Beyond the molecular clock

Kelley Harris University of Washington

Workshop on Population and Speciation Genomics January 31, 2018

Mutations as a molecular clock

When clock breaks down (runs out of batteries?)

- Almost every population genetic method assumes that mutagenesis = a super boring clock like process
- This assumption works fine until it doesn't
- The mutation process has cool, complex features that can trip you up if you aren't looking out for them

Molecular clock 101

- Mutagenesis is more clock-like over short timescales compared to long time scales
- A simple branch length test can reveal whether mutagenesis is clock-ish in your data:

Data can fail this test due to mutation rate variation, selection, or introgression

Violation of molecular clock over very long timescales

Drake 1991

Gago, et al. Science 2009

The error threshold

- A simple model by Eigen & Schuster (1979) justifies Drake's rule
- Consider a "master" virus with fitness 1+s and genome length L
- All mutant viruses have fitness 1
- The master sequence will die out due to Muller's rachet/"error catastrophe" if and only if the mutation rate mu is below a threshold:
- *mu* < log(s)/L

Stable quasispecies vs error catastrophe

mu < error threshold

mu > error threshold

Lauring and Andino 2010

How might I gather some mutation rate data to test this weird theory?

Measuring mutation rates with mutation accumulation (MA) lines

Keightly and Charlesworth 2005

MA with a reporter gene

Mutation rate estimates vary enormously in quality

- Your PSMC results depend heavily upon a mutation rate number. Where might that number come from?
- MA experiment + whole genome sequencing (\$\$-\$\$\$)
- MA experiment + reporter gene sequencing (cheap today, only game in town 10 years ago)
- Back-of-the-envelope calculation (substitutions / estimated divergence time)
- Whole-genome trio sequencing (\$\$\$\$\$\$\$\$)

Drake's rule driven mostly by viruses and bacteria

Sung, et al. 2012

Sung, et al. PNAS 2012

Why should effective population size affect mutation rate?

Why is the mutation rate what it is?

1. The Cost-of-Fidelity Model

Lynch Trends in Genetics 2010 Sung, et al. PNAS 2012

2. The Drift-Barrier Hypothesis

Lynch *Trends in Genetics* 2010 Sung, *et al. PNAS* 2012

Mutators can be favored in asexual organisms

- Expected extra load of deleterious mutations must not exceed the expected benefit of beneficial mutations
- Robustness to environmental change
- Stress-induced mutagenesis?

Stress-Induced Mutagenesis in Bacteria

Ivana Bjedov^{1,*}, Olivier Tenaillon^{2,*}, Bénédicte Gérard^{2,*}, Valeria Souza³, Erick Denamur...

+ See all authors and affiliations

Science 30 May 2003: Vol. 300, Issue 5624, pp. 1404-1409 DOI: 10.1126/science.1082240

Elevated Mutagenesis Does Not Explain the Increased Frequency of Antibiotic Resistant Mutants in Starved Aging Colonies

Sophia Katz, Ruth Hershberg 🖾

Published: November 14, 2013 • https://doi.org/10.1371/journal.pgen.1003968

Selection against mutator alleles is weak in sexual organisms

Other factors affecting the mutation rate

Environmental Mutagens

Life history

Male mutation bias

Oogenesis

Q		ď	
Timetable	No. c	of cell divisions	Timetable
5th month of gestation	22	30	Puberty
Sexual maturity	2	23 per year	Adulthood
Total:	24	150 at 20 yr 380 at 30 yr 610 at 40 yr	

Spermatogenesis

Hurst and Ellegren 1998

Wilson Sayres, et al. 2011

Two additional *de novo* mutations per year of paternal age

A small but significant maternal age effect (0.5 muts/year)

Wong, et al. 2016

Maternal age causes C>G mutation accumulation in localized regions of chromosomes 5, 7, and 16

Not significant Significant for both parents' ages Significant for father's age only

Wong, et al. 2016

Maternal age causes C>G mutation accumulation in localized regions of chromosomes 5, 7, and 16

