

Batch effect: confounding sequencing grouping with biological grouping

D87PMJN1 (run 253, flow cell D2GUAACXX, lane 7)	D87PMJN1 (run 253, flow cell D2GUAACXX , lane 8)	D4LHBFN1 (run 276, flow cell C2HKJACXX, lane 4)	MONK (run 312, flow cell C2GR3ACXX , lane 6)	HWI-ST373 (run 375, flow cell C3172ACXX , lane 7)	
heart	adipose	adipose	heart	brain	
kidney	adrenal	adrenal	kidney	pancreas	
liver	sigmoid colon	sigmoid colon	liver	brain	
small bowel	lung	lung	small bowel	spleen	
spleen	ovary	ovary	testis	Human	
testis		pancreas		Mouse	
Solution = Keep technical effects orthogonal to biological • Mouse & Human in same lane, same tissues in same lane					

• Will your Core facility know to do this for you?

ETTER 228 | NATURE | VOL 502 | 10 OCTOBER 2013 doi:10.1038/nature12511 Genome-wide signatures of convergent evolution in echolocating mammals Hypothesis H₀ (species tree) a Hypothesis H₁ ('bat-bat convergence') - All other mammal lineages Armadilo Atlantogenata C Large flying fox Non-echolocating bats Elephant Human Little brown bat ¥ Parnell's moustached bat ¥ Greater horseshoe bat ¥ - Mouse Echolocating bats ___ Pika - Greater false vampire bat ¥ Euarchontoglires - Rabbit - Hedgehog - Shrew - Cat - Dog Hypothesis H₂ ('bat-dolphin convergence') Laurasiatheria - Horse - All other mammal lineages - Vicuna Large flying fox Non-echolocating bats - Little brown bat ¥ Chiroptera; Yangochiroptera (all echolocating) Pamel's moustached bat ¥ Large flying fox - Pamell's mousta ad bat ¥ Greater horseshoe bat ¥ Echolocating bats and dolphin - Greater false vampire bat 🗴 Chiroptera; Yinpterochiroptera (echolocating and non-echolocating) - Greater horseshoe bat 🖌 - Greater false vampire bat 🖌 L - Bottienose dolphin 🖛

Parker et al. 2013. Nature 502:228-231.

5

Parker et al. failed to conduct orthogonal 'test' of findings or estimate proper 'null' expectation

What makes us difference from chimps?

Is it really just 2%

Orthologous genes ... can their phenotypic effects drift over evolutionary time?

- RNAi phenotypes assessed for 1,300 genes in two nematodes — TMRA ~ 24 MYA
 - 7% had divergent phenotypic effects (in lab, etc.)
 - Likely higher in nature

So ... how many of you are sequencing a genome?

- What does that mean?
- What kind of genome are you generating?
- What is your question?
 - Short term vs. long term goals?
 - Are these in conflict?

Is there a genome for humans?

What does this mean

- Most species have lots of genomic polymorhism
 - SNPs are just the tip of the iceburg, lots of structural changes
 - Characterizing all the variation is very expensive
- But
- Very rarely will your questions require chromosomal level assembly
 - Thus you can get to your answers much faster and cheaper if you generate what you need rather than working for an ideal you don't need

CRISPR/Cas9 results Individual gRNA Sex Eye Proboscis yes yes 3 F CC58 yes CC51 3 м yes $\mathbf{3}_{+}\mathbf{4}$ F yes yes CC31_2 CC33 $\mathbf{3}+\mathbf{4}$ F yes yes CC31_1 $\mathbf{3}_{+}\mathbf{4}$ м yes yes CC52 yes bar5 F yes >2000 eggs injected - Consistent developmental phenotype BarH1 - Involved in development of eye, proboscis - Not involved in orange / white wing coloration - No sex specific effects Woronik et al., in prep

1001 ways for your pipeline to break

An overview of genomic pipeline challenges

Christopher West Wheat

Informatics and Biology

- We need to make sure we put the 'bio' into the bioinformatics
 - Do results pass 1st principals tests
 - Always double check data from your core facility or service company
 - Use independent analyses as 'controls' on accuracy
 - What are your + and controls?
 - Do independent methods converge?
- Need to re-assess our common metrics for potential bias in the genomic age
 - Bootstraps on genomic scale data
 - P-values, outlier analyses, demographic null models

Outline

- Transcriptome analyses in non-model species
 - Walk through pipeline and highlight issues of concern
 - -What is validation?
- Insights from candidate genes —Can Second Gen methods get us there?

