SFS inference from NGS data to detect recent adaptive selection

Anders Albrechtsen The bioinformatic Centre, Copenhagen University

SFS for NGS data 0 00000

Outline

2 Tibet

background and hypothesis

Greenland

Background and hypothesis

In SFS for NGS data

- Bias for low/medium depth sequencing data
- Genotype likelihood based SFS

SFS for NGS data 0 00000

Allele frequency differentiation

++++++++

Time

Present time

Greenland

SFS for NGS data o ooooo

Greenland

SFS for NGS data 0 00000

Probability of fixation

Greenland

SFS for NGS data 0 00000

Greenland

SFS for NGS data 0 00000

SFS for NGS data 0 00000

Altitude adaption in Tibet

Allele frequency differentiation and selection

Tibet •0000000000

SFS for NGS data 0 00000

Altitude adaption in Tibet

Yi et al. 2010

- Low oxygen has a large effect on fitness
- People living in high altitude are at greater risk of problematic births

Greenland

SFS for NGS data 0 00000

Altitude adaption in Tibet

Yi et al. 2010

- The exomes of 50 Tibetan individuals at an average coverage of 18X.
- Compared to 40 Han Chinese individuals sequenced at an average of 6X (1000G).
- and 200 Danish exome sequenced individuals (8X)
- Estimated joint allele frequencies for each SNP using Bayesian approach.

SFS for NGS data 0 00000

PPARG - zoom

SFS for NGS data 0 00000

2D site frequency spectrum

Tibet 00000000000

Greenland

SFS for NGS data 0 00000

Population Branch Statistic (PBS)

$$PBS = TBS = (T^{TH} + T^{TD} - T^{HD})/2, \qquad T^{AB} = log(1 - F_{st}^{AB})$$

SFS for NGS data 0 00000

Population frequencies

EPAS1 SNP allele frequencies

Allele	Tibetan	Han	Danish	
С	0.13	0.9125	1	
G	0.87	0.0875	0	

SFS for NGS data 0 00000

EPAS1

- type of hypoxia-inducible factors
- active under low oxygen
- variant of gene confers increased athletic performance called the "super athlete gene".

SFS for NGS data 0 00000

Genotyping in 366 individuals

Independent genotyping

- 366 Tibetans
- Genotyped for the EPAS1 SNP
- Phenotypes available

Associations within the Tibetan population

	СС	CG	GG	p-value
N	10	84	272	
Hemoglobin concentration	178	178.9	167.5	0.0013
erythrocyte counts	5.3	5.6	5.2	0.0015

Greenland

SFS for NGS data 0 00000

Is this extreme compared to populations

SFS for NGS data 0 00000

Other genes with large FST

SFS for NGS data 0 00000

conclusion

- Tibetans have adapted to life in high altitude
- A loci EPAS1 was found that has undergone strong adaptive selection
- The loci associated with hemoglobin concentrations and erythrocyte counts
- Followup study (Huerta-Snchez et al 2014) showed that
 - The mutations were introduced by Denisovan introgression
 - Example of adaptive introgression in human

 SFS for NGS data 0 00000

Human adaption to arctic environment

Greenland •••••••••• SFS for NGS data 0 00000

Brief overview of Greenland's history

• Inhabited on and off by different Arctic cultures for ${\sim}4500$ years:

• Visited by Vikings, Danish colony from 1814, now autonomous country

Greenland

SFS for NGS data 0 00000

The modern Greenlandic population

- Small: N≃57,000
- Live in coastal towns
- Descendents of Inuit

- But most also have European ancestry
- On average $\sim 25\%$

From Moltke et al. 2014

Greenland

SFS for NGS data 0 00000

Recent changes in population size

 SFS for NGS data 0 00000

A mutation causes 15% of type 2 diabetes in Greenland¹

¹Moltke et al. 2014

Greenland

SFS for NGS data 0 00000

Life in the Arctic is extreme: cold temperatures & fat-rich diet

 SFS for NGS data 0 00000

Questions we recently tried to answer

Long term history

Who are the ancestors of the Inuit and Greenlanders?

Recent history

How do modern Greenlanders relate to each other and Europe

Disease and selective pressure

Effect of being a small population - can we identify the genetic basis

Adaptation

How did the Inuit adapt to the extreme environment

 SFS for NGS data $^{\circ}_{\circ\circ\circ\circ\circ\circ}$

Effect of being a small and isolated population

Allele frequencies

- drift By far the most important factor
 - Stronger effect in small populations
- selection Important for alleles with phenotypic effect
 - For small populations only alleles under very strong selection will be significantly affected
- causal loci
 loci with a strong effect will be at very low frequency in large populations
 - loci with a strong effect can have a large frequency in small populations

all loci Allele frequencies will differ from all other populations

Greenland

SFS for NGS data 0 00000

Frequency spectrum of Inuit

Greenland

SFS for NGS data 0 00000

2D SFS between GL and Han

Greenland

SFS for NGS data 0 00000

2D SFS and Fst

Greenland

SFS for NGS data 0 00000

Selection scan using PBS - ((HAN, GR) CEU)

Greenland

SFS for NGS data 0 00000

Top loci

FADS

fatty acid desaturase.

