
	
Inference	of	demographic	histories	of	
natural	populations	using	sequence	

data	
	

Coalescence,	Mutation	and	
Recombination	

Richard	Durbin	rd109@cam.ac.uk	
Cesky	Krumlov	24/1/18	



What	I	mean	by	demography	

1.  Population	size	going	back	in	time	
– Actually	“effective	population	size”	Ne(t)	

•  We	will	come	back	to	what	this	means	
– Approximate	time	range	10k	–	1M	years	ago	

•  Again	we	will	see	why	
2.  Population	structure	

–  Subpopulations	and	when	they	split	(and	merged?)	

•  Based	on	explicit	evolutionary	models	
–  Relate	patterns	of	(shared)	genetic	variation	

accumulated	since	a	common	ancestor	to	history	



Tree	on	two	sequences	
•  Gustave	Malécot	(1940s)	

•  Coalescence	is	joining	together,	in	our	case	going	
backwards	in	time	

•  Chance	of	coalescence	per	generation	is	1/N	
•  TMRCA	is	exponentially	distributed	with	mean	N	



Probability	of	observing	a	mutation	

•  To	see	a	mutation,	it	must	have	happened	on	
one	of	the	branches	since	the	common	
ancestor	

•  P(observed	mutation)	=	2Tµ	
•  E(observed	difference	rate)	=	θπ =	2Nµ
•  Humans	are	diploid,	so	θ =	4Neµ, where	Neis	
the	effective	population	size	

•  For	humans,	θπ =~	0.001	
– 1/800	–	1/1200	depending	on	population	

•  Hard	to	measure	Ne	and	µ independently…		



Effective	population	size	
•  Lots	of	mystique/angst	about	this	

–  Our	definition	is	arguably	at	the	core	of	the	concept	
•  	the	reciprocal	of	the	probability	of	sharing	a	parent	in	the	
previous	generation		

•  =	1	/	coalescence	rate	
•  Why	this	is	different	from	census	population	size:	

– Many	consequences	occur	over	large	numbers	(often	
order	of	Ne	generations)	–	long	term	averaging		

–  Structure	generates	non-random	patterns	of	coalescence,	
and	non-independence	between	generations	

– Maybe	only	a	small	percentage	of	individuals	breed	
–  Selection	favours	some	individuals	over	others	

•  But	is	always	something	of	this	form	that	we	get	at	by	
population	genetic	analysis	



Segments	of	fixed	TMRCA	are	
separated	by	recombination		

Past 

Mutations 

Recombination in some ancestor 



Pairwise	Sequentially	Markovian	
Coalescent		

Li	and	Durbin	(2010):	Inference	of	human		
population	history	from	individual	genome	sequences	

Hidden Markov Model	



PSMC	Hidden	Markov	Model	

•  Move	from	left	to	right	in	the	genome	
– Let	P(x|t)	=	prob(data	up	to	x|TMRCA	at	x = t)	
– Calculate	P(x+1|t)	=	(∑s	P(x|s) r(t|s))	e(x)	

•  e(x)	=	“emission	at	x”	=	2𝜇t  if	a	het,	else	(1-2𝜇t)	
•  r(t|s)	=	prob(recombination	from	TMRCA	s	to	t)	
	=	2𝜌s prob	(coalesce	back	to	t)		

            + (1-	2𝜌s) 				if	t = s 
	

Depends	on		
N(t’)  t’ < s,t 



Markov	assumption	

•  This	model	assumes	that	
	data	to	the	left	of	x|TMRCA	at	x = t  

is	independent	of		
		data	to	the	right	of	x|TMRCA	at	x = t  

•  For	standard	mixing	populations	this	is	a	very	
good	assumption	
– Sequentially	Markovian	Coalescent	
approximation,	McVean	&	Cardin	2005	



PSMC-HMM	reconstructs	individual	history		

•  Pairwise	Sequentially	Markovian	Coalescent	–	
Hidden	Markov	Model	

•  Data	simulated	using	ms	(Hudson)	
•  Model	the	coalescent	time	t	by	e.g.	50	discrete	bins,	
spread	logarithmically	



