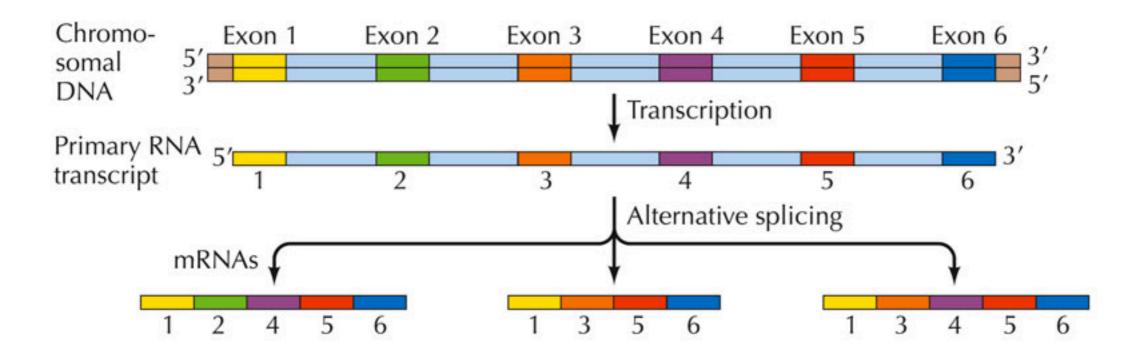
Differential expression

Alejandro Reyes T: @areyesq89

Workshop on Transcriptomics September 13th, 2017

Overview of exons, genes and transcripts



What is your biological question?

Given a gene, test for:

- Whether transcripts levels change between conditions? (differential exon usage, DGE)
- Whether transcript isoform proportions change between conditions? (differential transcript usage, DTU)
- Whether individuals exons are differentially used? (differential exon usage, DEU)

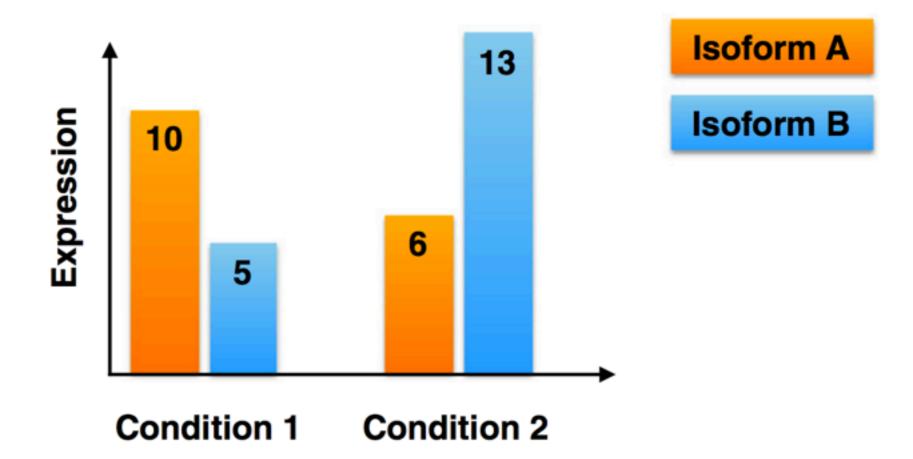
Differential problems: DGE

Differential transcript expression (DTE) Differential gene expression (DGE) Differential gene expression (DGE)

Modified slide from Mark Robinson

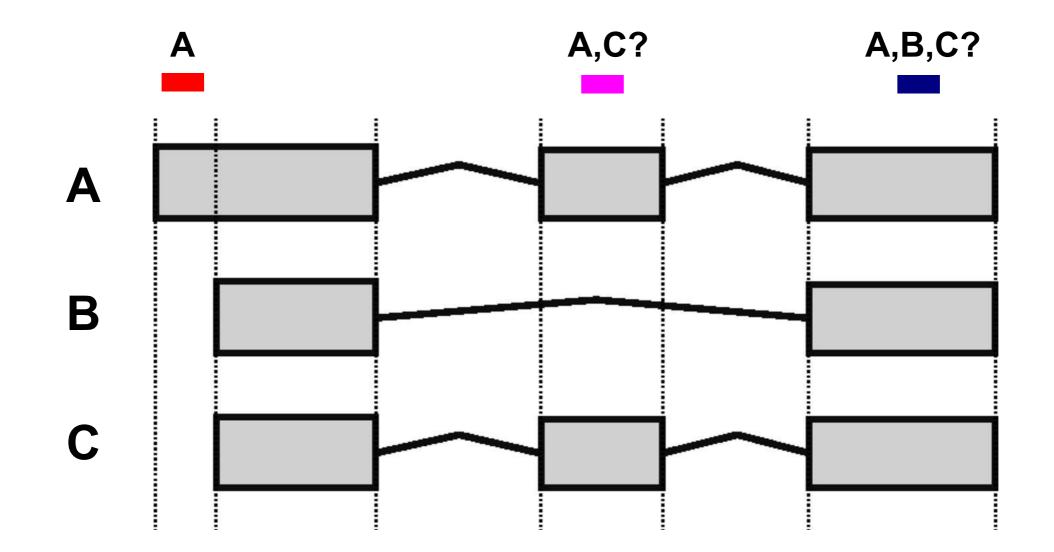
Differential problems: DTU

Differential transcript usage

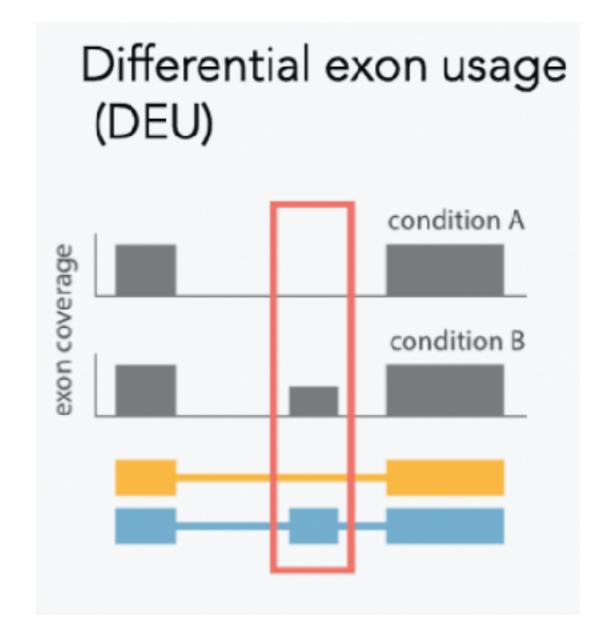


Soneson et al, 2014

Unambiguous assignment of reads to single transcripts



Differential problems: DEU



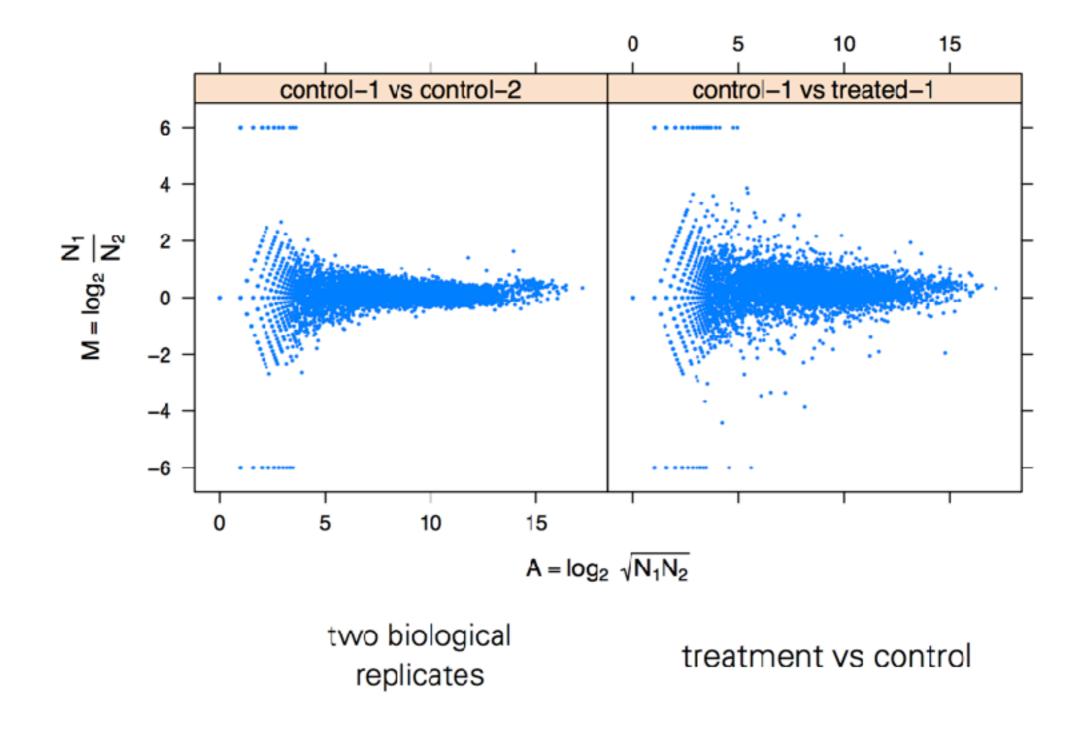
Modified slide from Mark Robinson

What is your biological question?

Given a gene, test for:

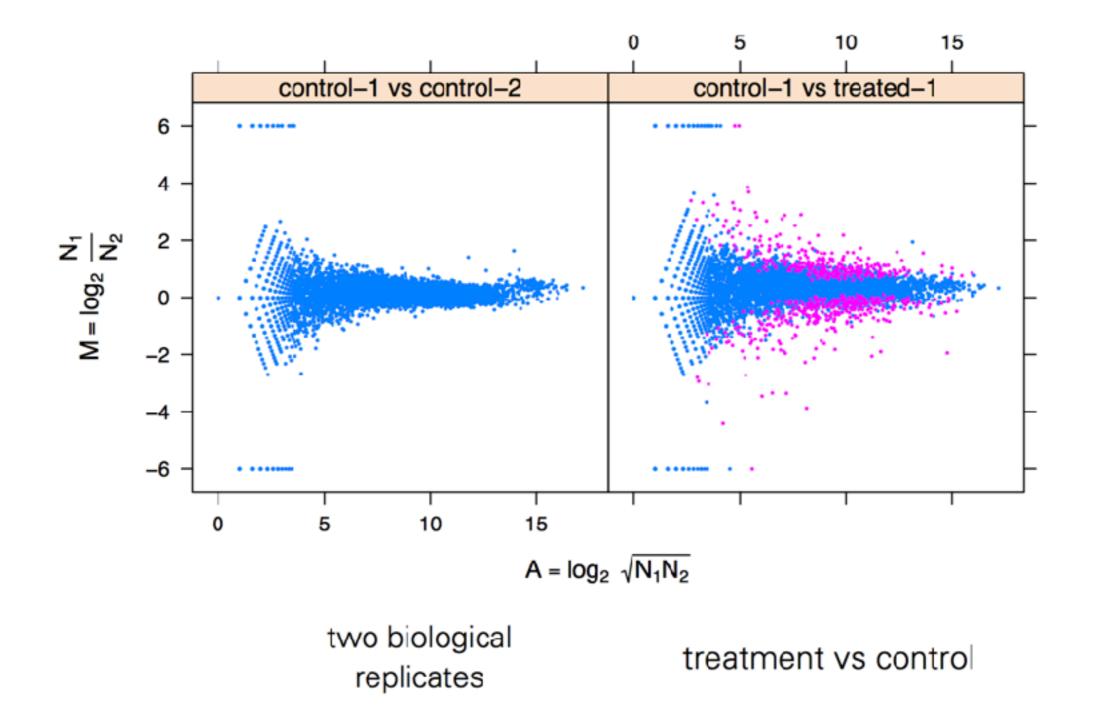
- Whether transcripts levels change between conditions? (differential gene expression, DGE)
- Whether transcript isoform proportions change between conditions? (differential transcript usage, DTU)
- Whether individuals exons are differentially used? (differential exon usage, DEU)

Differential problems: DGE



Modified from Wolfgang Huber

Differential problems: DGE



Modified from Wolfgang Huber

.fastq

alignment

quantification

normalization

variance estimation

testing and effect size

other analysis (e.g. GSEA)

salmon, kallisto,	.fastq	STAR, GSNAP,
	alignment	
•••• 🗸	quantification	ht-seq, featureCounts,
	normalization	DESeq2, edgeR,
	variance estimation	lima-voom NOISeq, sleuth,
	testing and effect size	
	other analysis (e.g. GSEA)	↓ goseq, roast,

