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Part I

SNAPP
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About SNAPP

• SNAPP is a multispecies coalescent (MSC) method

• is a Bayesian MSC method (implemented in BEAST2)

• can be used with Bayes factors for species delimitation

Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N. A., & RoyChoudhury,
A. (2012). Inferring species trees directly from biallelic genetic markers:
bypassing gene trees in a full coalescent analysis. Molecular biology and
evolution, 29(8), 1917–1932.
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The (Kingman) coalescent

1 2 3 4 1 2 3 4 1 2 3 4

A B C

• Models the evolution of
orthologous loci

• Applies to a single population

• Backwards in time

• Coalescent rate inversely
proportional to Neg (the
effective population size Ne
scaled by generation time g)
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The multispecies coalescent

1 2 3 4 1 2 3 4 1 2 3 4

A B C

• A separate coalescent
process applies to each
branch

• Assumes speciation is
instantaneous

• Assumes no gene flow
between populations
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The multispecies coalescent

1 2 3 4 1 2 3 4 1 2 3 4

A B C

• A separate coalescent
process applies to each
branch

• Assumes speciation is
instantaneous

• Assumes no gene flow
between populations

• Incomplete lineage sorting
(ILS) is associated with large
Neg and shorter branches
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Bayesian MSC inference

You may be familiar with multilocus MSC methods such as BPP or
StarBEAST2. They are based on this formula:

P(S, θ|D) =

∏
i P(Di |Gi) · P(Gi |S, θ) · P(S, θ)

P(D)

P(S, θ|D) The posterior probability of the species tree topology S
and divergence times and effective population sizes θ

P(D|Gi) The phylogenetic likelihood of a gene tree Gi

P(Gi |S) The coalescent likelihood of the species tree
P(S, θ) The prior probability of the species tree topology S

and divergence times and effective population sizes θ
P(D) The marginal likelihood of our model
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SNAPP

• “SNP and AFLP Phylogenies” – Bayesian biallelic MSC method!

• For younger species trees, only one mutation is observed for most
polymorphic sites, so nuclear data can be approximated as biallelic.

• Analytical integrates over:
∏

i P(Di |Gi) · P(Gi |S)
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Integrating over gene trees

Bryant et al. 2012
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Advantages of SNAPP

Multilocus Assumes no recombination within each locus

SNAPP Each locus is a single nucleotide

Multilocus Scales poorly, difficult to use with many loci

SNAPP Can be used with a large number of unlinked sites

Topologies Divergence
times

Population
sizes

Coalescence
times

Multilocus 101 29 59 8900
SNAPP 1 29 59 0
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Part II

Bayes factors
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Testing models

Approach Relative model fit

Method Bayes factors

Question How much closer to the truth is model 1 vs. model 2

Approach Absolute model fit

Method Posterior predictive simulations

Question How close to the truth is model 1

13 / 28



What’s in a model?

• The species tree process (birth-death)

• The priors on birth-death parameters – λ, ν

• The gene tree process (multispecies coalescent)

• The priors on coalescent parameters – Neg

• The substitution model (e.g. HKY+G)

• The priors on HKY+G parameters – κ, α, µ

• The assignment of individuals to species
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Deriving Bayes factors I

Bayes’ rule is often written as:

P(θ|D) =
P(D|θ) · P(θ)

P(D)

But in practice is usually:

P(θ|D,M) =
P(D|θ,M) · P(θ|M)

P(D|M)

P(D|M) is the marginal likelihood, and using Bayes’ rule we can turn
likelihoods into probabilities!
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Deriving Bayes factors II

Absolute probability intractable because of P(D) (again!):

P(M|D) =
P(D|M) · P(M)

P(D)

But when calculating relative fit (Bayes factor):

P(M1|D)

P(M2|D)
=

P(D|M1) · P(M1)

P(D)
· P(D)

P(D|M2) · P(M2)

Then P(D) cancels out:

P(M1|D)

P(M2|D)
=

P(D|M1) · P(M1)

P(D|M2) · P(M2)
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Evaluating Bayes factors