Single	human	genome	with	bootstrap	



Human	population	history,	with	Neanderthals	

Heng	Li	
Scaled coalescent time 



Advances	since	the	original	PSMC	

1.  Use	SMC’	model	which	correctly	handles	
recombinations	coalescing	back	to	the	same	
ancestor	(Schiffels,	…)	

–  Minor	tweak	to	equations,	but	significant	
–  Can	now	fit	recombination:mutation	ratio	
–  Implemented	in	MSMC/MSMC2	

2.  Time	speedup:	linear	not	quadratic	in	number	
of	time	slices	(Harris,	...	Song,	2014)	



Coalesecent	Ne(t)	reflects	ancestral	
structure	as	well	as	population	size	

•  PSMC	actually	measures	λ = 1/coalescence rate 

•  Structure	can	also	change	coalescence	rate	
– Li	&	Durbin	supplement	
– Olivier	Mazet…Chikhi	

N-island model 
Migration between  
islands controls 
coalescent rate 



Human	population	history,	with	Neanderthals	

rise of anatomical
modern humans 1-200kya

origin of Homo
1.5-2MyaHeng	Li	



Dramatic	recent	radiations	of	haplochromime	
cichlids	in	the	African	rift	valley	great	lakes	

•  Lake	Malawi	~500	species	within	
last	1M	years	

So	far	we	have	sequenced	~80	species	at	15-20x	
coverage	
	

Brief	introduction	to	another	system	



Lake	Malawi	cichlid	PSMC	
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Is	structure	associated		
with	speciation?	

•  Perhaps	
–  Ideas	of	hybrid	speciation,	reuse	of	alleles	
selected	in	different	environments,	hybrid	
swarms	and	gene	flow	

•  But	this	is	another	talk…	



Might	structure	be	(partly)	identifiable	
in	the	PSMC	model?	

•  The	inferred	values	N(t)	have	dimension	T,	the	number	
of	time	bins	

•  But	the	transition	matrix	M	has	dimension	T2	
•  Currently	we	derive	M	from	N	by	theory	assuming	
panmixia	
–  Is	there	a	richer	theory	for	structured	populations?	
–  How	to	parameterise	structural	complexity	S(t)	at	time	t,	
with	associated	theory	for	M(N,S)	

•  Or	can	we	fit	the	transition	matrix	M	unconstrained?	
–  Then	search	for	evidence	of	structure	within	it	
–  And	or	do	goodness	of	fit?	



Adding	another	sequence	

•  Chance	of	coalescence	per	
	generation	from	three		
	sequences	is	3/N	

•  Once	we	have	a	coalescence	we	are	back	to	
the	situation	with	two	sequences	

	
•  From	i	sequences	chance	is	i(i-1)/2N	



Digression:	Coalescent	model	
(Kingman,	1980)		A	distribution	on	trees	

•  T(i)	~	exponential	with	mean	2N/i(i-1)	



Properties	of	the	coalescent	

•  As	we	add	extra	sequences,	they	are	
increasingly	likely	to	coalesce	very	fast,	and	
increasingly	unlikely	to	affect	the	full	TMRCA	

•  Trees	are	very	variable	
– E.g.	4	samples		

	on	6	leaves	

The	expected	height	of	the	tree	for	many	samples	is	only	twice	that	with	two	samples	



Relationship	between	forwards	in	time	(Wright-
Fisher)	and	backwards	in	time	(Coalescent)	models	

Population	evolution	
forwards	

Coalescent	tree	
backwards	

The	coalescent	tree	describes	a	sample	from	the	forward	process	
Kingman	coalescent	generates	an	“exact”	sample	from	Wright-Fisher		



Genetic	variation	in	a	sample	

•  Mutations	occur	at	random	on	the	tree	
– Separation	of	sources	of	randomness	

•  Random	demography	tree	structure	from	coalescent	
•  Random	sampling	of	mutations	on	the	tree	

Watterson’s	theta	

Let	S	be	the	number	of	mutations	=	segregating	sites		
	

E(S)	~	θ	log	n	



•  Density	of	mutations	with	frequency	i	in	a	sample	of	n	
is		θ/i	

•  1/f	distribution	of	
	population	allele		
	frequencies	

	
•  Population	minor	allele	frequency	distribution	of	a	
difference	observed	between	two	sequences	is	flat	
–  Probability	(1/f).2f(1-f)	=	2(1-f),	folded	at	½	is	2	