.fastq

alignment

quantification

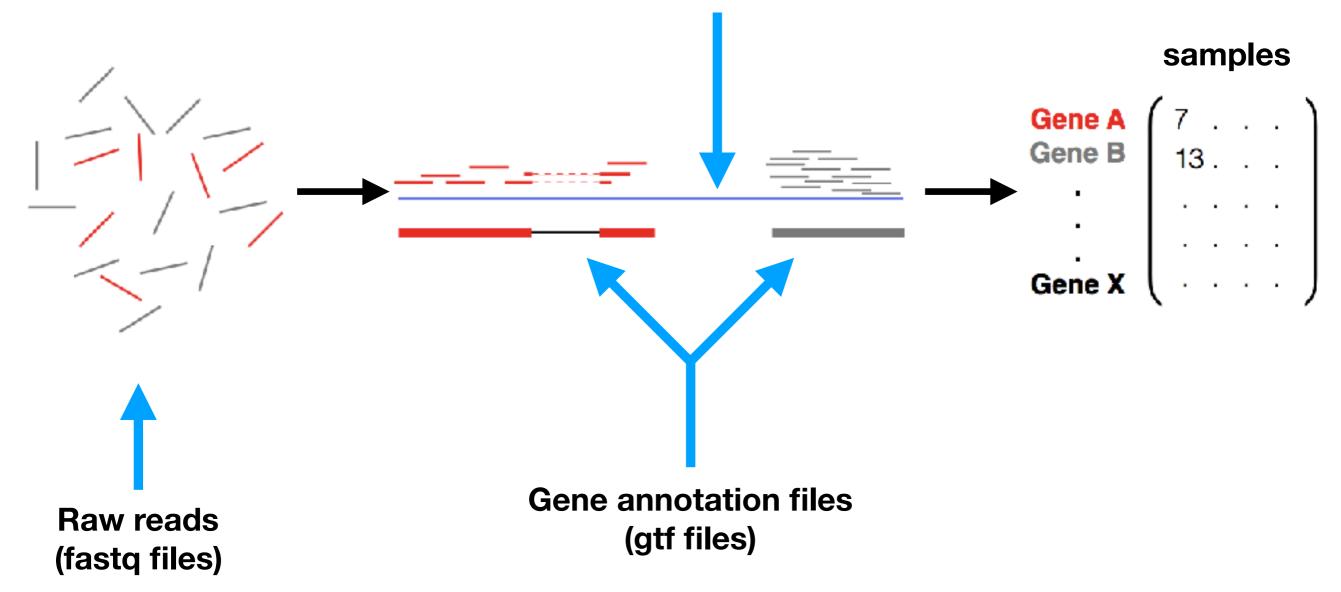
normalization

variance estimation

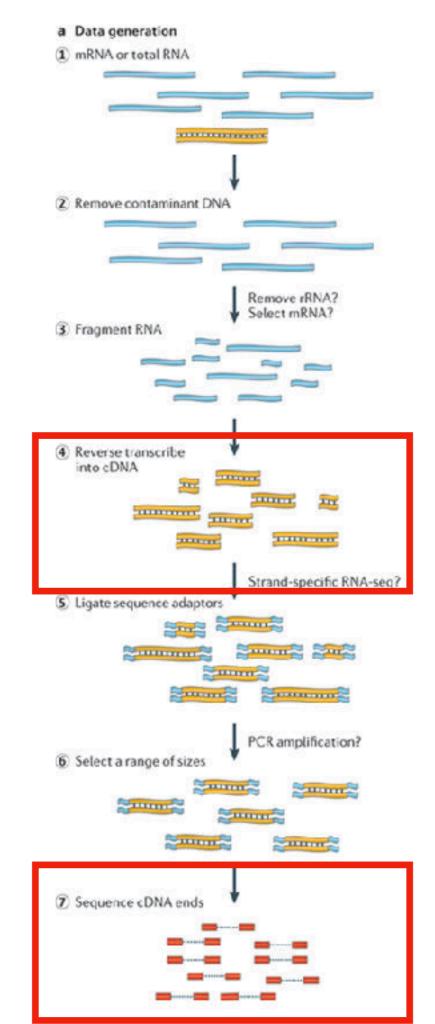
testing and effect size

other analysis (e.g. GSEA)

(fasta files)

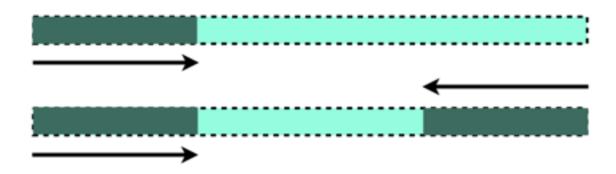


Modified from Charlotte Soneson



Martin et al, 2011

Are my data single-end or paired-end?

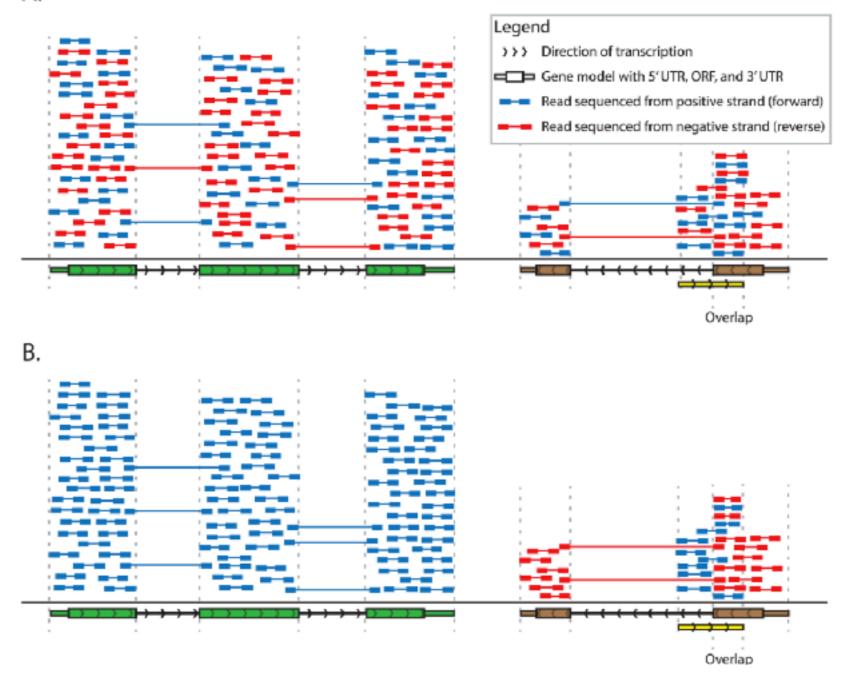


Tip: Look at the number of files per sample

Modified from Charlotte Soneson

Are my data strand specific?

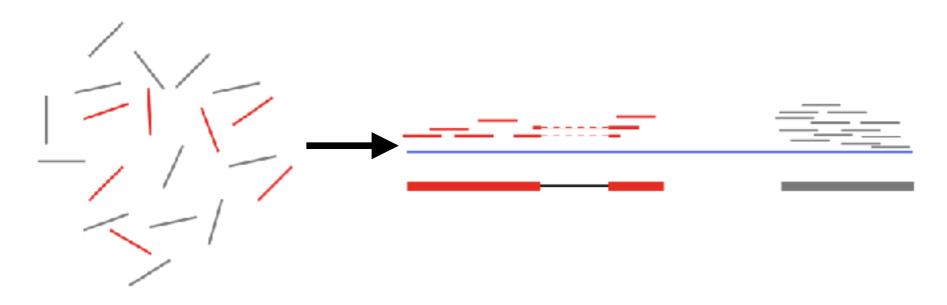
A.



Tip: Visualize mapped reads in a genome browser (e.g. IGV)

Griffith et al, 2015

Alignment



Need a splice aware aligner (e.g. STAR, GSNAP, ...)

NATURE METHODS | ANALYSIS

<

Simulation-based comprehensive benchmarking of RNA-seq aligners

Giacomo Baruzzo, Katharina E Hayer, Eun Ji Kim, Barbara Di Camillo, Garret A FitzGerald & Gregory R Grant

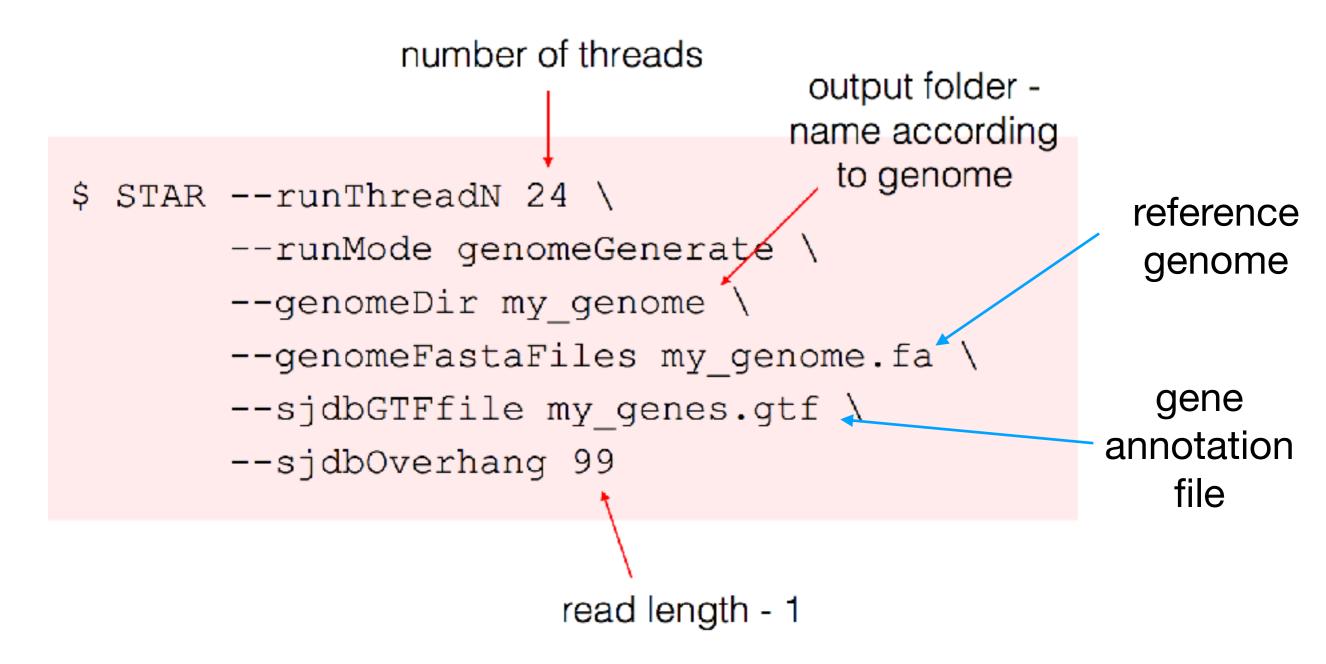
NATURE METHODS | ANALYSIS OPEN

Systematic evaluation of spliced alignment programs for RNA-seq data

Pär G Engström, Tamara Steijger, Botond Sipos, Gregory R Grant, André Kahles, The RGASP Consortium, Gunnar Rätsch, Nick Goldman, Tim J Hubbard, Jennifer Harrow, Roderic Guigó & Paul Bertone