1/23/18

Radivojac et al.: A large-scale evaluation of computational protein function prediction. *Nat Meth* 2013, **10**:221–227.

Falda et al. Argot2: a large scale function prediction tool relying on semantic similarity of weighted Gene Ontology terms. *BMC Bioinformatics* 2012, **13**:S14.

Batch processing for GO terms				
Site Homepage				
Insert sequences	Please select the zipped tabular BLAST and HMMer files, see here for details, to upload (\leq 1GB).			
Batch processing	Please do not upload more than 5000 sequences at once, otherwise the service will be overloaded.			
Consensus analysis	BLAST: Choose File No file chosen			
DB releases	HMMer: Choose File No file chosen			
View SGE jobs	🗆 submit example data 🚱			
View SGE queues	Email:			
Argot ² help	CUT-OFF (meaning)			
About	Total Score (≥ 5): 5			
	Reset SEND REQUEST			

Mappers don't appear to matter

Wrong

- Genomic scale data can hide widespread biases that unless you specifically look, are hard to find
- Mapping programs differ in their settings and design – DNA to DNA vs. RNA to DNA
 - Are usually compared using species without much genetic variation
 - Indels, splicing, SNPs all affect mapper performance

100 bp window with 4 – 5 SNPs differing from reference

学大基因 Wicencio Oostra					
body part	# libraries	# clean reads (per library)	# nucleotides (per library)	GC content	
abdomen	72	15,261,019	3,052,203,767	45%	
thorax	72	15,633,416	3,126,683,150	46%	
total	144	2,224,399,290	444,879,858,000	45%	
14 samples: one from each family, thorax and abdomen 69,075 contigs edgeR					
<pre># reads ~ season + stress + family + season*stress + season*family + stress*family season*stress*family</pre>					

1/23/18

Most studies are annotation limited

- What is the biological meaning of the top P-value genes?
- Low P-value or expression genes are certainly important
- Gene set enrichments are key to insights
 - Thus, annotation is very important

Description	Uniprot	-log10P
Oxidoreductase.	Q9VMH9	7.087008
Hypothetical protein.		6.993626
SD27140p.		6.315473
	Q8SXX2	6.300667
SD01790p.	Q95TI3	5.316371
Electron-transfer-flavoprotein	Q0KHZ6	5.1425
Pseudouridylate synthase.	Q9W282	4.784378
Hypothetical protein.	Q9VGX0	4.750469
CG14686-PA (RE68889p).	Q9VGX0	4.650051
Chromosome 11 SCAF14979, wh	Q8T058	4.506043
		4.470413
, complete genome. (EC 1.6.5.5		4.445501
RNA-binding protein.		4.374033
Hypothetical protein.	Q9VPL4	4.369727
Peptidoglycan recognition-like		4.206247
Angiotensin-converting-related	Q8SXX2	4.172776
Lachesin, putative.	Q917H7	4.056174
Secretory component.	Q9VVK5	3.981175
Putative adenosine deaminase	Q9VVK5	3.980728
		3.95787
7 of 20 (35%) no Uni	iprot ID	

Sources of error

Transcriptome assembly can be huge source of bias:

- Fragmentation creates multiple contigs of same gene
- SNPs and alternative splicing generates more contigs
- 1 locus = frag. X SNPs X alt. splicing = many contigs

We can observe effects in expression analyses:

- Family effect mapping bias
- Pseudo-inflation in Gene Set Enrichment Analyses

Put the BIO in your informatics!! Use independent analyses as 'controls' on accuracy – What are your + and – controls?

	Analysis # 1	Analysis # 2	Analysis # 3
Mapper	TopHat2	STAR	?
Normalization	none	TMM	TMM
Analysis	PCA	RSEM	EDGER

Should independent methods converge?