Position on Chromosome 16

Wong, et al. 2016

Other causes of mutation rate variation along the genome

- Replication timing
- Transcription-associated-mutagenesis (TAM) and transcription-coupled-repair (TCR)
- Non-B-DNA structures and other DNA repeats
- Chromatin state

Replication timing

Koren, et al. 2012

Francioli, et al. 2015

Replication and transcription induce strand asymmetry

Excess of G+T over A+C on coding strand of most genes

Haradhvala, et al. 2016 Green, et al. 2003

Measuring the human mutation rate

Chimpanzee

Nachman and Crowell 2001

Human

2.5*e*-8 mutations per site per gen

Parent-child trios

mgr.com.my

1000 Genomes Consortium 2010

1.0*e*-8 mutations per site per gen

The Human Mutation Rate Meeting Leipzig, 25th - 27th February 2015

NATURE | NEWS

DNA mutation clock proves tough to set

Geneticists meet to work out why the rate of change in the genome is so hard to pin down.

Ewen Callaway

10 March 2015

- What is the real human mutation rate?
- Has the mutation rate slowed down during recent human history?

Adapted from http://www.bio.indiana.edu/graduate/multidisciplinary/GCMS/trainees/thomas_gregg.php

Goodman *BioEssays* 1985 Moorjani, et al. *PNAS 2016*

Relative Nucleotide Substitution Rate

"The" mutation rate encompasses a menagerie of mutation types

CpG Mutations

- Many species (incl humans, not incl *Drosophila*) methylate C when it's next to G (C-phosphate-G)
- CpG methylation regulates gene expression

CpG sites are hypermutable

- On average, CpG sites have a 30-fold higher mutation rate than other C's in the human genome
- 70-80% of CpGs are methylated in mammals; most unmethylated CpGs are part of CpG islands
- Fewer than 1% of dinucleotides in the human genome are CpGs, although the expected frequency is 0.21*0.21=4.41%

CpG transitions are somewhat more clocklike than other mutations

Limits to clock-like behavior of CpGs

Time between two consecutive cell divisions

"Mutational signatures" of types of DNA damage in cancer

Alexandrov, et al. Nature 2013

APOBEC / AID deaminases

- APOBEC attacks RNA viruses, mutating TCA and TCT by deamination
- Its homologue AID hypermutates T cell receptors for proper immune function
- Both cause off-target germline mutations, especially in endogenous retroviral sequences
- APOBEC is erroneously switched on in many cancers (esp cervical), associated with poorer outcomes

Helleday, et al. Nature Review Genetics 2014

Alexandrov, et al. Nature 2013

Alexandrov and Stratton 2014

Mutation signature analysis

Mutational signatures in the germline?

Africans Europeans

East Asians

Private European SNPs are enriched for a mutational signature of unknown origin

TCC-TTC TCC-TTC TCC-TTC TCC-TTC TCC-TTC TCC-TTC TCC-TTC

Africans Europeans

East Asians Harris *PNAS* 2015

A signature of elevated mutagenesis in the European germline

Harris PNAS 2015

0.017 0.018 0.019 TCC \rightarrow TTC Mutation Fraction

Visualizing differences between mutation spectra

Beyond 3-mers to 7-mers

Aggarwala and Voight 2016

Carlson, et al. 2017

Harris and Pritchard eLife 2017

Genes mirror geography within Europe

John Novembre^{1,2}, Toby Johnson^{4,5,6}, Katarzyna Bryc⁷, Zoltán Kutalik^{4,6}, Adam R. Boyko⁷, Adam Auton⁷, Amit Indap⁷, Karen S. King⁸, Sven Bergmann^{4,6}, Matthew R. Nelson⁸, Matthew Stephens^{2,3} & Carlos D. Bustamante⁷

TCC-to-TTC transitions are enriched in South Asia as well as Europe

A-to-T and AC-to-CC transversions are enriched in East Asia

A-to-T and AC-to-CC transversions are enriched in East Asia

Hypothetical Signature of a TCC-to-TTC mutation rate increase

Pulse replicates in the UK10K data

A pulse of TCC-to-TTC mutations in Europe and South Asia?