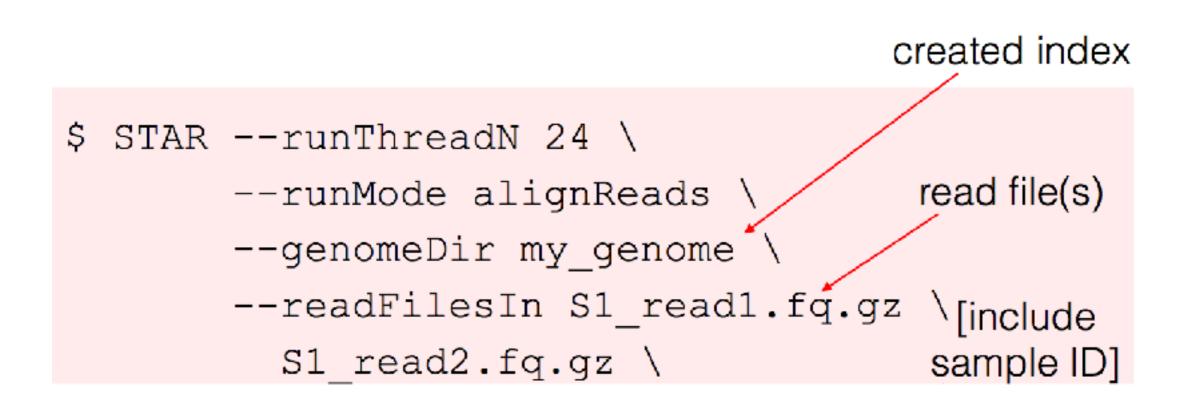
~

Example using STAR: index generation



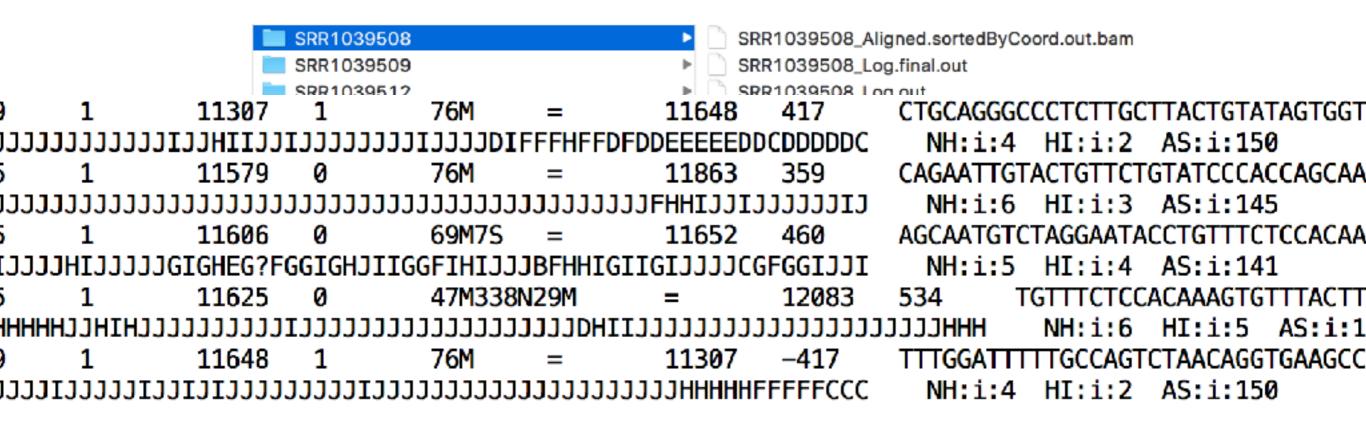
Modified from Charlotte Soneson

Example using STAR: alignment



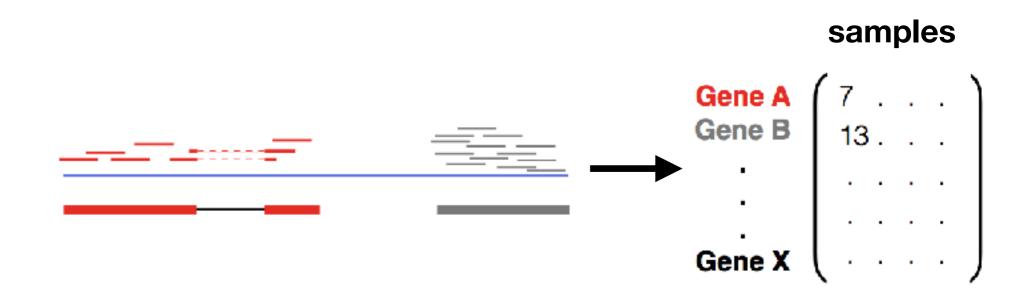
Modified from Charlotte Soneson

Aligner output: BAM files

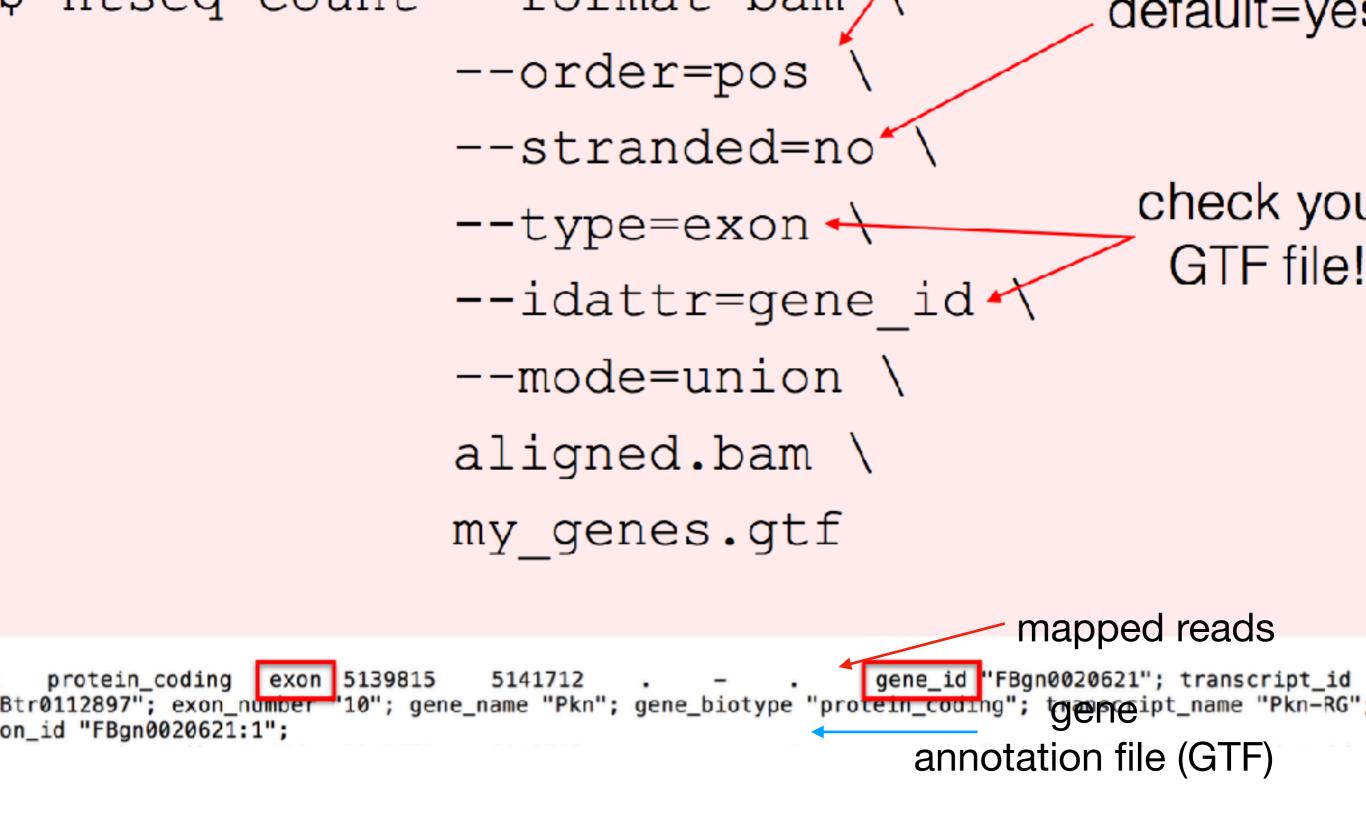


read name flag chr pos mapq CIGAR

Alignment-based abundance estimation workflow

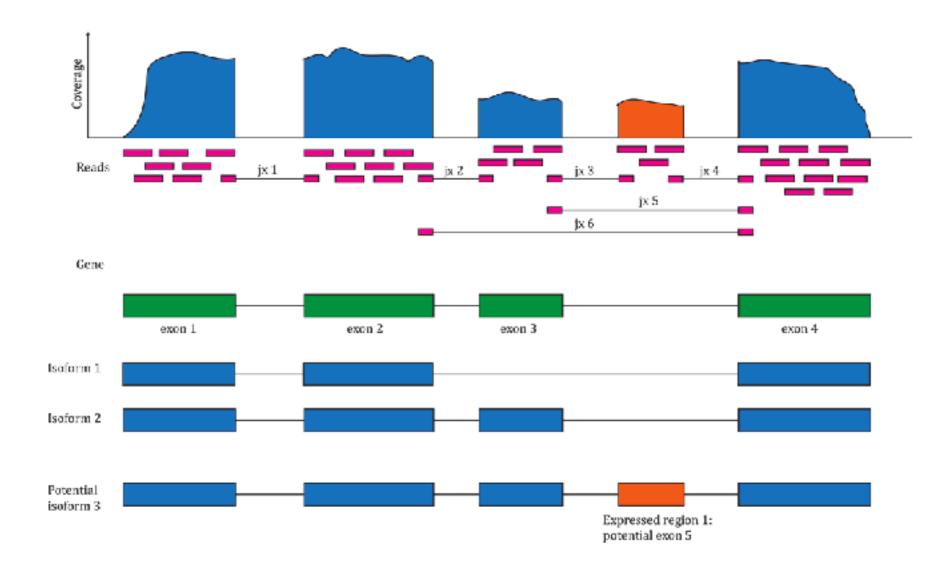


Modified from Charlotte Soneson



Modified from Charlotte Soneson

70,000 human RNA-seq samples already processed



.fastq

alignment

quantification

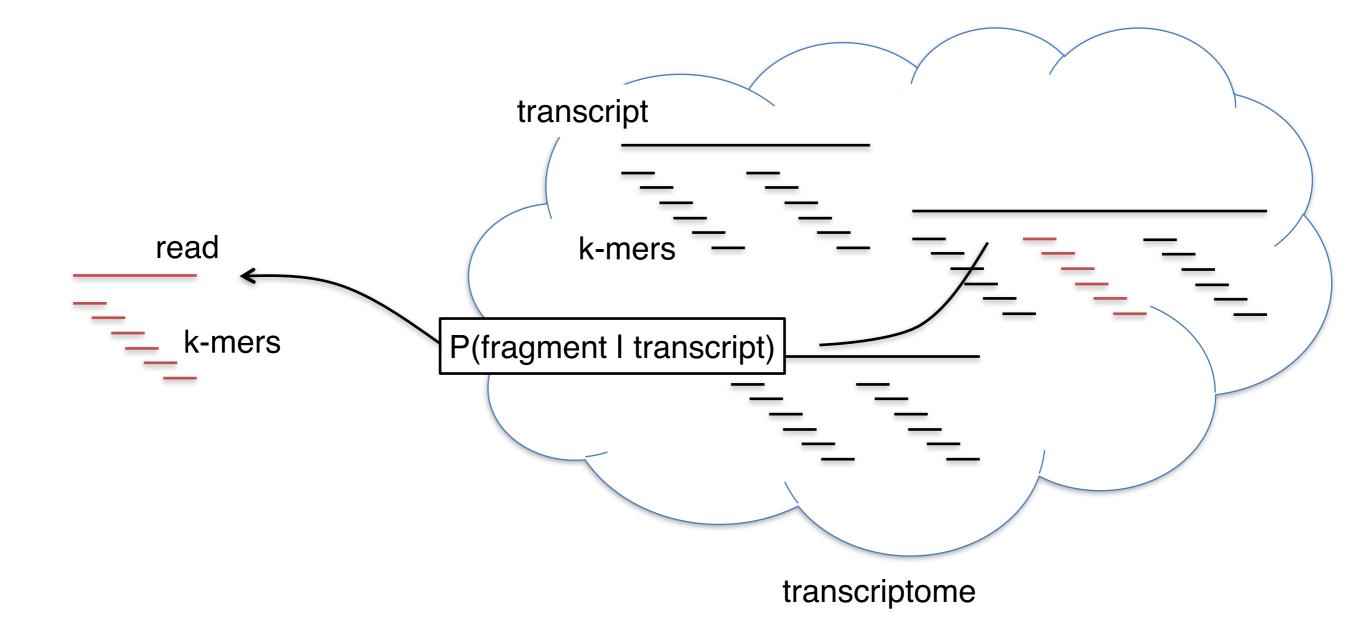
normalization

variance estimation

testing and effect size

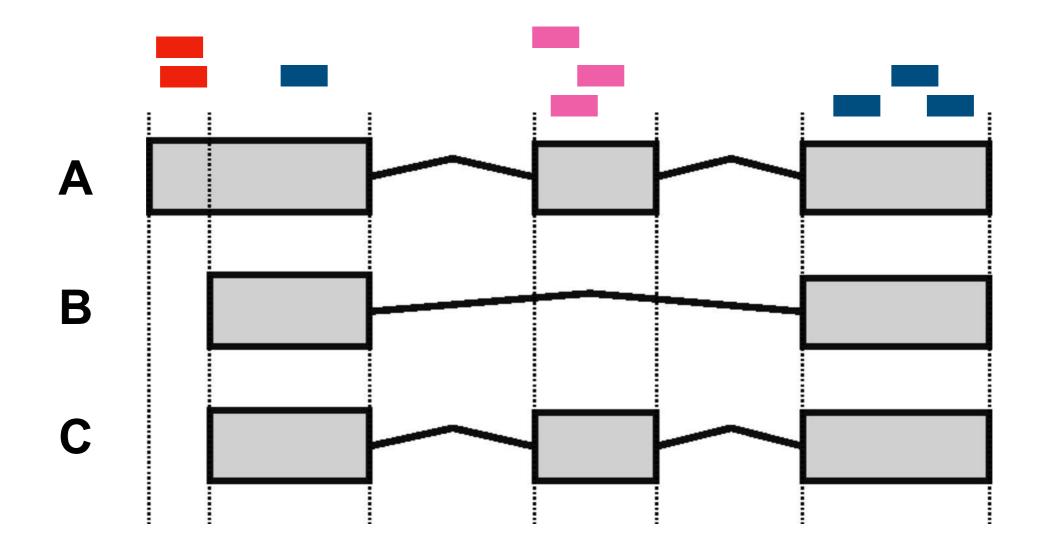
other analysis (e.g. GSEA)

Alignment-free abundance estimation workflows



Extremely fast compared to genome alignments!

Alignment-free abundance estimation workflows

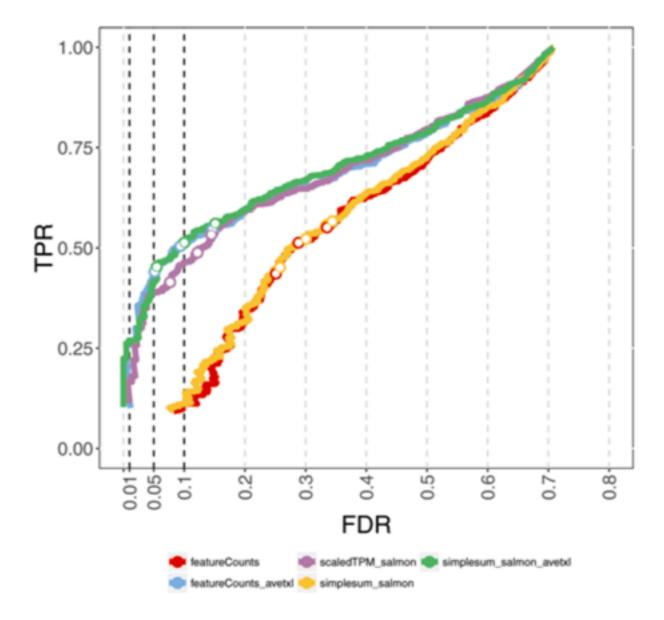


Equivalence classes: {A} = 2, {A,C}=3, {A, B, C}=4

Objective: estimate the transcript abundances that best explain the observed counts for the reference classes.

Why is it important to consider transcript length information? (hypothetical example) Sample A Sample B **Isoform A** length 2/ **Isoform B** length / Counts 10 10 per gene Counts 9/2 + 1 = 5.51/2 + 9 = 9.5weighted by tx length

Considering average transcript lengths improves estimates of DGE



Soneson et al, 2015

.fastq

alignment

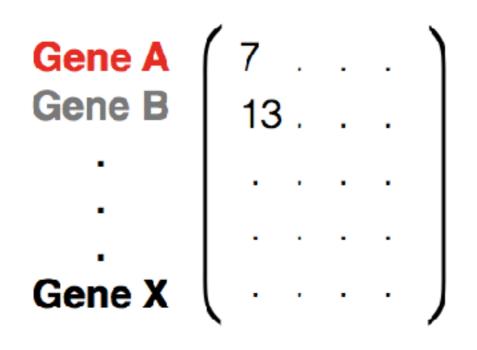
quantification

normalization

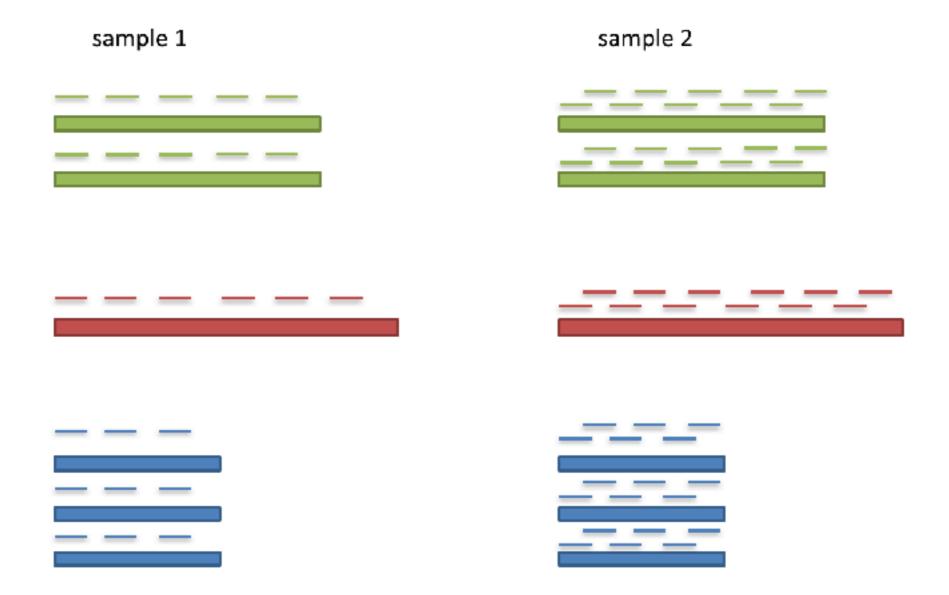
variance estimation

testing and effect size

other analysis (e.g. GSEA)