	
	

Distribution	of	variant	allele	
frequencies	

site	frequency	
spectrum	SFS 



Relaxation	of	assumptions	(1)	

•  E.g.	change	in	population	size	
				changes	the	site	frequency	
				spectrum	
	
	
•  Tajima’s	D	

– Sensitive	to	number	of	rare	mutations,	so	change	in	Ne	

–  If	D	is	positive	there	is	a	deficiency	of	rare	mutations	
•  Excess	recent	coalescences,	recent	small	Ne	-	selection	

D	>	0	 D	<	0	

This	is	the	basis	of	SFS-based	
demography	inference 



Fig. 2 The expected site frequency spectrum (SFS) of the derived allele (the new mutation 
arisen in the population) for three different demographic models: (i) a population that has 
been of constant size throughout history; (ii) a model previously fit to the derived allele 

frequency spectrum of Europeans, which includes an out-of-Africa population bottleneck and 
a second, more recent, population bottleneck (21); and (iii) the same two-bottleneck model of 

European history with the addition of recent exponential growth from a population size of 
10,000 at the advent of agriculture to an extant effective population size of 10,000,000, which 

amounts to 1.7% growth per generation during the last 400 generations.  

A Keinan, A G Clark Science 2012;336:740-743 



Individuals	in	human	outbred	populations	
still	carry	many	variants	not	in	the	large	
sequence	data	sets	(1000	Genomes	etc.)	

•  Exponential	population	
growth	in	last	10,000	years	
gives	long	tips	to	the	tree			

•  In	“big”	populations,	tips	
are	hundreds	of	
generations	long,	so	tens	of	
thousands	of	private	
variants	per	sample,	
hundreds	functional	

	



This	behaviour	is	very	dependent	on	population	
structure.	

In	genetic	isolates	the	recent	effective	population	
size	is	smaller,	and	the	tips	are	shorter	



What	about	recombination?	
•  If	points	on	the	genome	are	very	close,	e.g.	
adjacent,	they	share	the	same	tree	

•  If	points	are	very	far,	their	trees	are	sampled	
from	the	coalescent	independently	

•  What	happens	in	between?	

•  A	recombination	in	the	ancestor	of	a	modern	
sequence	made	it	out	of	two	separate	sequences,	
one	contributing	to	the	left	and	one	to	the	right	



Recombination	changes	the	tree	as	
you	move	along	the	sequence	

Typically	recombination	rate	is	comparable	to	or	larger	
than	the	mutation	rate:	both	~10-8	/bp	/gen	in	human	
So	“gene	tree”	varies	every	site	in	mixing	populations	



Ancestral	Recombination	Graph	(ARG)	

•  The	Ancestral	Recombination	Graph	describes	the	way	
that	individual	sequences	in	a	population	are	related	
–  At	a	locus,	sequences	are	related	by	a	tree	
–  Ancestral	recombinations	change	the	tree	as	you	move	
along	the	chromosome	

a ..C..G..A..
b ..T..G..C..
c ..T..A..A..
d ..T..A..C..

0 0 0
1 0 1
1 1 0
1 1 1

a   b  c  d a   b  c  da   b  c  d

1 

a   b  c  d

2 
3 

R 

ARG 
“Prune	and	graft”	operation	going	left	to	right	



Coalescent	with	recombination	

•  ARG	is	a	structure	(data	type)		
•  The	probability	distribution	over	ARGs	that	arises	
when	recombination	is	added	to	the	standard	
(Wright-Fisher)	model	is	called	the	Coalescent	with	
Recombination	
– Hudson’s	ms	software	is	the	classic	simulator	
– New	msprime	from	Jerome	Kelleher	MUCH	faster	

•  Now	two	possible	events	going	backwards	in	time	
–  Coalescence:	which	merges	two	sequences	

•  For	i	sequences,	rate	is	i(i-1)/2N	
–  Recombination:	which	splits	a	sequence	into	two	

•  For	i	sequences,	rate	is	iLρ



Extending	to	multiple	sequences	

•  The	recent	time	limit	of	~20kya	for	PSMC	is	
set	because	we	run	out	of	recent	
coalescences	between	two	haplotypes	

•  If	we	add	more	haplotypes,	then	there	are	
more	recent	coalescences	and	we	could	
look	at	more	recent	history	