Expected TCC fraction as a function of allele frequency

- Partition time into discrete intervals
- A(k,i) = the total branch length subtending k lineages between times T_i and T_{i-1}
- $r_i \sim$ the rate of TCC mutations between T_i and T_{i-1}

Expected TCC fraction as a function of allele frequency is

 $\mathsf{E}[f(k)] \sim (\sum_i A(k,i) r_i) / \sum_i A(k,i)$

Inference of a mutation pulse lasting from 15,000 to 2,000 years ago

A younger Japanese mutation pulse

Great ape mutation spectrum evolution

Within-species SNPs from 79 great ape whole genomes (Prado-Martinez, et al. 2013) Harris and Pritchard *eLife* 2017

Future direction: are mutation pulses the relics of lost mutator alleles?

How mutator alleles could promote rapid mutation spectrum turnover

Positive selection in DNA repair genes and other housekeeping genes

- BRCA1 & BRCA2 are under positive selection in primates
- 5 Nonhomologous end joining genes experienced positive selection during primate evolution, incl XRCC4 which has been under selection in Europeans
- Iron-uptake receptor TfR1 evolves under positive selection to avoid facilitating viral entry

Demogines, et al. 2010 Demogines, et al. 2013

A case study of a mutational process that complicates population genetics

Multinucleotide mutations (MNM) are nearby SNPs that appear in the same generation

AAAGTTAGCCGACAC ↓ AAAGATAACCGACAC

Schrider, et al. 2011

Harris and Nielsen 2014

Effect of MNMs in the distribution of tracts of identity by state

Direct evidence for MNMs

- Most methods assume that all SNPs arise from rare, independent mutation events
- MA experiments and trio sequences show that *de novo* mutations are too clustered for this to be true

MNMs could accelerate evolution across fitness valleys

Multinucleotide mutation should create pairs of SNPs in *perfect linkage disequilibrium (LD)* (derived alleles occur in the same set of individuals)

multinucleotide mutation

Compared to theoretical predictions, the 1000 Genomes Phase I data (1,092 humans from Africa, Europe, Asia, and the Americas) has excess close-together SNPs in perfect LD

SNPs in perfect LD are enriched for transversions

- 66% of human mutations are transitions (A>G, G>A, C>T, T>C)
- Pairs of SNPs in perfect LD are enriched for transversions, suggesting a different balance of mutational signatures

Transversion-enrichment as a function of the distance between linked SNPs

A candidate mechanism: errorprone translesion synthesis

Northam et al., Nucleic Acids Res. 2014

Matching mutational signatures between human variation and laboratory yeast

Environmental and Molecular Mutagenesis 53:777–786 (2012)

Research Article

DNA Polymerase zeta Generates Clustered Mutations During Bypass of Endogenous DNA Lesions in Saccharomyces cerevisiae

Jana E. Stone, Scott A. Lujan, and Thomas A. Kunkel* Laboratory of Molecular Genetics and Laboratory of Structural Biology,

National Institute of Environmental Health Sciences, NIH, DHHS, North Carolina

- Stone, et al. created yeast deficient in nucleotide excision repair machinery and observed a high MNM rate
- Mechanism: increased translesion synthesis by Pol Zeta

A matching dinucleotide mutational signature

Further characterization of the Pol zeta mutational signature

- GC>AA mutations are concentrated in late-replicating regions of the genome
- Usually occur in GCG context, triggered by CpG deamination followed by polymerase stalling
- CpG deamination is triggered by transcription; usually occurs on transcribed strand
- Some genes contain GC>TT mutation hotspots, including HRAS where the mutation causes the Mendelian disorder Costello Syndrome

More on the weirdness of Costello Syndrome

- A high penetrance Mendelian disease caused by a nonsynonymous point mutation in the HRAS oncogene
- Causes developmental delay and early childhood tumors
- Most commonly caused by a GC>TT mutation with a mutation rate of 10⁻⁵ per generation (normal mutation rate is 10⁻⁸ per site per generation)
- Biggest risk factor is paternal age

HRAS mutations experience selfish selection within the testis

Goriely and Wilkie 2012

The Harris Lab is recruiting