Sequencing depth



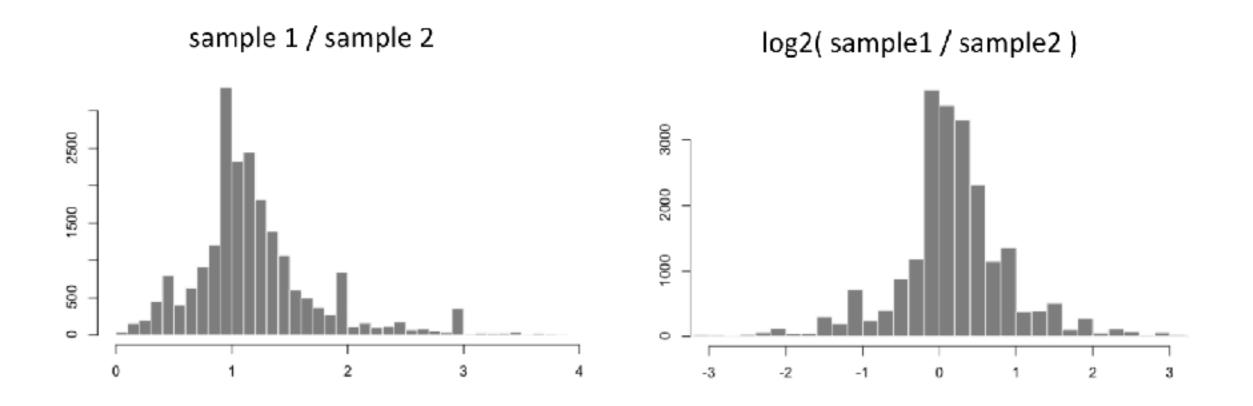
Modified from Mike Love

Normalization for sequencing depth

	actual expression
sample 1:	
sample 2:	gene 1, 2, 3, etc.
sample 1:	sequenced reads
sample 2:	
	naivly normalized
sample 1:	
sample 2:	

Modified from Simon Anders

DESeq2 uses a median of ratios method



- Create a reference sample by calculating the geometric mean across samples for each gene.
- For each sample, take the ratio with respect to the reference sample.
- Take the median across genes for each sample.

Modified from Mike Love

DESeq2 scaling factors or normalization factors?

 s_j

"size factor"

per sample j

sequencing depth

robustly estimated with median ratio

 s_{ij}

"normalization factor"

per sample *j* & per gene *i*

sequencing depth and other factors differ across samples (technical bias: cqn or EDASeq) (gene length: tximport)

> median ratio method for sequencing depth can be estimated on top

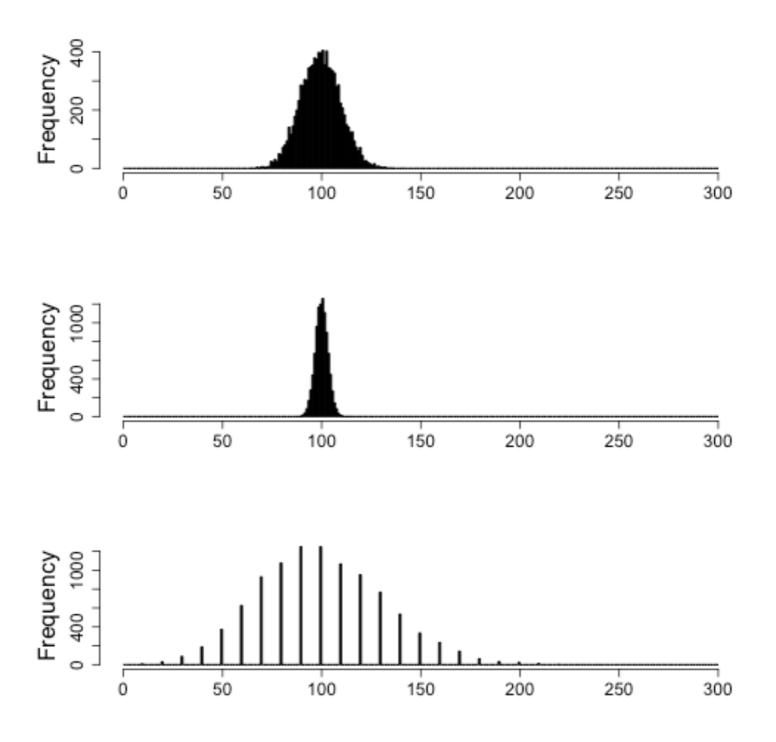
> > **Modified from Mike Love**

But, why counts and not other transformed data (e.g. FPKMs)?

Raw count with mean of 100 Poisson sampling, so SD=10

Raw count with mean of 100 scale by 1/10 SD = ?

Raw count with mean of 100 scale by 10 SD = ?



alignment

quantification

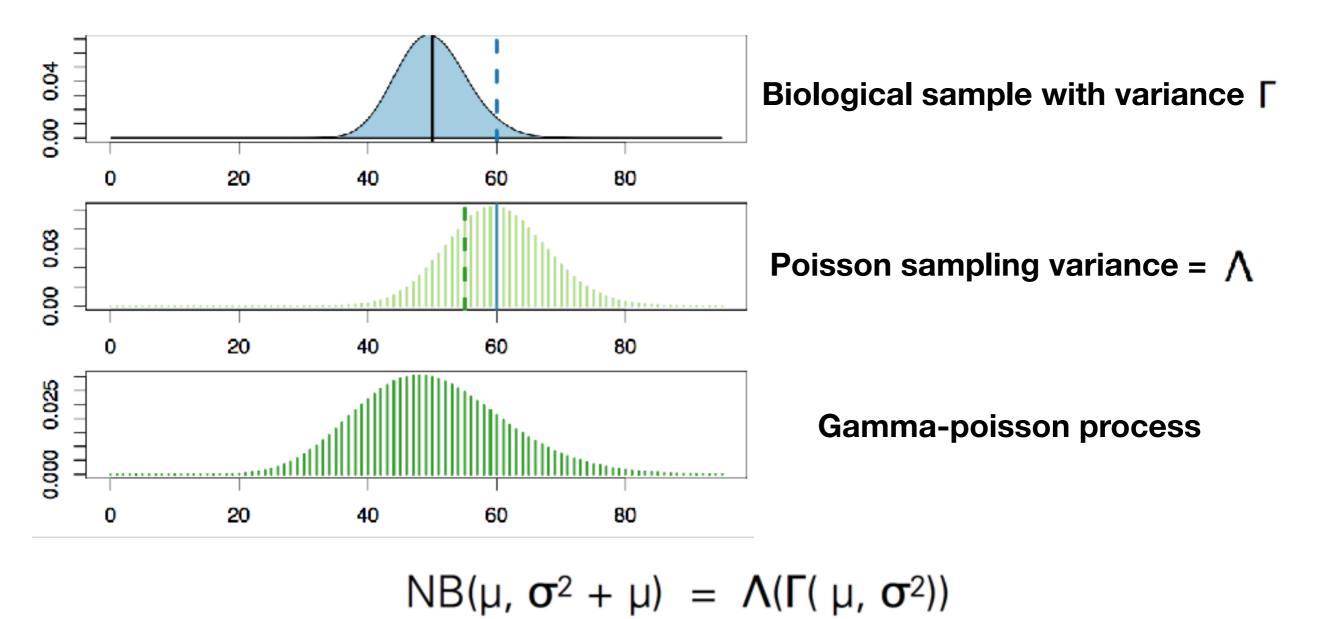
normalization

variance estimation

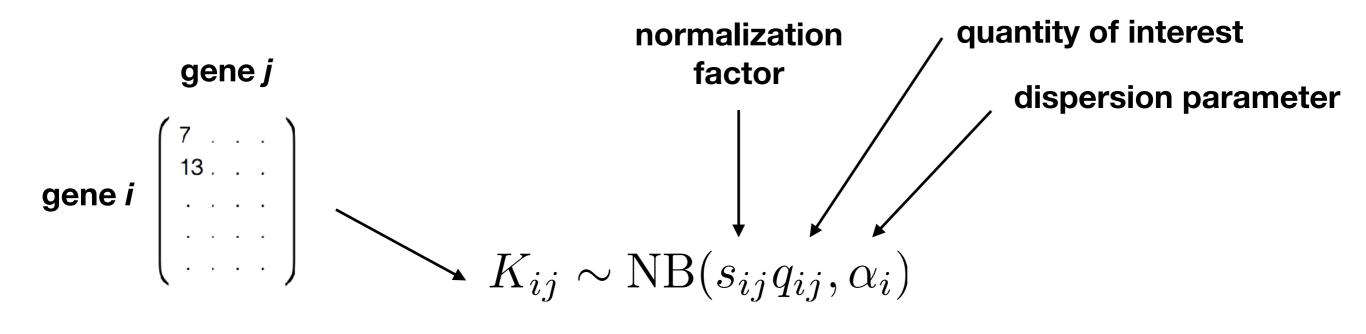
testing and effect size

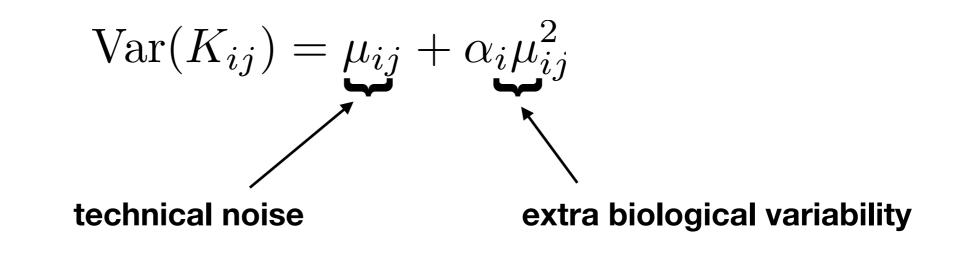
other analysis (e.g. GSEA)

Variance of a gene: technical noise + biological noise



Poisson process in which the mean is gamma distributed





Challenge: small number of replicates!

$$\begin{aligned} \hat{\alpha}_{\text{MLE}} &= \operatorname*{argmax}_{\alpha}(\ell(\alpha | \vec{k}, \hat{\mu})) \\ \mathbf{CR}(\alpha) &= -\frac{1}{2} \log(\det(X^t W X)) \\ \hat{\alpha}_{\text{CR}} &= \operatorname*{argmax}_{\alpha}(\ell(\alpha | \vec{k}, \hat{\mu}) + \mathbf{CR}(\alpha)) \\ \text{prior}(\alpha) &= f_{\mathcal{N}}(\log(\alpha); \log(\alpha_{\text{ft}}), \sigma^2_{\alpha\text{-prior}}) \\ \hat{\alpha}_{\text{CR-MAP}} &= \operatorname*{argmax}_{\alpha}(\ell(\alpha | \vec{k}, \hat{\mu}) + \mathbf{CR}(\alpha) + \log(\text{prior}(\alpha))) \end{aligned}$$

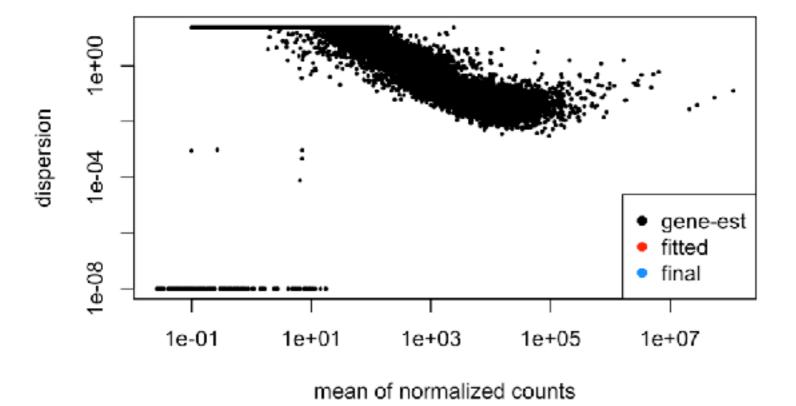
$$\hat{\alpha}_{\text{MLE}} = \underset{\alpha}{\operatorname{argmax}} (\ell(\alpha | \vec{k}, \hat{\mu})) \longleftarrow \text{maximum-likelihood estimates}$$

$$\frac{CR(\alpha)}{CR} = -\frac{1}{2} \log(\det(X^t W X)) \longleftarrow \text{Cox-Reid bias term}$$

$$\hat{\alpha}_{\text{CR}} = \underset{\alpha}{\operatorname{argmax}} (\ell(\alpha | \vec{k}, \hat{\mu}) + \text{CR}(\alpha)) \longleftarrow \text{Cox-Reid ML estimate}$$

$$prior(\alpha) = f_{\mathcal{N}}(\log(\alpha); \log(\alpha_{\text{fit}}), \sigma^2_{\alpha-\text{prior}})$$

$$\hat{\alpha}_{\text{CR-MAP}} = \underset{\alpha}{\operatorname{argmax}} (\ell(\alpha | \vec{k}, \hat{\mu}) + \text{CR}(\alpha) + \log(\text{prior}(\alpha)))$$



$$\hat{\alpha}_{\text{MLE}} = \underset{\alpha}{\operatorname{argmax}} (\ell(\alpha | \vec{k}, \hat{\mu})) \longleftarrow \text{maximum-likelihood estimates}$$

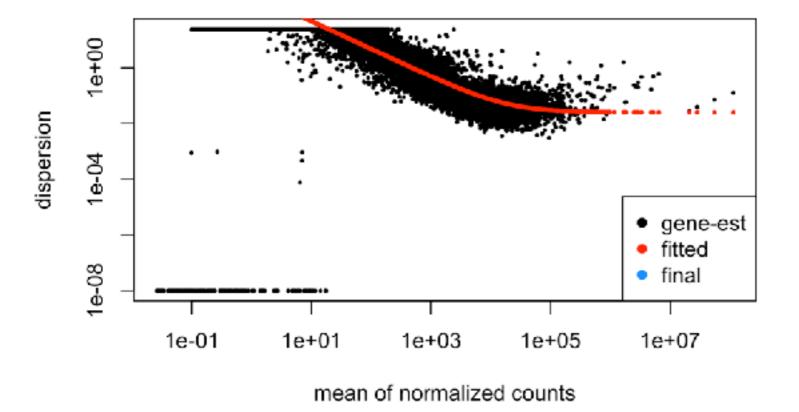
$$\frac{c_{\text{R}}(\alpha)}{c_{\text{R}}} = -\frac{1}{2} \log(\det(X^{t}WX)) \longleftarrow \text{Cox-Reid bias term}$$

