	or	1483;	any	mutation	in	the	eis	
promoter	

Ethionamide	 Any	mutation	in	ethA	that	causes	loss	of	
function;	any	mutation	in	the	inhA	
promoter		

Para-aminosalicylic	acid	 Any	mutation	in	thyA	that	causes	loss-of-
function;	any	mutation	in	the	ribD	
promoter*	

*Much	of	the	phenotypic	resistance	to	para-aminosalicylic	acid	(PAS)	has	an	
unknown	genetic	basis	
	
The	NCBI	short	read	archive	contains	sequence	reads	for	over	5000	clinical	strains	
of	TB.	Can	you	find	a	strain	more	drug	resistant?	Less	drug	resistant?	
	
Bringing	in	more	genomes	for	comparisons	
	
Now	that	you	understand	the	process,	let’s	go	the	NCBI	short	read	archive	
(https://www.ncbi.nlm.nih.gov/sra)	and	find	another	strain	to	compare	ours	to.	All	
the	strains	from	our	study	of	TB	from	Belarus	start	with	the	name	“XTB13,”	so	let’s	
find	one	of	those.	For	time’s	sake,	let’s	look	for	a	strain	without	too	much	data.	
SRR1181122	had	~110	Mb	of	data,	so	look	for	a	strain	that	has	close	to	that	amount	
or	even	a	little	less.	Can	you	go	from	downloading	the	sequencing	data	to	identifying	
which	drugs	the	strain	is	resistant	to?	Is	it	more	or	less	resistant	than	SRR1181122,	
and	if	so,	should	the	patient	be	given	a	different	treatment?	