•  But,	…	the	hidden	state	is	then	a	tree	(with	
branch	lengths):	impractical	to	model	fully	
– MCMC	is	notoriously	difficult	



Option	1:	First	coalescence	of	one	
sequence	to	the	tree	of	the	others	

•  This	is	related	to	the	Li	and	Stephens	model	
(or	Stephens	and	Donnelly)	–	chromopainter	

t1	

t2	

t3	

t4	

t1	

t2	

t3	

t4	



•  M(t)	is	a	random	variable,	and	we	need	the	
entire	history	of	M(t)	to	calculate	transition	
probabilities	q	

•  Huge	increase	in	state	space	and/or	this	
breaks	Markov	assumptions	

t1	

t2	

t3	

t4	

Problem:	Coalescence	of	chosen	sequence	to	
the	others	depends	on	the	number	of	lineages	

M(t)	remaining	at	time	t	



MCMC	approach:	ARGweaver	
•  Repeatedly	remove	a	sequence*	and	add	it	back,	
sampling	conditional	on	remaining	ARG	

•  HMM:	sample	with	forward-backward	algorithm	

Genome-wide	inference	of	ancestral	recombination	graphs	
Rasmussen	MD,	Hubisz	MJ,	Gronau	I,	Siepel	A.	PLoS	Genet.	10:e1004342	(2014)	
	

•  Costly	–	use	for	inference	given	history	



Option	2:	first	coalescence	between	
any	pair	

•  This	remains	(approximately)	Markov	
•  State	space	is	O(M2T)	–	pair	of	states	and	
time	they	coalesce	
– But	transition	updates	are	only	O(M2T2),	
because	transitions	are	memoryless	

•  Emissions	from	Xij	are	singletons	on	i	or	j	
– Non-singletons	that	are	discrepant	between	i	
and	j	wipe	out	density	at	Xij	



MSMC	

Stephan	Schiffels	and	Durbin	(Nature	Genetics,	2015)	



MSMC	can	fit	both	population	size	
history	and	separation	history	

•  Separation	via	the	(scaled)	ratio	of	
coalescence	between	and	within	populations	



Access	more	recent	history	

Use	lower	mutation	rate	here	~	0.5x10-9/year	



Divergence	between	populations	

First	Coalescence	
within	Population	2	

First	Coalescence	
within	Population	1	

First	Coalescence	across	
both	populations	

• MSMC	can	infer	separate	coalescence	rates	within	and	between	populations	 

• Given	rates	within	populations,	λ11(t)	and	λ22(t),	and	across	populations,	λ12(t),	
compute	relative	gene	flow	as	ratio	

λ12(t) 
[λ11(t)+ λ22(t)] / 2 

m(t) = 

•  Idea:	Infer	separate	coalescence	rates	within	and	between	populations:	



Testing	gene	flow	inference	with	simulated	
split	

☜	m(t)=1:	perfectly	mixed	

☜	m(t)=0:	perfectly	split	

4	haplotypes:	good	for	splits	50-200kya.		
8	haplotypes:	good	for	splits	5-50kya.	



Separation	history	



Alternatives	to	MSMC	

•  MSMC2	(Schiffels:	in	Malaspinas	2016/unpub.)	
– Run	PSMC’	on	all	pairs	of	sequences	independently	
– Multiply	the	likelihoods	–	Composite	likelihood	

•  Assumes	the	pairs	are	independent,	which	is	false	
•  But	gives	unbiased	estimation	(though	overconfident)	

•  SMC++	(Terhorst,	Kamm,	Song:	Nat	Gen	2017)	
– Pair,	with	p(het	|	other	sequences)	
– Very	cool	–	works	even	on	genotype	data!	
– But	there	are	approximation	problems	analogous	to	
those	in	MSMC	–	not	a	panacea	



Using	rare	variants	to	infer	demographic	
history	

•  Rare	variants	contain	
information	about	recent	
population	history	and	
structure	

•  Shown	here:	number	of	
doubletons	shared	among	
European	samples	

•  We	would	like	to	estimate	
population	split	times	and	
population	sizes	from	the	
frequency	of	rare	variants	

CEU	 FIN	 GBR	 IBS	 TSI	

[1000	Genomes	Project,	Phase3]	