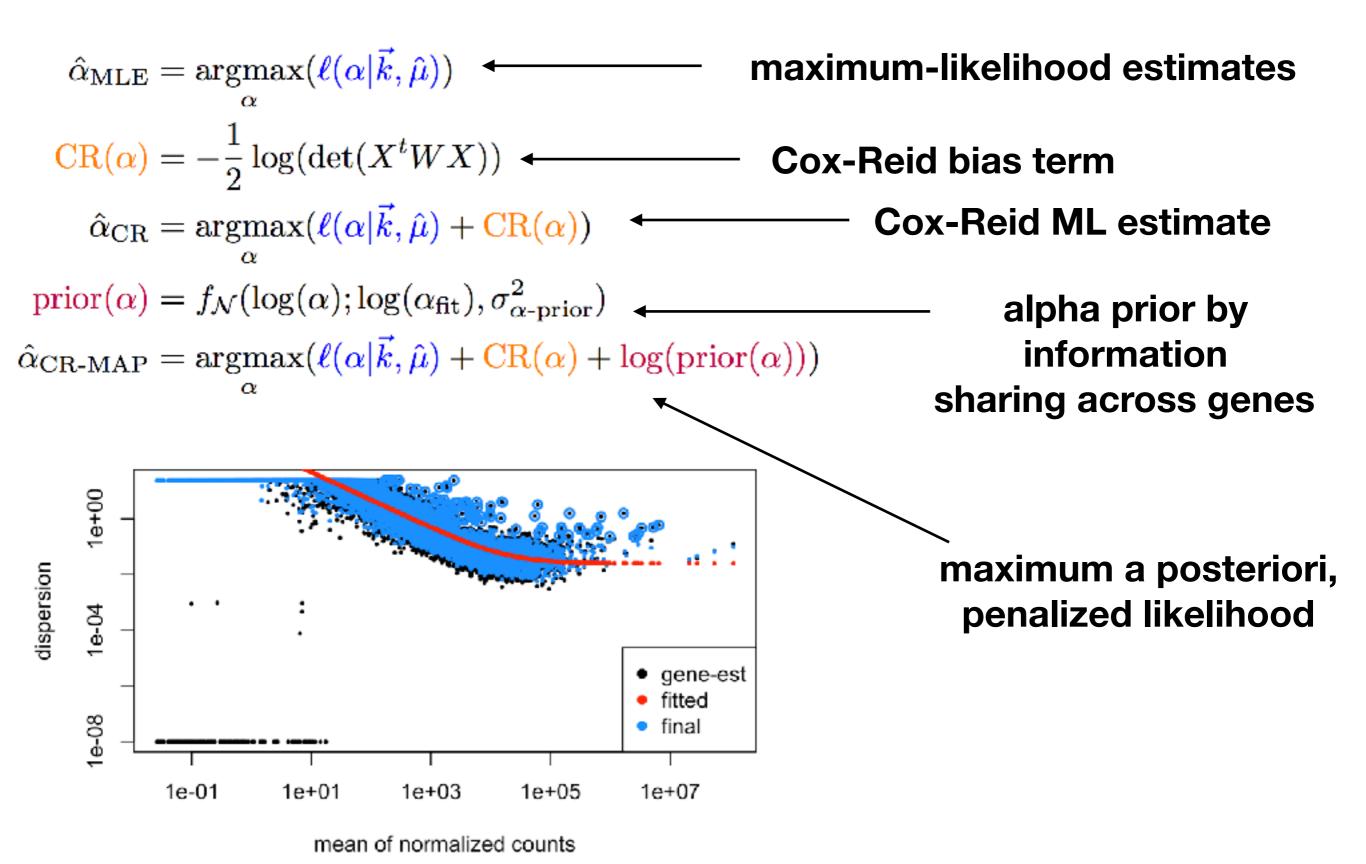
$$\hat{\alpha}_{\text{CR}} = \underset{\alpha}{\operatorname{argmax}} (\ell(\alpha | \vec{k}, \hat{\mu}) + C_{\text{R}}(\alpha)) \longleftarrow \text{Cox-Reid ML estimate}$$

$$\frac{p_{\text{rior}}(\alpha)}{c_{\text{R}-\text{MAP}}} = \underset{\alpha}{\operatorname{argmax}} (\ell(\alpha | \vec{k}, \hat{\mu}) + C_{\text{R}}(\alpha) + \log(\text{prior}(\alpha))) \qquad \text{alpha prior by}$$

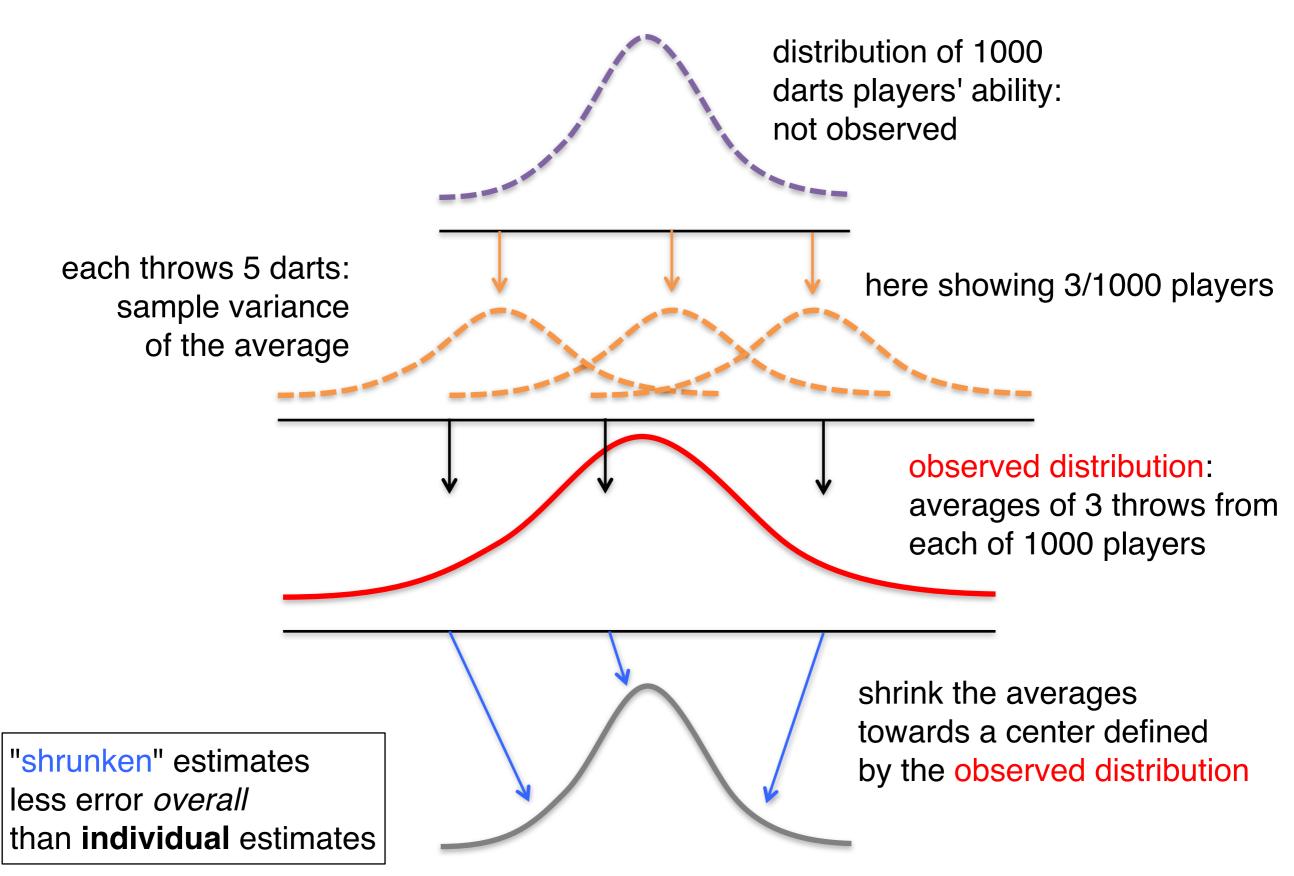
$$\hat{\alpha}_{\text{CR-MAP}} = \underset{\alpha}{\operatorname{argmax}} (\ell(\alpha | \vec{k}, \hat{\mu}) + C_{\text{R}}(\alpha) + \log(\text{prior}(\alpha))) \qquad \text{alpha prior by}$$

$$\hat{\alpha}_{\text{CR-MAP}} = \underset{\alpha}{\operatorname{argmax}} (\ell(\alpha | \vec{k}, \hat{\mu}) + C_{\text{R}}(\alpha) + \log(\text{prior}(\alpha))) \qquad \text{alpha prior by}$$

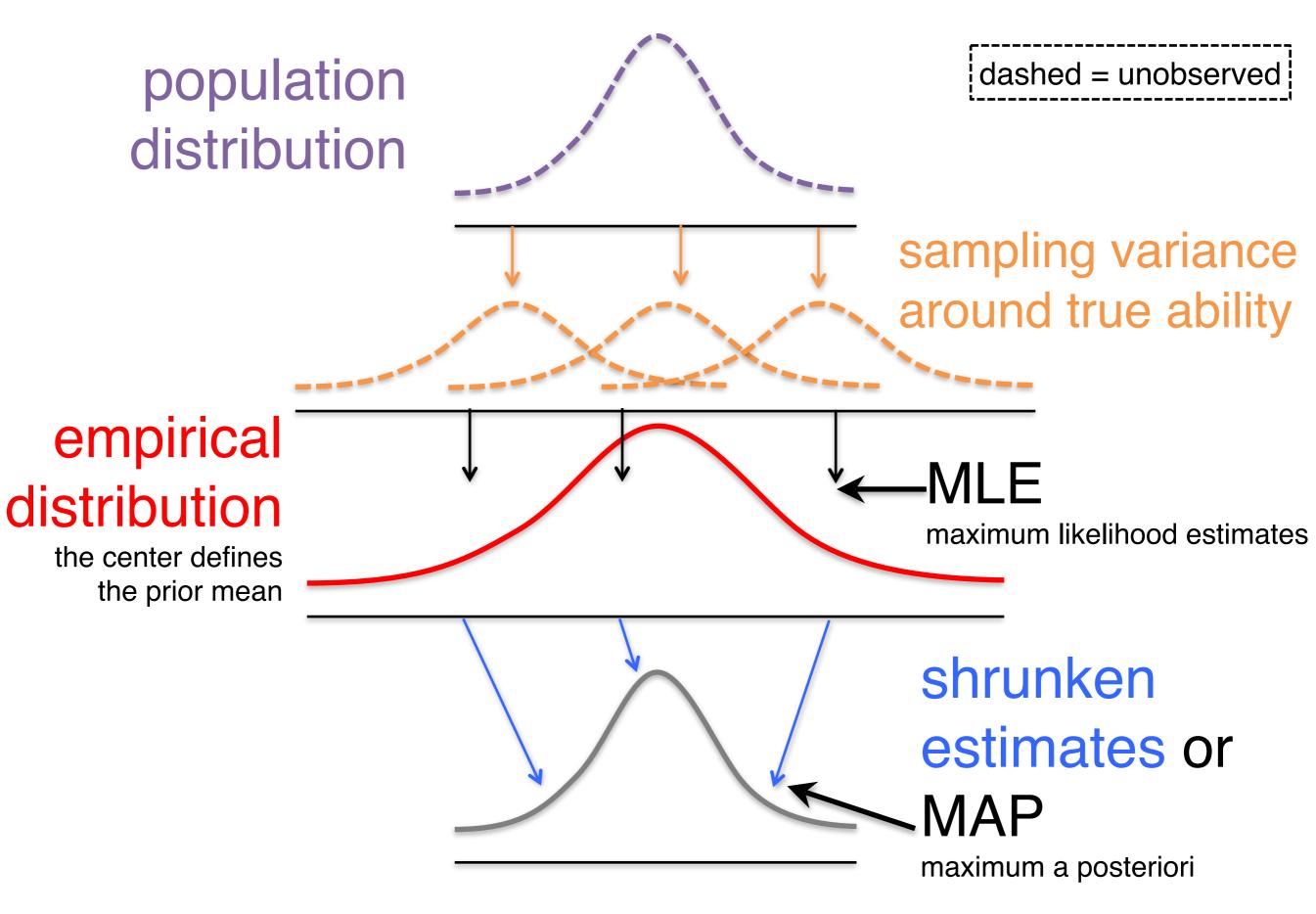


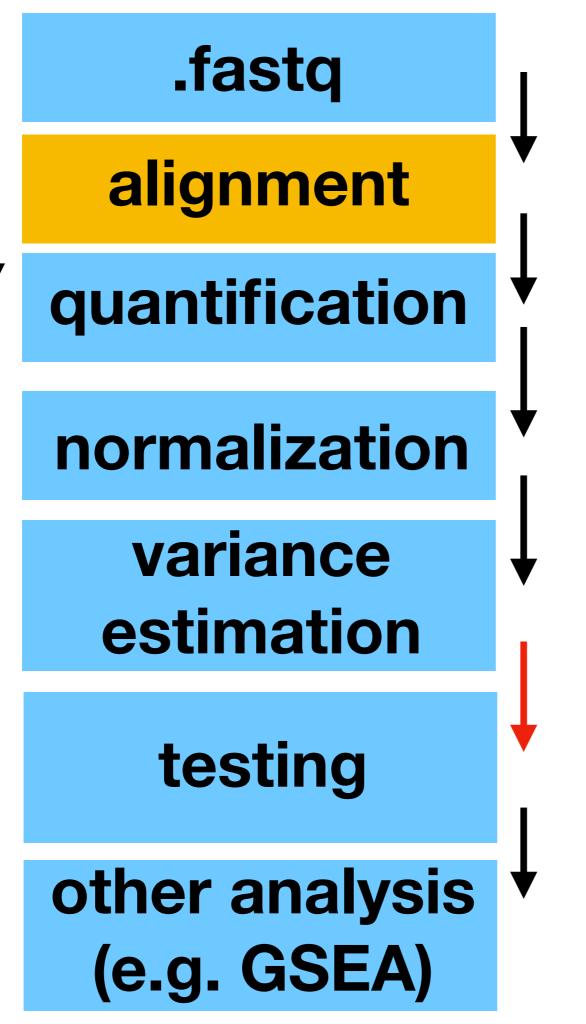


Why shrinkage?