TBX15

- TBX15 plays an important role in differentiation of brown (subcutaneous) adipocytes.
- Upon stimulation by cold exposure can produces heat by lipid oxidation.

FN3KRP

- an enzyme that catalyzes fructosamines, psicosamines and ribulosamines that protects against nonenzymatic glycation.
- FN3KRP can act to counteract the negative fitness caused by a PUFA rich diet.

 SFS for NGS data 0 00000

Why selection?

- Tested for association between top SNPs and metabolic traits
- Marginally significant associations with multiple traits, including LDL
- Selected alleles associated with decreased weight and height:

 SFS for NGS data 0 00000

Why selection?

• The association with height replicates in Europe:

Greenland 00000000000000000000000 SFS for NGS data $^{\circ}_{\circ\circ\circ\circ\circ\circ}$

Why selection? Take 2

• Testing for association w. red blood cell membrane fatty acid composition:

- Mutation seems to compensate for high-fat diet
- Height due to effect of fatty acid composition on growth hormone levels?
- Either way, the results suggest that selection in this region is a new example of human adaptation where we know the genetic basis

Greenland

SFS for NGS data 0 00000

Conclusion

- We find multiple interesting loci which some evidence of recent adaptation to life in the arctic
- As expected the genes are involved in poly unsaturated fatty acid metabolism and cold adaption
- Surprisingly the loci also affects high and weight
- variants also have an effect in on height in Europe

SFS for NGS data $^{\circ}_{\circ\circ\circ\circ\circ\circ}$

How are the SFS estimated?

With high depth sequencing

simple counts of derived alleles

Can we construct the SFS using low/medium sequencing

Yes - maybe - use genotype likelihoods and be careful

SFS for NGS data

When can calling SNPs and genotypes be a problem?

low/medium depth data

- Capture data
- low depth sequencing due to price
- ancient DNA (only a finite amount of DNA)

What depth is high enough?

Depends on the analysis. e.g.

- SFS is extremely sensitive to both genotype and SNP calling
- admixture proportions are sensitive to genotype calling
- ABBA-BABA (D-stats) can be used regardless of depth

SFS for NGS data $^{\circ}$ $_{\odot \circ \circ \circ \circ}$

Estimating SFS while taking uncertainty of data into account

Likelihood of SFS for a single site:^a

^afast calculations with dynamic programming (Nielsen et al. 2012)

$$P(X^{s} \mid \eta) = \sum_{j=0}^{2N} p(X^{s} \mid J=j)p(J=j|\eta)$$

SFS for a region $P(X \mid \eta) = \prod_{s=1}^{r} P(X^{s} \mid \eta)$

SFS for NGS data $^{\circ}$ $_{\odot \circ \circ \circ \circ}$

Estimating SFS while taking uncertainty of data into account

Likelihood of SFS for a single site:^a

^afast calculations with dynamic programming (Nielsen et al. 2012)

$$P(X^{s} \mid \eta) = \sum_{j=0}^{2N} p(X^{s} \mid J = j)p(J = j|\eta)$$

$$\propto \sum_{j=0}^{2N} \eta_{j} \sum_{g \in \{0,1,2\}^{N}} p(G = g \mid J = j) \prod_{i=1}^{N} P(X_{i}^{s} \mid G_{i} = g_{i}),$$

$$p(G = g \mid J = j)$$

$$p(G = g \mid J = j) = {\binom{2N}{j}} 2\sum_{i=1}^{N} l_1(g_i)$$
when $\sum_{i=1}^{2N} g_i = j$, else 0

SFS for a region $P(X \mid \eta) = \prod_{s=1}^{r} P(X^{s} \mid \eta)$

Site frequency spectrum for low/medium depth data²

²E Han et al 2013

SFS for NGS data $^{\circ}_{\circ\circ\circ\circ\circ\circ}$

Filters do not solve the problem

3

³E Han et al 2013

SFS for NGS data $^{\circ}_{\circ\circ\circ\circ\circ\circ}$

Conclusion on SFS based on genotype likelihoods

- can be estimated even with low(ish) depth e.g. 2 X
- We use genotype likelihoods unless depth is high (>10X) unless you have other information
- Can be done in multiple dimension
 - 1D thetas e.g. Tajimas pi, Tajimas D, Population sizes
 - 2D f_{st} and PBS
 - XD usefull for Demography inference

SFS for NGS data $^{\circ}_{\circ\circ\circ\circ\circ\bullet}$

Thank you for listening

Questions?