Compare	to		
ChromoPainter	data 



Ancient	samples	from	Hinxton	

12884A,	Iron	age	

12883A,	Saxon	

12880A,	Iron	age	

12881A,	Saxon	12885A,	Saxon	



More	samples	from	Linton/Oakington	



Sharing	patterns	between	ancient	and	
modern	samples	

•  Difference	between	Anglo-Saxon	and	Iron	Age	sharing	with	
NED	and	IBS	consistent	across	different	Allele	Counts	

•  Small	but	significant	differences	also	within	modern	Britain	
(UK10K):	Samples	from	Wales	and	Scotland	share	fewer	rare	
variants	with	Dutch	people	



Estimates	of	Anglo-Saxon	contribution	to	
modern	British	genomes		

•  Suggests	~30%	Saxon	contribution	to	samples	in	East	of	
England,	and	~20%	to	UK10K	samples	from	Wales	and	
Scotland	

•  Consistent	with	20-40%	indirect	estimate	from	POBI	(Peoples	
of	the	British	Isles)	study	



The	rare	allele	coalescent	
• Goal:	Estimate	
demographic	history	
(population	sizes	and	split	
times)	from	rare	variants	

•  Compute	likelihood	of	
demographic	model	given	
a	distribution	of	rare	
variants	



RareCoal	model	

•  Idea:	Define	recursion	equations	for	
probability	of	observing	i	derived	alleles	in	
population	k:		

•  Given	a	demographic	model,	propagate	
this	probability	backwards	in	time	to	get	
full	likelihood	of	the	data.	

•  Key	simplification:	Treat	number	of	
ancestral	alleles	over	time	as	average	
(mean-field	approximation):	



Test	inference	with	simulated	data	

100	

200	

300	

400	

Time	
(generations)	

10	 5 2 4	 5	

0.4	

0.5	

0.2	

1
scaled	population	
sizes	

92	

200	

299	

388	

10.3	 5 2 4	 5	

0.47	

0.5	

0.22	

0.87	

Simulated	 Estimated	

Fits	(100	samples	per	pop.):	
Pattern	 Count	(real)	 Count	(predicted)	

0,1,0,2,1	 1114	 1159	

2,1,0,0,0	 140585	 139657	

1,0,2,0,0	 1138	 1205	

thousands	of	rows	…	

Fitting	population	sizes	and	split	
times	separates	drift	from	
divergence	->	different	from	
Treemix,	qpGraph	etc.	



European	Tree	(Fits)	



Placing	ancient	samples	on	the	tree	

•  Plots	show	the	likelihood	for	merging	the	population	N=1	
sample	onto	the	tree	as	a	heat	map	



More	direct	calculation	of	the	
likelihood	of	the	joint	site	frequency	

spectrum	with	momi	

Jack	Kamm	…	Song	2016,		
and	unpublished	

•  Complexity	of	ancestral	allele	
state	is	reduced	by	using	
Moran	model	

•  Use	Automatic	Differentiation	
to	calculate	gradients	to	
maximise	likelihood	over	
demography	with	(limited)	
gene	flow	

	



Momi	applied	to	central	Asian	data	

•  Include	ancient	samples	
–  Condition	ascertainment		
on	modern/deep	samples	

•  Total	branch	length	on	
these	

–  Random	allele	sampling	
for	low	coverage	samples	

•  Estimates	split	times	
•  Bootstrap	for	confidence	
intervals	
–  But	beware	model	
misspecification	

with	Peter	de	Barros	Damgaard,	Rui	Martiniano,	Martin	Sikora,	Eske	Willerslev	
et	al.	



Momi	calculations	

•  To	calculate	P(x1,x2,x3,…)
– Set	leaves	to	Indicator(xi),	e.g.	[0,0,1,0…0] for	xi=2
– Propagate	likelihoods	up	tree	(“tree-peeling”)	

•  Can	correspondingly	calculate	the	expectation	of	
any	multi-linear	function	of	allele	counts	
– 𝔼[f1(x1)f2(x2)f3(x3)…]

•  by	setting	leaf	i	to	[fi(0), fi(1), . . . , fi(n1)]	
– Works	because	propagation	is	linear	



Examples	

•  Total	branch	length	∝	chance	of	any	mutation		
–  fi(j) = 1, vector	is	[1,1,1…1] 