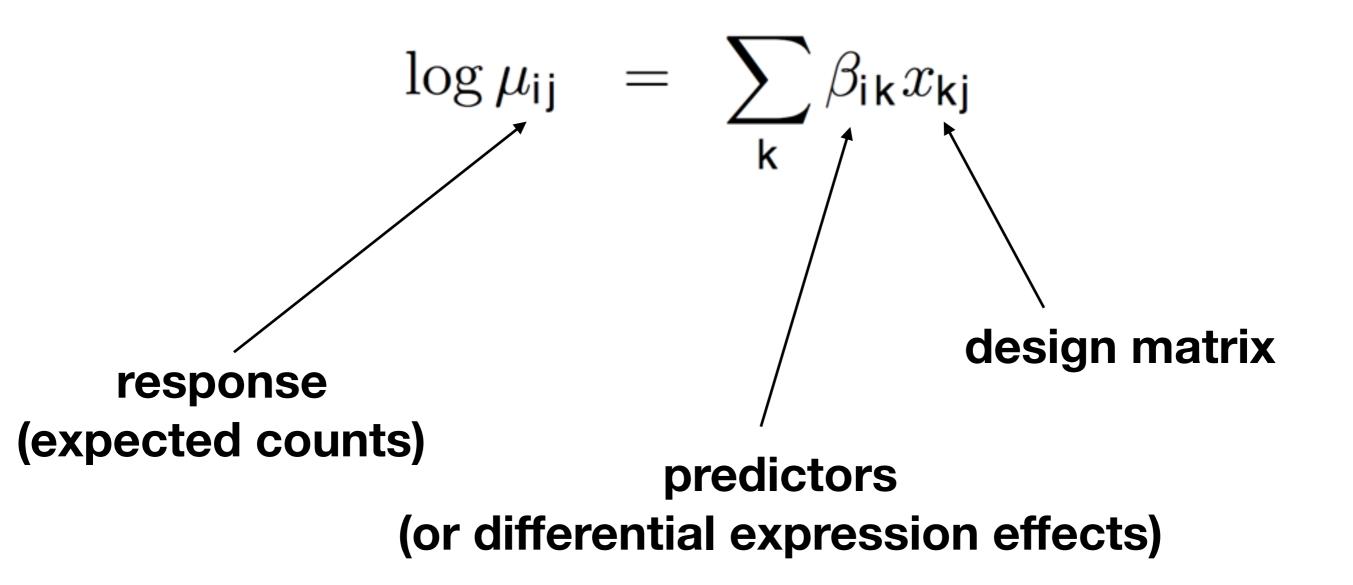


Shrinkage estimation



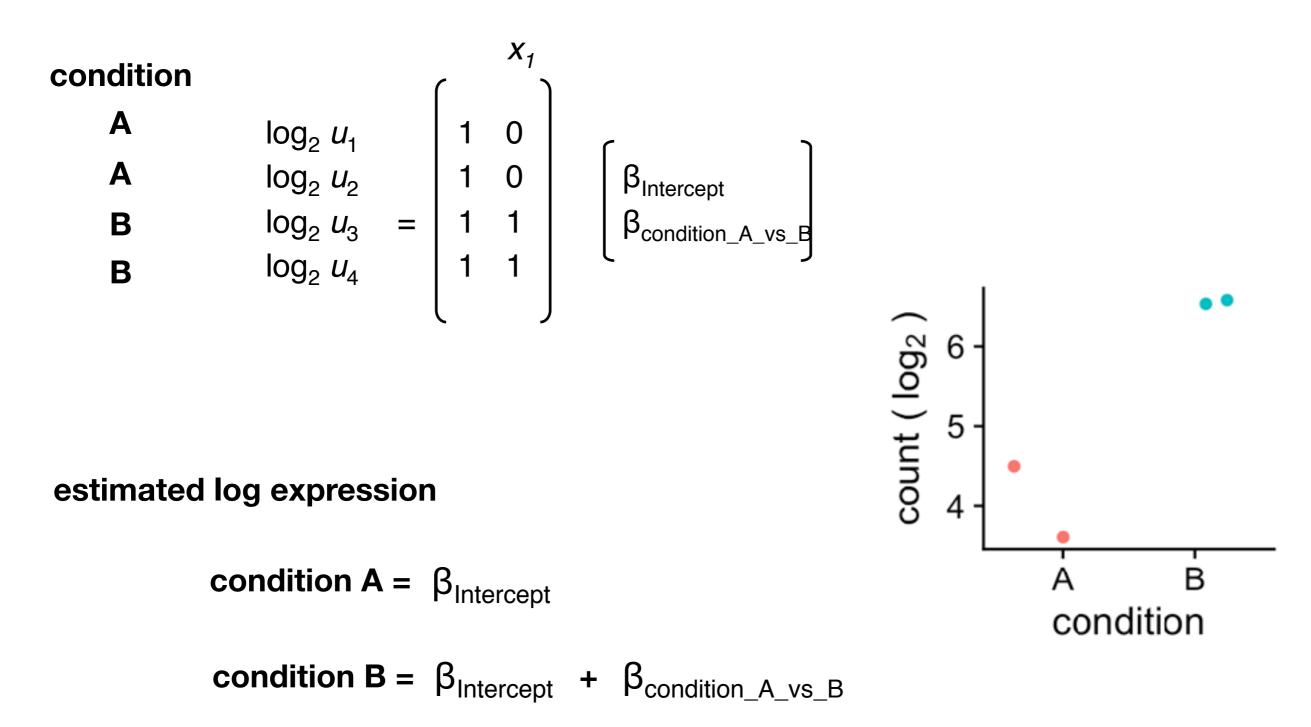


Generalized linear models



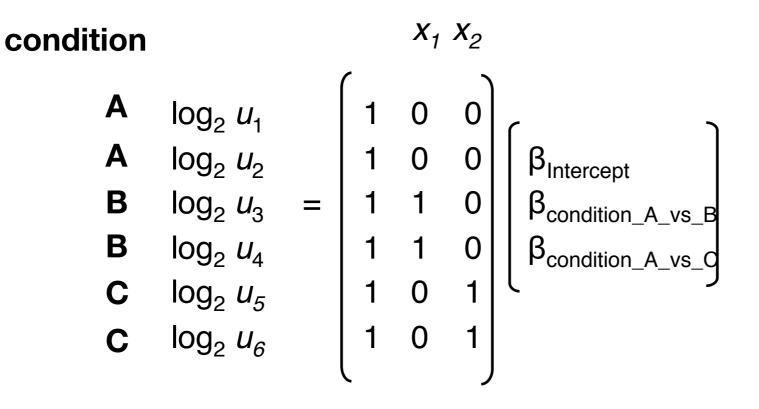
Simplest case: two-group comparison

DESeq2 design = ~ condition



Multi-level comparisons

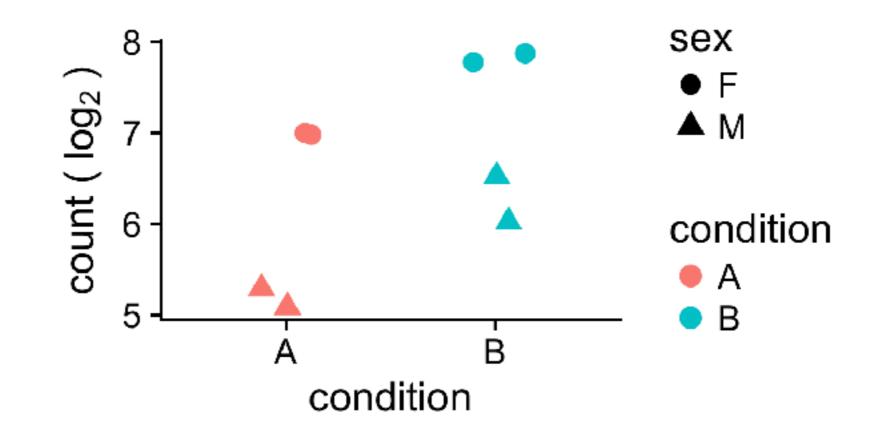
DESeq2 design = ~ condition



estimated log expression

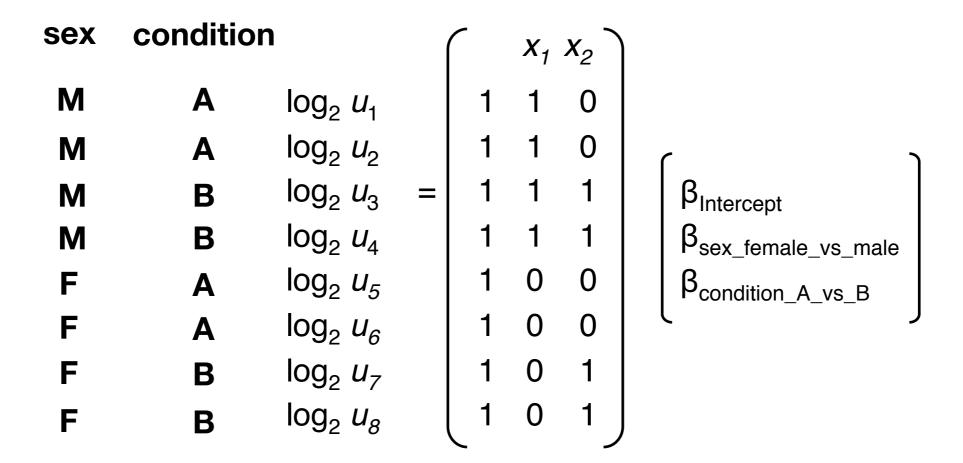
condition A = $\beta_{\text{Intercept}}$ condition B = $\beta_{\text{Intercept}}$ + $\beta_{\text{condition}_A_vs_B}$ condition C = $\beta_{\text{Intercept}}$ + $\beta_{\text{condition}_A_vs_C}$

Comparisons with blocking factors



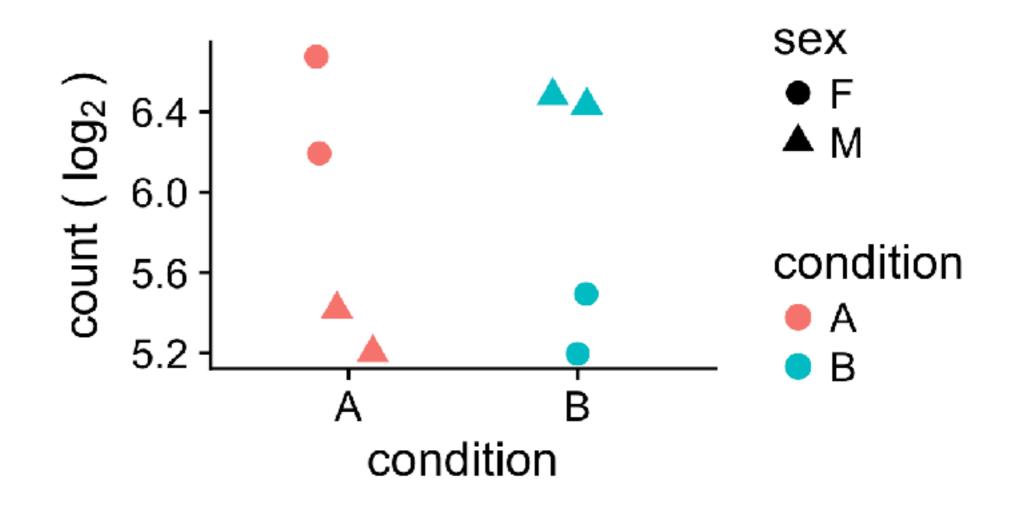
Comparisons with blocking factors

DESeq2 design = ~ sex + condition



What would be the predicted log expression for females in condition B?

Interactions

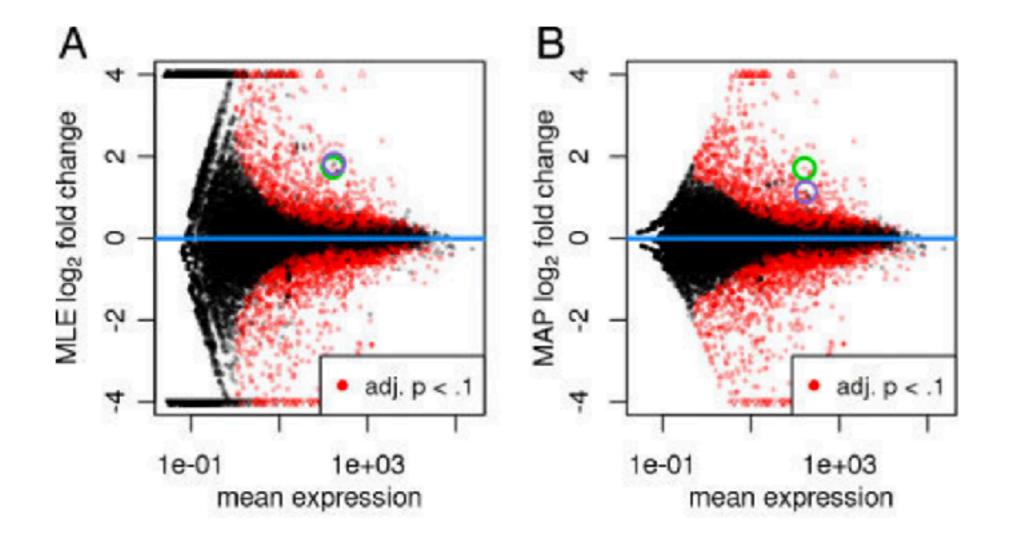


Comparisons with blocking factors

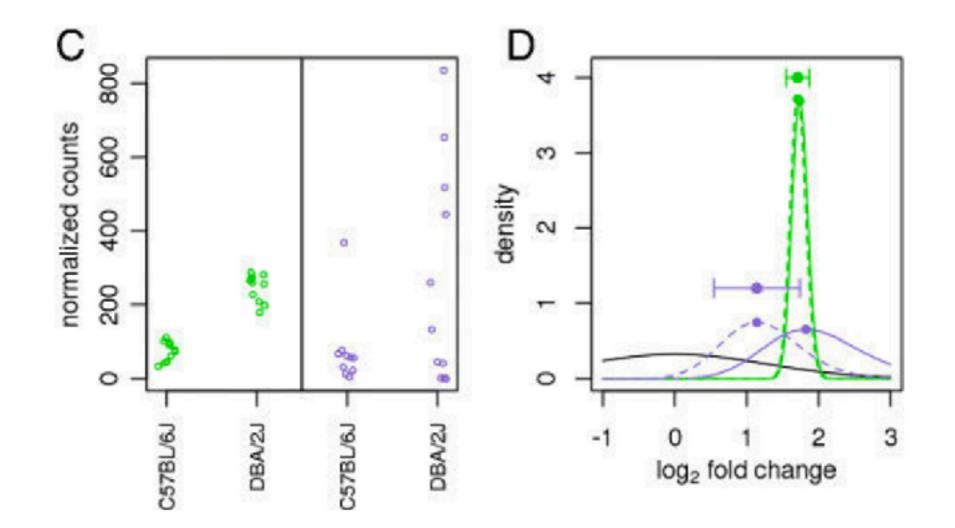
DESeq2 design = ~ sex + condition + sex:condition

sex	condition)		$\left(\right)$	<i>X</i> ₁	x ₂ 2	x ₃)		
Μ	Α	$\log_2 u_1$		1	1	0	0		
Μ	Α	$\log_2 u_2$		1	1	0	0	$\left \right.$	٦
Μ	В	log ₂ u ₃	=	1	1	1	1	β _{Intercept}	
Μ	В	$\log_2 u_4$		1	1	1	1	β _{sex_female_vs_male}	
F	Α	$\log_2 u_5$		1	0	0	0	$\beta_{condition_A_vs_B}$	
F	Α	$\log_2 u_6$		1	0	0	0	β _{interaction}	
F	В	$\log_2 u_7$		1	0	1	0		J
F	В	log ₂ u ₈			0	1	0		