- Triangulate!!!!

Common mistakes

- Blindly trusting bioinformaticians: look at your data!!!
- Mapping reads to a very divergent genome
 - Only most conserved genes map: bias due to divergence and mapping threholds
- Not accurately assessing a TA
 - Your template determines quality of results
- Not enough reads, replication, or statistical power
 - Large amounts of data to not change fundamental statistics (never pool unless necessary)
- Not assessing likely biases in analyses
 - Try different mapping thresholds & analysis methods to assess convergence of biological signal
 - Assess alternative splicing and duplication potential in findings
- Data size and computational power are demanding
 - Download data and work with it before your real data comes.

Life after your RNA-Seq experiment

- -What are you likely to learn?
 - By measuring other aspects of the phenotype, you can validate and solidify your transcriptome insights
- -What may limit your insights?
 - Single gene analyses can be restrictive
 - Statistically: FDR is very conservative
 - Biologically: genes work in networks varying in expression and direction across pathways
- Possible solutions
 - Gene set enrichment analysis: harness the functional network
 - Collect additional data relevant to your phenotype and organism
 - Don't hesitate to make your own enrichment set, measure hormones and metabolites.

	RNAseq Resources
•	Papers Oshlack A, Robinson MD, Young MD: From RNA-seq reads to differential expression results. Genome Bio/2010, 11:1-10. Haas BJ, Zody MC: Advancing RNA-Seq analysis. Nat Biotechnol 2010, 28:421-423. Grant GR, Farkas MH, Pizarro A, Lahens N, Schug J, Brunk B, Stoeckert CJ, Hogenesch JB, Pierce EA: Comparative Analysis of RNA-Seq Alignment Algorithms and the RNA-Seq Unified Mapper (RUM). Bioinformatics 2011, doi:10.1093/bioinformatics/btr427. Wolf JBW: Principles of transcriptome analysis and gene expression quantification: an RNA-seq tutorial. Molecular Ecology Resources 2013, doi:10.1111/17550998.12109. Nookaew I, Papini M, Pornputtapong N, Scalchait G, Fagerberg L, Uhlen M, Nielsen J: A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Research 2012, 40:10084-10097. De Wit P, Pespeni MH, Ladner JT, Barshis DJ, Seneca F, Jaris H, Therkildsen NO, Morikawa M, Palumbi SR: The simple fool? s quide to population genomics via RNA-Seq: an introduction to high-throughput
	sequencing data analysis. Molecular Ecology Resources 2012, 12:1058-1067.
•	Websites — http://www.rna-seqblog.com/ — Google anything that comes to mind
•	Workshops http://evomics.org/ EBI online • http://www.ebi.ac.uk/training/online/course/ebi-next-generation-sequencing-practical-course/rno-sequencing/ma-seq-analysis-transcriptome
•	Colleagues