•  TMRCA	for	pop	i	(i arbitrary	unless	ancient	model)
–  fi(j) = j/ni , vector	is	[0,0.2,0.4,0.6,0.8,1] for ni=5
–  fk(j) = 1, k ≠ i

•  f3 = 𝔼[(X1-X3)(X2-X3)], f4 = 𝔼[(X1-X2)(X3-X4)]
–  Requires	terms	such	as	𝔼[X1X2]	for	which
–  f1(j) = j/n1, f2(j) = j/n2, fk(j) = 1, k > 2

•  Also	numerators,	denominators	of	FST,	Tajima’s	D	



Summary	

•  PSMC(‘)	estimates	demography	from	a	single	
pair	of	sequences	
– Sample	size	is	in	length	not	number	
– Quite	a	clean	model	
– Major	issue	is	population	structure	

•  MSMC,	MSMC2,	SMC++	use	additional	
samples	to	get	at	more	recent	times	

•  RareCoal/Momi	use	coalescent	modelling	of	
the	SFS	on	more	samples	to	estimate	trees	
– With	limited	modelled	gene	flow	for	Momi	





Experimental	design	

•  (Sequence)	data	collection	costs	money	
•  We	always	need	to	make	decisions	in	how	to	
sample	and	sequence	
– Number	of	samples	
– Number	of	populations	
– Depth	of	sequencing	
– Whole	Genome	Shotgun	or	RADseq	or	Exomes…	



1000	Genomes	Project	

•  Pilot	(a	very	long	time	ago!)	
– 2	trios	at	high	depth	30x	

•  Phasing,	accurate	single-sample	genotype	calling,	mutation	
rates	

– 3	populations	x	60	samples	at	low	depth	2-4x	+	
exomes	

•  Main	project	
– 26	populations	of	~100	(2504	total)	at	6-8x	(+exomes)	
–  (150	trios	at	high	depth	–	but	who	remembers	them?)	



Malawi	cichlid	sequencing	

•  Phase	1	
– Three	trios	at	30x:	mutation	rate	estimation,	controls	
– ~70	species	at	15-20x,	additional	samples	for	some	at	
8-12x	

•  Phase	2	
– 7	sets	of	20	at	15x	
– More	species	
– Some	sets	of	24	or	48	to	address	specific	questions	

•  Massoko	GWAS	(Turner)	
– 200	samples	at	4x	+	100	samples	for	replication	



Low	coverage	sequencing	strategy	

•  Typically	one	needs	to	sequence	at	~30x	depth	to	find	
(almost)	all	variants	in	a	sample	

•  To	find	low	frequency	variants	we	want	to	sequence	
many	samples	

•  Spread	sequence	across	more	samples	



Phase	1	power	and	genotyping	accuracy	

SNP	detection	 Genotyping	accuracy	

Hyun	Min-Kang	(U	Michigan)	



Calling	from	low	coverage	sequence	

•  Multi-sample	call	sites	with	samtools	or	GATK	
•  Obtain	genotype	likelihoods	at	each	site	in	
each	same	(also	samtools	or	GATK)	
– Likelihood	=	P(data	|	genotype)	

•  Combine	in	an	imputation	framework	using	
BEAGLE	(Browning),	or	MINIMAC	(Abecasis),	
or	perhaps	STITCH	(Mott)?	

•  Phase	using	SHAPEIT2	(Marchini)	or	EAGLE2	
(Loh)	



Sequencing	depth	
•  30x	is	standard	for	near-complete	accuracy	

–  Sufficient	to	estimate	mutation	rates	in	trios	(need	several	
trios	for	most	species)	

•  15x	is	good	enough	for	SNPs	(~97%),	not	quite	so	good	
for	indels	(perhaps	90-95%)	

•  4-8x	gives	good	low	coverage	imputation	as	in	previous	
slides	

•  People	have	used	1-2x,	but	this	is	hard	work…	
•  60x	+	is	necessary	for	subclonal	structure,	e.g.	cancer,	
high	ploidy	

•  In	a	cross,	sequence	the	founders	to	high	depth,	and	
the	F2/F3	to	low	depth	(1x	or	less	is	fine)	and	impute	
using	STITCH	or	other	Richard	Mott	tools	