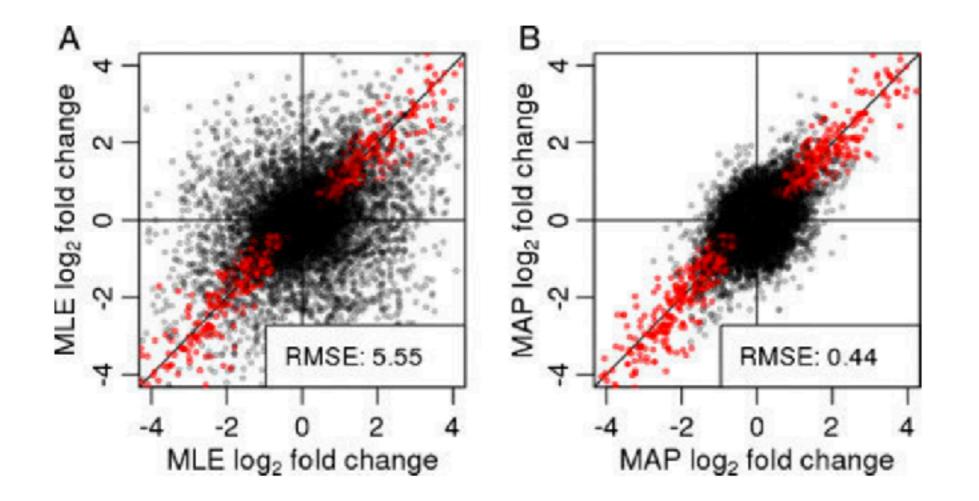
DESeq2 shrinkage of log fold changes



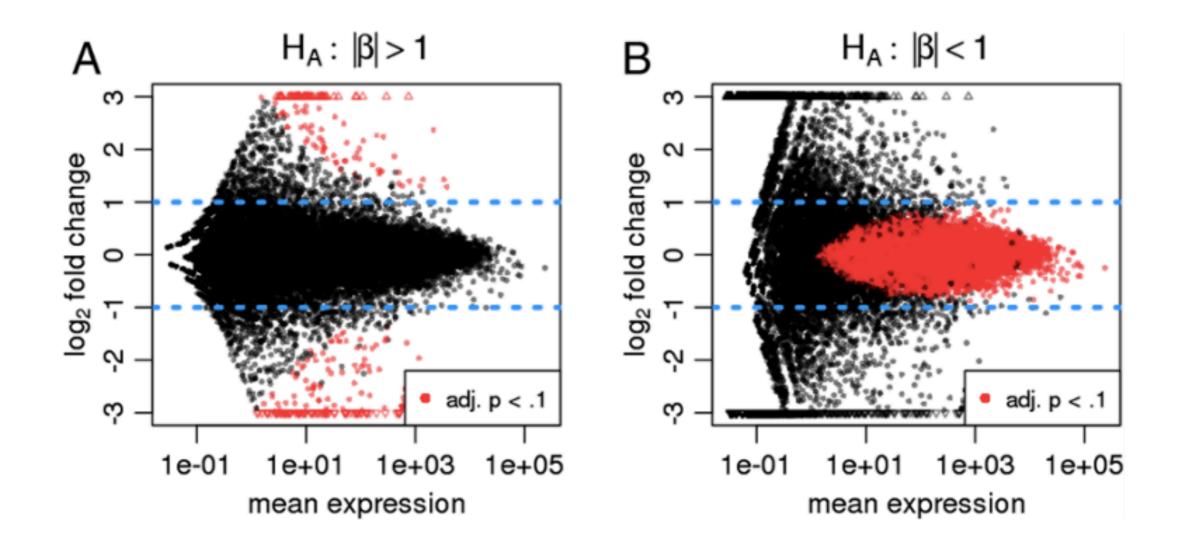
DESeq2 shrinkage of log fold changes



DESeq2 shrinkage of log fold changes



Other hypothesis testing options



Confounders and experimental design

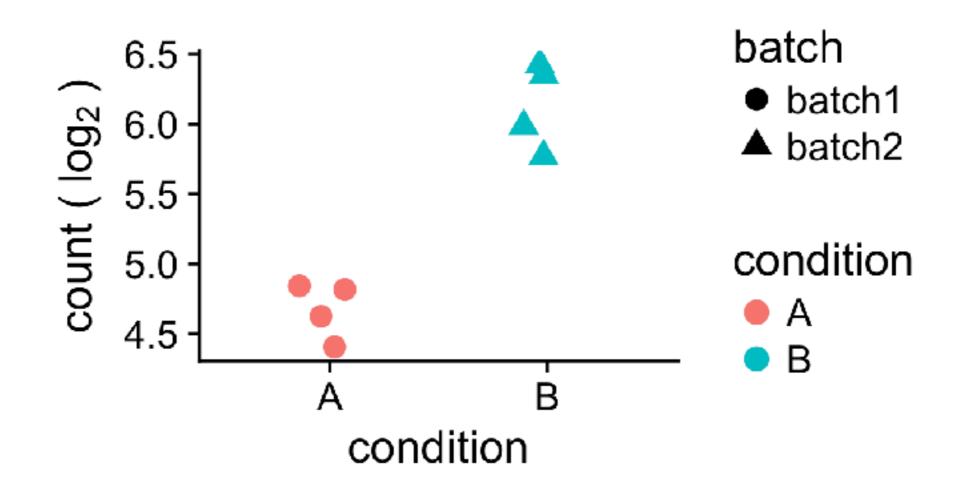
• Spielman et al., Nature Genetics 2007

78% of genes are differentially expressed between human populations

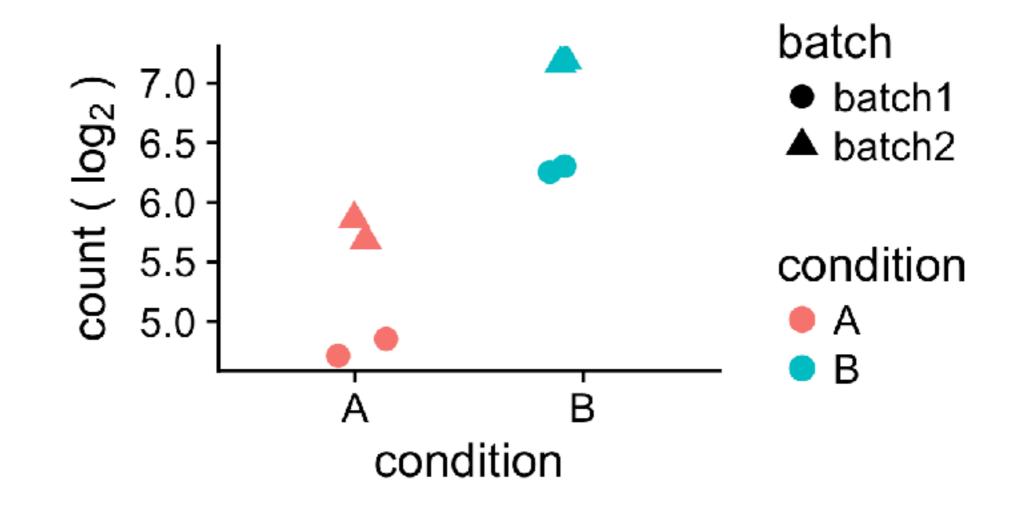
• Lin et al., PNAS, 2014

Differences in gene expression across species are larger than between tissues of a same species.

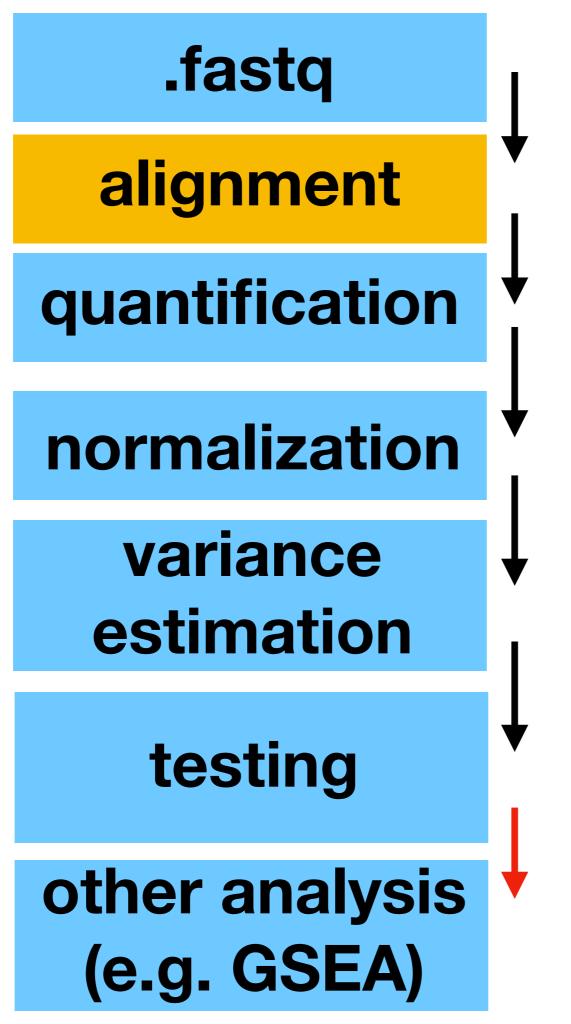
Confounders experiment



Confounders and experimental design



 Randomize conditions of interest in batches and include it as a blocking factor.



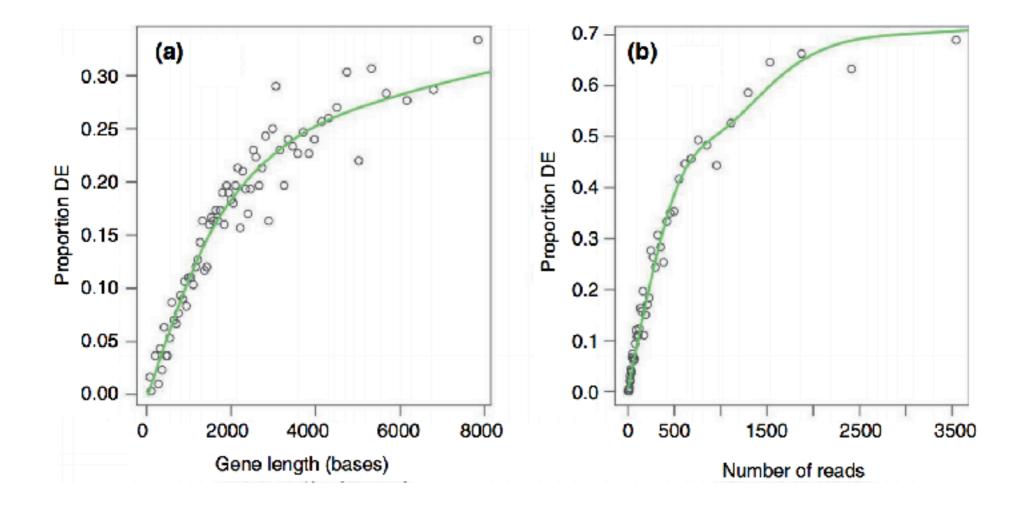
"Traditional" gene-set enrichment analysis

	In gene set	Not in gene set	
DGE	а	b	a + b
Background	С	d	c + d
	a + c	b + d	

$$p = \frac{\binom{a+b}{a}\binom{c+d}{c}}{\binom{n}{a+c}} = \frac{(a+b)! (c+d)! (a+c)! (b+d)!}{a! \ b! \ c! \ d! \ n!}$$

Fisher's test

goseq estimates and corrects for RNA-seq biases in GSEA



Young et al, 2010

.fastq

alignment

quantification

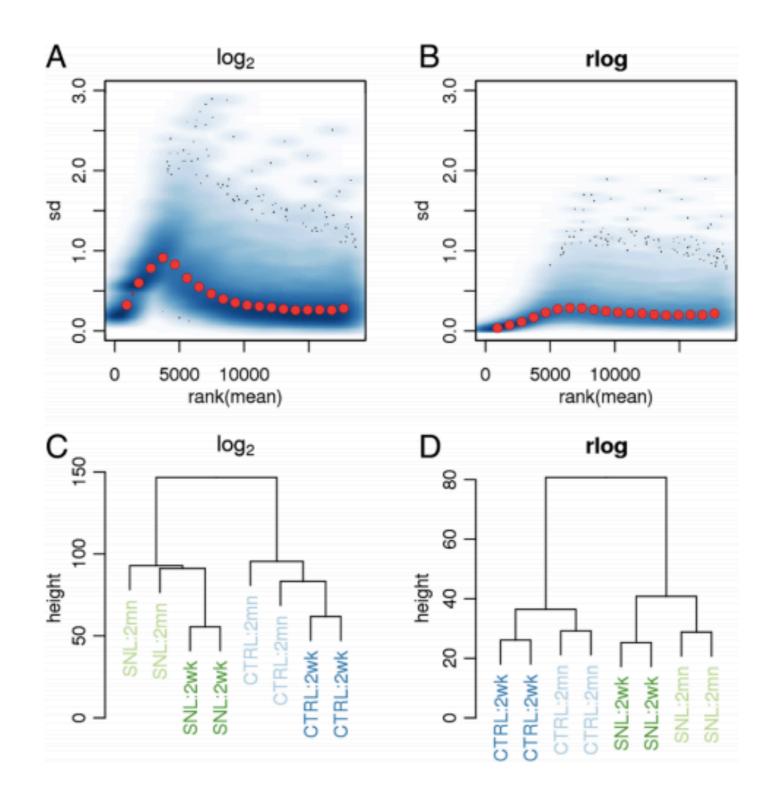
normalization

variance estimation

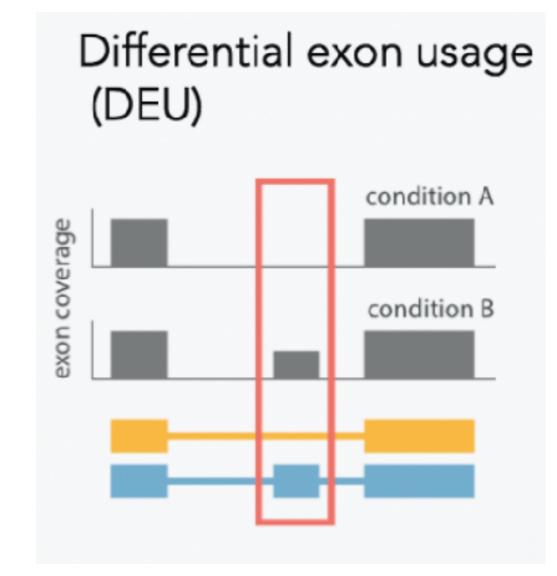
testing and effect size

other analysis (e.g. GSEA)

For exploratory analysis, clustering, PCA: Use rlog or vst data!