If our belief is that P(M1) = P(M2):

2 lnB12 = 2 ln
P(M1|D)

P(M2|D)
= 2 ln

P(D|M1) · P(M1)

P(D|M2) · P(M2)

= 2(lnP(D|M1)− lnP(D|M2))

2 ln(B12) Support for M1 over M2
0 to 2 Not worth more than a bare mention
2 to 6 Positive

6 to 10 Strong
>10 Very strong

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American
Statistical Association, 90(430), 773–795.
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Hang on

Didn’t I hear that the marginal likelihood P(D) is really hard to calculate,
which is what motivated the development of MCMC?

...

...

Yes.
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Calculating the marginal likelihood

Remember that the marginal likelihood normalizes P(D|θ) · P(θ):

P(D) =

∫
θ

P(D|θ) · P(θ) dθ

Which can be solved by computing the expected value of the likelihood
P(D|θ) when sampling from the prior distribution:

P(D) = E [P(D|θ)]

https://darrenjw.wordpress.com/2013/10/01/
marginal-likelihood-from-tempered-bayesian-posteriors/
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Power posteriors

Using MCMC, E(likelihood) will not be well sampled under the prior. But
we can sample a series of intermediates using power posteriors:
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P(θ|D) ∝ P(D|θ)β · P(θ)
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Stepping-stone sampling

P(D) = E [P(D|θ)] =
N−1∏
i=0

Ei [P(D|θ)βi+1−βi ]

x

y

β
0 1

x = βi+1 − βi and y = E [P(D|θ)]
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Part III

Species delimitation
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Everything is great

• Now we can calculate marginal likelihoods

• Therefore we can calculate Bayes factors

• Therefore we can compare species delimitation probabilities

• Does this mean we can delimit species?
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What is actually going on

Zhang, C., Zhang, D. X., Zhu, T., & Yang, Z. (2011). Evaluation of a Bayesian
coalescent method of species delimitation. Systematic biology, 60(6), 747-761.
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Species concepts

Biological Interbreeding (natural reproduction resulting in viable and fertile offspring)
Isolation Intrinsic reproductive isolation (absence of interbreeding between heterospecific

organisms based on intrinsic properties, as opposed to extrinsic [geographic]
barriers)

Recognition Shared specific mate recognition or fertilization system (mechanisms by which
conspecific organisms, or their gametes, recognize one another for mating and
fertilization)

Ecological Same niche or adaptive zone (all components of the environment with which
conspecific organisms interact)

Evolutionary Unique evolutionary role, tendencies, and historical fate
Cohesion Phenotypic cohesion (genetic or demographic exchangeability)
Hennigian Ancestor becomes extinct when lineage splits

Monophyletic Monophyly (consisting of an ancestor and all of its descendants; commonly
inferred from possession of shared derived character states)

Genealogical Exclusive coalescence of alleles (all alleles of a given gene are descended from
a common ancestral allele not shared with those of other species)

Diagnosability Diagnosability (qualitative, fixed difference)
Phenetic Form a phenetic cluster (quantitative difference)

Clustering Form a genotypic cluster (deficits of genetic intermediates; e.g., heterozygotes)

De Queiroz, K. (2007). Species concepts and species delimitation. Systematic biology, 56(6),
879-886.
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Alternatives

BPP: Uses reversible jump MCMC to integrate over the space of
species assignment and delimitation

STACEY: Uses a time threshold to delimit species, combined with a
“lumpy” prior on the species tree

Tracer: Implements harmonic mean estimation (HME) of the
marginal likelihood, which has been called the “Worst Monte
Carlo Method Ever”

http://radfordneal.wordpress.com/2008/08/17/
the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever/
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Question I

What impact does the prior distribution on the speciation rate λ have on
marginal likelihood estimates? If the prior distribution favors faster
values of λ, how could this change the Bayes factors?
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Question II

SNAPP can estimate a forward (zero to one) and reverse (one to zero)
mutation rate. How should these rates be set when used with
nucleotide data?
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