SIMPLE FOOLS GUIDE			The P		
Flowchart		Contig →	7 7 T	7 7 7	94
Capy FASTQ files to your working folder.	LEGINO P: Program called S: Script file I: Input like O: Ourgant like	Short read	\$	_	
<pre>C 10 integral lty_trimmer([setstookht]) E trimmer[]setstookht] E "processity_ab: L"more start" O "TOURFILE_trimmed.fastq"</pre>	A great place	e to s	start, but not s	stop	
S Trisolip.sh 1 Yourpring trismed.fastof 0 Yourpring trismed_clipped.fastof	Collapse FASTQ and owner thiplicate reads P. Castar, collapser (fans holder) S. collapse:cupilorectourt. ah P. YOUNDFILE trimmed, clapsed, faster" O. YOUNDFILE trimmed, clapsed, faster" Toronering, displacecount.tec"	Table 1. Pr pipeline in a will need to Windows. I	ograms, modules, toolkits, and packages its full mode. If you want to carry out thi o have a Unix portal, such as Cygwin, inst f you do not intend to go through all step	required in order to run th s pipeline on a Windows pla alled or run Linux in additio as, some software might not	rough this tform, you n to be needed.
P fastx_guality_ptate (Batx Looks)	For Pared-End samples, nort FASTQ files and remove orphan reads to a separate file. P. Saartwoohinese incedend, sys	Software Name	Description	Where to find it	Step(s) that require(s) this software
Un "NORFYLLE, trimed, pilped, fastq" 0. "NORFYLL", paletata, tat" Une GALANY (http://nem.fl.b.pour.ht)	S BECONDINCT of FUCKFILE_trimed_clipped_feetq 0. YOUTHFILE_trimed_clipped_willpaired.faetq YOUTHFILE_trimed_clipped_singles.faetq	Ubuntu Linux	Ubuntu is one of many Linux versions. The advantage of Ubuntu, and many other Linux distributions, is that it can be easily installed and removed on a Windows PC or a Mac, without need of reformating your hard drive.	(Mac OS X or PC) http://www.ubuntu.com/	All (not needed on Mac)
look under NOS; QC and manipulation. Draw quality score boxplot and nucleotide distribution chart.		CygWin	CygWin is a Unix-environment portal that allows you to run most of the Unix- formatted software described here on a PC.	(Windows anly) http://www.cygwin.com/	All (not needed on Mac)
		Xcode	Xcode is a suite of application tools from Apple that includes a modified GNU Compiler Collection (supports basic	(Mac OS X only) Xcode 3 or 4 http://developer.apple.com/x	All

Can this really work?

Case study # 1

LETTER

i:10.1038/nature13112

doublesex is a mimicry supergene

K. Kunte¹*, W. Zhang²*, A. Tenger-Trolander², D. H. Palmer³, A. Martin⁴, R. D. Reed⁴, S. P. Mullen⁵ & M. R. Kronforst^{2,3}

One of the most striking examples of sexual dimorphism is sex-limited mimicry in butterflies, a phenomenon in which one sex-scaling the finance-mimics a toxic model species, whereas the other sex displays a different wing pattern'. Sex-limited mimicry is phy-logenetically widespread in the swallow trail butterfly genus Paplio, in which it is often associated with female mimer by phy-logenetically widespread in the swallow trail butterfly genus Paplio, in which it is often associated with female mimer by phy-netical attention²⁺, but there are almost on empirical data that address the methel by a single Mendelian 'supergent'. Althout the swallow the molecular basis of a supergent on the swall dimorphism, the order of the swallow trail butterfly genus Paplio, the molecular basis of a supergent on the swallow the molecular basis of a supergent on the swall dimorphism, the order of the swallow trail butterfly genus Paplio, the molecular basis of a supergent on the swall dimorphism, supers is controlled by a single Mendelian 'supergent'. Althour the swall dimorphism, the order of the venue to example of the swallow the most of character of the swallow the swall of character of the swallow the swallow the swall of the molecular basis of super-ment minicry' there are almost to empirical data that tadferse

Kunte et al. 2014 Nature

Can we find the same

genomic regions?

Results

- Identified *doublesex* immediately
- Found new genes missed in pubication -p270
 - -RNA directed DNA polymerase
 - -Arginine/Serine rich coiled-coil protein 2

-Now searching to see if these are all near each other

De novo RNA-Seq: Do you need a genome?

No, but there are important biases & limitations

- TA mapping limitations
 - No exon level resolution but this will change soon
 - No coding information on identified SNPs unless you build gene feature files on contigs
- TA mapping biases unique to it
 - Spicing may cause mapping problems if locus is collapsed, but generally OK to not assume a gene model
- TA mapping biases shared with genomic mapping
 - SNP and indel effects
 - gene duplication (are reads mapping to the right place)

Map to TA vs. Genome:

which is better?

Template effects:

- Mismatch :
 - SNPs (single nucleotide polymorphisms)
 - Indels (insertion or deletion polymorphisms)
- Pseudo-inflation
 - An increase in the copy number of a gene that arise from genome assembly errors or TA errors
- Gene model errors
 - If the models in your genome are bad, this will affect results

Islands of speciation or background selection?

The absence of high Dxy in regions of high Fst suggest a role of background selection driving these patterns rather than genomic 'islands' driving speciation.

Cruickshank and Hahn. 2014. Molecular Ecology.