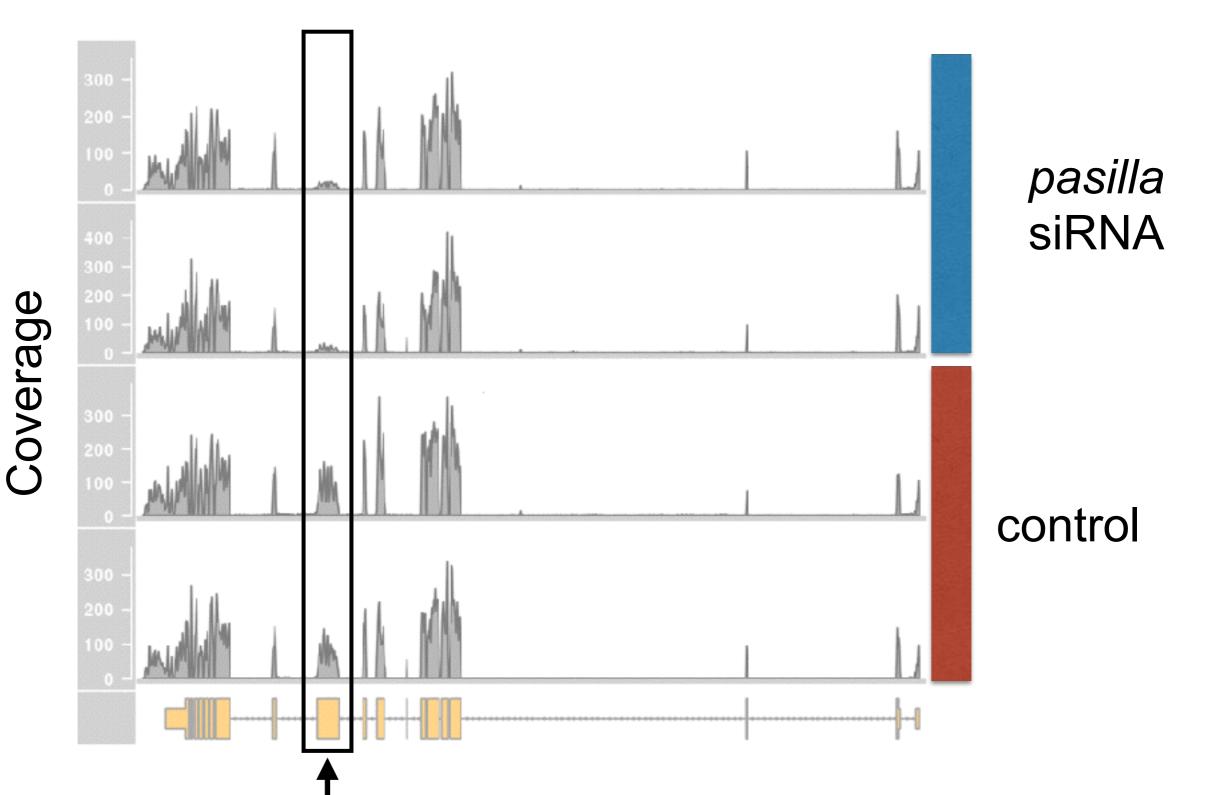


Differential exon usage



Modified slide from Mark Robinson

High-throughput RNA sequencing enables an unbiased characterisation of isoform expression



Data from Brooks et al. Genome Research, 2011

DEXSeq: inference of differential exon usage

		sam	ples					
_								
exons		treated1fb	treated2fb	treated3fb	untreated1fb	untreated2fb	untreated3fb	untreated4fb
	E001	1997	494	562	1150	2514	570	547
	E002	122	112	180	69	203	156	142
	E003	276	293	305	190	398	312	259
	E004	420	200	182	230	446	183	185
	E005	416	217	279	146	170	237	231
	E006	486	357	471	190	337	418	364
	E007	574	465	536	469	805	480	496
Ψ	E008	536	417	447	541	832	475	472
	E009	191	237	216	217	427	286	222
	E010	188	130	96	617	1177	520	508
	E011	165	212	210	118	275	294	269
·	E012	536	437	414	441	792	619	504
	E013	72	41	49	40	76	34	38
	E014	3	0	33	5	0	2	42

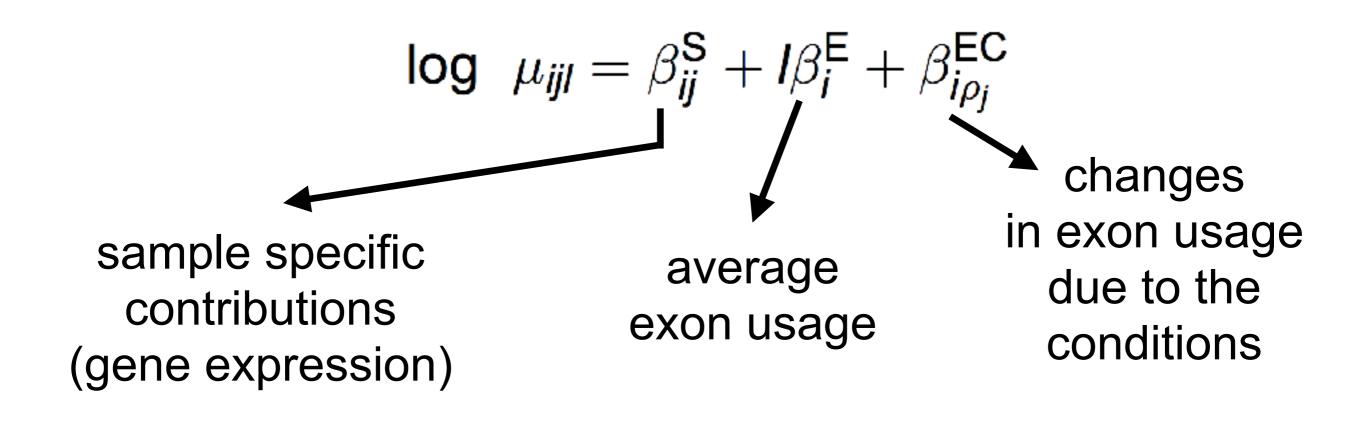
exon usage = # of transcripts including an exon # total transcripts

Anders et al, 2012

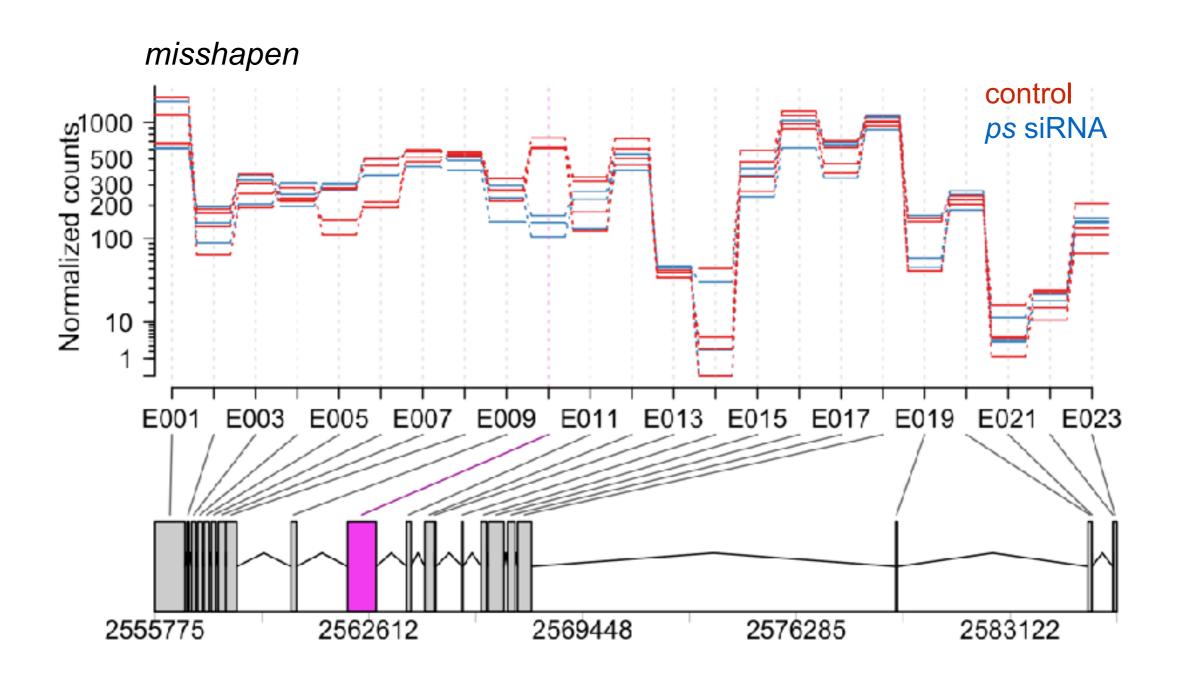
DEXSeq: inference of differential exon usage

exon *i*, sample *j*

- I = 1 exon under consideration
- I = 0 sum of gene count

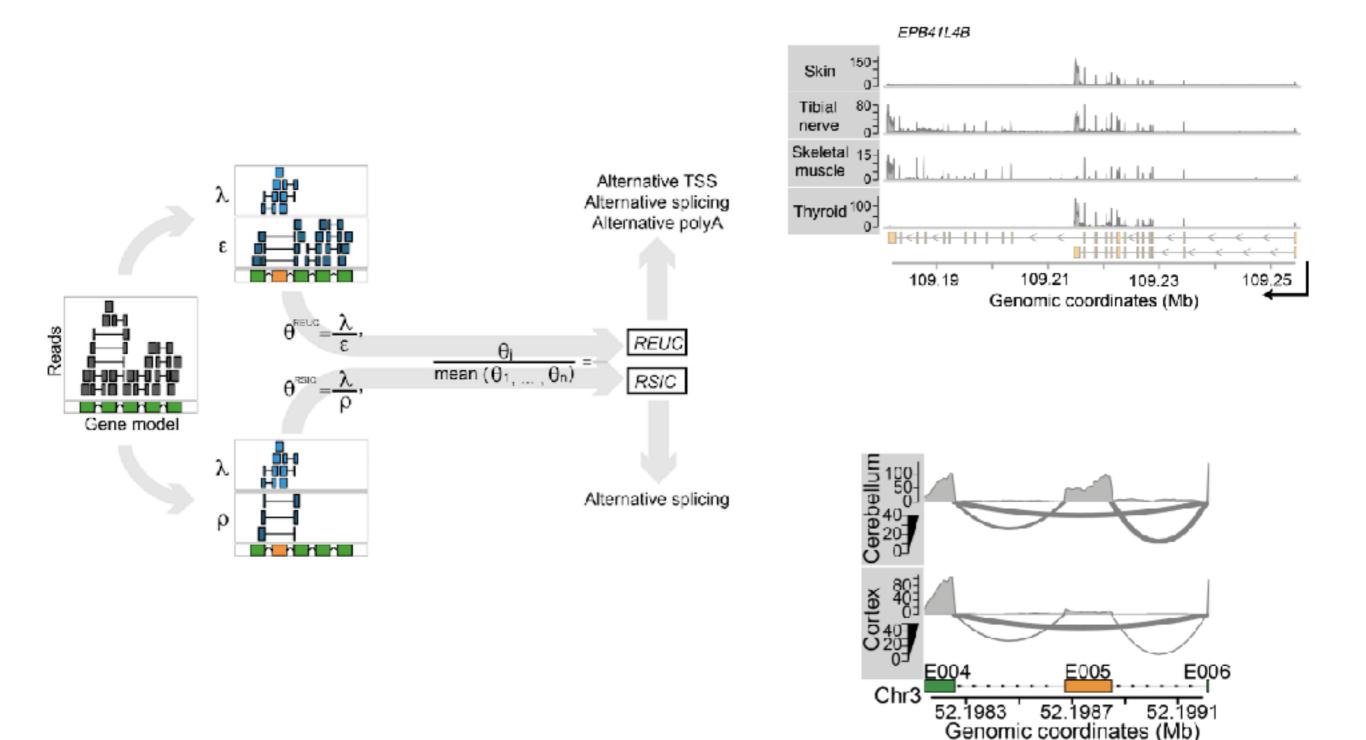


DEXSeq: inference of differential exon usage



Anders et al, 2012

Detecting differential splicing vs differential usage of TSS and polyA



Reyes et al, 2017